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ABSTRACT covariance matrix, wherg is a positive parameter. Following [1],

This paper addresses the sensitivity of the algorithm proposed L zero-meany-prior for ay will be used in this paper. Our results,
Andrieu and Doucet (IEEE Trans. Signal Process., 47(10), )1999however, are likely to remain relevant for any covariance matrix of
for the joint Bayesian model selection and estimation of sinusoidéhe forma?/g %y (with %, possibly depending okandwy).

in white Gaussian noise, to the values of a certain hyperparameter The parameted? = 1/g, called the Expected SNR (ESNR),
claimed to be weakly influential in the original paper. A deepercontrols the expected size of the amplitudes. Owing to its influence
study of this issue reveals indeed that the value of this hyperparanen the performance of the algorithm, and assuming again that no (or
eter (the scale parameter of the expected signal-to-noise ratio) hkigle) information is available, the hyperparamed&ris given in [1]

a significant influence on 1) the mixing rate of the Markov chaina conjugate inverse gamma prior with parametgysand 352, that

and 2) the posterior distribution of the number of components. Agve denote by/¥ (a2, 352). Such a hierarchical Bayes approach is
a possible workaround for this problem, we investigate an Empiriusually hoped to increase the robustness of the statistical analysis;
cal Bayes approach to select an appropriate value for this hyperp&ee [18, Section 10.2] for more information. The first parameter is
rameter in a data-driven way. Marginal likelihood maximization is Set tods = 2, in order to have an heavy-tailed “weakly informa-
performed by means of an importance sampling based Monte Carféve” prior (with infinite variance). Itis claimed in [1, Section V.D]
EM (MCEM) algorithm. Numerical experiments illustrate that the that the value oBs. has a weak influence on the performance of the
sampler equipped with this MCEM procedure provides satisfactorglgorithm.

performances in moderate to high SNR situations. The contribution of this paper, which can be seen as a contin-
uation of [1], is twofold. First, on the basis of extensive numerical
1. INTRODUCTION experiments, we argue that the value@3f can have a strong in-

. . ... fluence on 1) the mixing rate of the Markov chain and 2) the poste-
In this paper, we address the problem of detection and estimation = =~ = X

. o . ; . . rior distribution of the number of components. Second, instead of
of sinusoids in white Gaussian noise, assuming that the number

of component is unknown. A fully Bayesian algorithm, based Onusing a fixed value for the hyperparameflt, we investigate the

) . _ _capability of an Empirical Bayes (EB) approach to estimate it from
Hi‘euze[\éegs]'bAZ;Er:é)nM?ékz\ég dh%?tmgmr%bclzmoir(ﬁi] Msci:r':fig)r;elcg_the data, in the spirit of the approach used in [2, 6] to estimate
4 1 prop P : 9%More precisely, since the marginal likelihood B§. is not avail-

rithms have also been used for other applications such as polyphoné%le in closed form, we implement an Importance Sampling (IS)

signal analysis [3], array signal processing [12], and nuclear-emi 3 T /
sion spectra analysis [10]. However, to the best of our knowledgSoiaasede]ngnﬂazg;zlgeﬁfﬁjﬁgﬁzgglll;ﬂwlmlzatlon (MCEM) algorithm

the sensitivity of the algorithm to the value of its hyperparameter: . . . .
Y g yperp The paper is outlined as follows. Section 2 recalls the hierar-

has never been clearly discussed. . - .
v y SISt chical Bayesian model and the RJ-MCMC sampler proposed in [1].

Let y=(y1, Y2, ...7yN)t be a vector ofN observations of an i ; ) -
observed signal. We consider the finite family of embedded mod-Sectlon 3 dlscu§ses the mfluencgﬁgi on .bOth the mixing rate of
the Markov chain and the posterior distribution of the nuntbef

els {.#, 0 < k < kmax}, Wwhere.#j assumes that can be written ; ;
as a linear combination df sinusoids observed in white Gaussian component;. Sgctlon 4 explalr]s thg fundameptals of the MCEM al-
noise. Letw = (@yy,..., k) be the vector of radial frequencies gorithm, which is used for estimatingy.. Section 5 presents the

in model.#, and letDy be the correspondi 2k design matrix results of our nu_rr_]erical experiments a_nd di;cusses th_e pros and
defined byk k P g 9 cons of the Empirical Bayes approach in estimatffyg. Finally,

Section 6 concludes the paper and gives directions for future work.
Dy(i+1,2)— 1) £ cofwj ki), Di(i+1,2j) = sin(cw i)
2. BAYESIAN FRAMEWORK

fori=0,....,N—1andj=1...,k. Then the observed signgl
follows under.# a normal linear regression model: This section describes the prior distribution and the RJ-MCMC
sampler considered in this paper, following [1] unless explicitly
y = Dy.ag+n, stated otherwise.

wheren is a white Gaussian noise with variangé. The unknown

parameters are assumed to be the number of compadnant®y, =

{ak,wk,oz}. The joint prior distribution of the unknown parameters is chosen to
Assuming that no (or little) information is available about the have the following hierarchical structure:

vector of amplitudesy, the conditionally conjugatg-prior is usu-

2.1 Prior distributions

ally recommended as a default prior in the Bayesian variable selec- 2\ _ 2 52
tion literature [14, 21]. Under this prior, the distributionagf con- p(k, 0.0 ) = Pla | kwi,0%,0%) p(wi k) (1)
ditionally to 02, k andwy is Gaussian witlo?/g (D{Dy) ! as its x p(k) p(a?) p(&?).
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the value ofk andwy, followed by a sequence of Gibbs moves to
updated? andA. (The conditional distribution 062 givenk, wy, A

= andy is sampled from by firstiemarginalizing [17] o2 anday and
=2 then sampling from the full conditional distribution.)
Since the problem under consideration is trans-dimensional,

the proposal distribution for the MH move updatifigand wy
is in fact a mixture of proposal distributions performing within-
model moves (updating radial frequencies without chang)rand

. between-models moves (“birth” and “death” moves, which respec-

:“5 0.1 1 tively add and remove components). Except for a modification de-

T(f scribed below, the moves implemented in our sampler are the same
0 WWW@@Q@Q@Q@Q@Q@O@O@ asin[1].
0 5 10 15 20 25 30
Kk 2.3 Correction of thebirth ratioin [1]

Figure 1: Truncated negative binomial prior @rcorresponding " the birth move proposed in [1], and also used in this paper, the

to ap = 1.0 (upper plot) andiy = 0.5 (lower plot), withkmax = 32 insertion of a new sinusoid is proposed as follows: first a new radial
andfy = 0.001. frequency is sampled from the uniform distribution @) and,

then, it is inserted at a random locatfoamong the existing ones.
According the theory of RJI-MCMC samplers [8] and using the same
proportion of birth and death moves as in [1], the move is accepted
The conditional distribution oy is theg-prior distribution already ~ With probability ayirn = min{1, rpin }, where
described in the introduction. Conditional &nthe components
of wy are independent and identically distributed, with a uniform y'Pyi1y Nz
distribution on(0, 7). The noise variance? is endowed with Jef- birth = (W) 1+02
frey’s improper prior, i.e.p(0?) 0 1/a?, where the symball de-
notes proportionality. One should note that the birth ratio computed in [1] differs from (3)
The prior distribution ok is defined in [1] in two steps, follow-  py a 1/(k+ 1) factor. A similar mistake in computing RJ-MCMC
ing once again the hierarchical Bayes philosophy. Fi#,given  ratios has been reported in the field of genetics [11]. Note that this
a Poisson distribution with meaf, truncated to{0,1,...,kmax}.  additional factor is equivalent to using a different prior distribution
Then, to increase the robustness of the inference in a context @fyerk. A detailed justification of (3) will be provided in a forth-
weak prior information ork, the hyperparametex is given a con-  coming paper.
jugate Gamma prior, with shape parametgr % and scale param-

eterf3p ~ 0. This is equivalent to using féra (truncated) negative 3. SENSITIVITY OF THE ALGORITHM TO S5

binomial priof that puts a strong emphasis on small values. In this_ . . i . . 2
paper, we setix — 1 in order to have an almost flat prior fér This section first reviews related work concerning the roleof

over{0,..., kmax}; See Figure 1 for a comparison of the two prior in the Bayesian variable selection literature, and then proceeds to

distributions. describing the role oBs. in the present problem.

®)

2.2 Sampling structure 3.1 Review of related work in Bayesian variable selection

The hierarchical structure and prior distributions just describedt has been highlighted in the variable selection literature that the
make it possible to integrate parametagsanda? out of the poste- parameted?, which controls the expected relative size of the am-
rior distribution analytically. Thisnarginalization step [17] yields ~ Plitudes with respect ta, implicitly defines a “dimensionality

the following marginal posterior distribution: penalty” from the model selection point of view [2, 6]. Indeed,
- considering thap (k) is approximately constant fdc € [0, kmay/,
_ N we have
p(k,wk,52,/\|}’> O (y'Pxy) N/zm @
' N
2y o N t =
x p(82) pIA) L g,k (wk) » log p (k, wily,o ) ~ —5log(y Pey) —F -k+C,  (4)
i 2
with Py = Iy — 672 Dy (DiDy) "D} whereF = log (r7(1+ 62)) andC is a constant which does not de-
1+6 pend ork andwy. F can be interpreted as a dimensionality penalty,
whenk > 1 andPg = Iy. which penalizes complex models. Thd&, plays the role of a reg-

The joint posterior distribution (2) is the target distribution of ularization parameter, “large” values of which favor sparse signal
the RJ-MCMC sampler. In the following, different steps for sam-representations at the expense of detection sensitivity. Conversely,
pling from the target distribution are briefly described. For more“small” values of 2 typically lead to the selection of overfitting
detailed expressions please refer to [1, 8]. models (i.e., in terms of detection performance, false positives).

The RJ-MCMC sampler, that leaves the target density (2) in-  In the Bayesian variable selection literature, many researchers
variant, consists of a Metropolis-Hastings (MH) move for updatinghave tried to either set an appropriate fixed valué3@r estimate
it using different approaches. In [4], several fixed valuesXoare

Lindeed, the marginal prior distribution kfss given by compared in a model averaging framework, afd= max{N, p2}
an k is recommended as a default (“benchmark”) value, wipstenotes
r(k+an) ([ Ba 1 ; S
p(k) = Fan Kk \ Byl Bril) the number of variables. Several approaches for the estimation
' of 2, both EB or fully Bayesian, have been proposed and compared
which is a negative binomial distribution. See, e.g., [5t®e2.7 and 17.2],
where the negative binomial distribution is advocated adasbalternative °Note that the same ratio would be obtained if the radial fraquevere
to the Poisson distribution. sorted instead [16].
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Bs2 =10 Bs2 =100 4. IMPORTANCE SAMPLING BASED MCEM

Zoi | ALGORITHM

> 10 Hierarchical models are commonly used in Bayesian model (or vari-
able) selection problems. However, this hierarchy should stop at
0 some point with all remaining parameters assumed fixed. Then,
B> = 200 Bs2 = 1000 based on some prior beliefs, these parameters can be set. However,
20 for some parameters which no information is provided beforehand,
« rather than setting them to a fixed value, the EB approach uses the
10 observed data to estimate them. It avoids using arbitrary choices
0 PR NPT A which may be at odds with the observed data.
0 2 4 6 8 10 0 2 4 6 8 10 In this method, one tries to estimgg. such that the marginal
iteration (x 104) iteration (x 104) likelihood is maximized. In other words,
Figure 2: Mixing of the chain for different values Bf.. The true [362 = argmay p(y|Bs2)-

model is.#15, and the sampler is initialized in7.

This is similar to MML method proposed in [6] for estimatidg.

The maximum likelihood may be easier to compute when the data is
augmented by a set of latent variablagay. These latent variables,

in our case, aréwy,k, 32, A}. Then, one can use the EM algorithm

in[2, 6, 14]. Itis concluded in [2] that the Maximum Marginal Like- that entails. at iterati 1 E-sten f ting th ted
lihood (MML) approach is superior to the others (in terms of meaqog_lﬁ(glﬁ']jc')s iteration+ 1, an E-step for computing the expecte

square error), but the conclusions of [14]—in a slightly different
setting—suggest that some fully Bayesian approaches can perform

just as well. Q(Bs2|B5:) = Eﬁg; {In P(yvu\ﬁéz)b’} (5)

and, an M-step, for maximization Q(Bgz\ﬁ(gz) over 352 in order

3.2 Roleof Bs to obtain the MLE of it,fj’gjl.

) ) However, in our case, computing the E-step is not possible an-
Our numerical experiments have revealed that the valyiotan  alytically. Therefore, here, we propose to use Monte Carlo approx-
have a significant influence on 1) the posterior distribution of themation of (5), which is called MCEM [13, 15], by simulating sam-

number of components and 2) the convergence rate of the Markomes fromp(uly, B5,). Moreover, the Monte Carlo estimation of (5)

chain. can be implemented in a more efficient way using the idea of Impor-
The former fact can be understood in light of Section 3.1 wherdance Sampling (IS). As is explained in [13, 15], in this framework,

the role of62 as a dimensionality penalty has been highlighted. In-samples are just generated frgiuly, 8%), whereB?, is the initial

deed, sincg8;: is a scale parameter for the prior distributionddf ~ value. Then, fom number of generated samples, the E-step can be

it can be expected that, probably to a lesser exfgqatshould play — written as

a similar role. In other words, high values Bf. are expected to m m

favor sparse solutions, with a risk of omitting low SNR compo- Al Y

nents, whereas low values Bf. are expected to allow solutions QP2 Fe2) t;WIIn p(y,u[|B5z)/t;vvt ©)

with many components (high values Igf This point will be fur-

ther discussed in Section 5 on the basis of numerical results. where
(r)
Let us now discuss the influence B§> on the mixing of the _ P(uly.Bs )
sampler. We have found that large valuesfgf lead to a sam- p(utly,Bég))

pler that has severe mixing issues and often gets trapped in local
modes of the target distribution. This issue is illustrated in Fig-are the weights which in our case would simplify to
ure 2, which shows the mixing of the chain for different values of

Bs2 in a case where the true modelig; s, the number of samples B(r) 52 B(r) _ B(O)
N = 64, and the sampler is initialized i#(. The mixing issue of w= | 9% exp[ -2 "%
the chain wheBs2 > 100 is highlighted in this figure, which causes BY ¥

the sampler to get stuck for many iterations at a local mode. In fact,
whenfs. = 1000 the sampler cannot escape from the local mode af-  gjnce the RJ-MCMC sampler introduced in Section 2 can easily

ter 100k iterations. This convergence issue might similarly happe@eneraten samples frorrp(u\y,ﬁgz), these samples can be used to

yvhen the true signal is near null model and the samplgr is mitial'perform the IS based MCEM procedure. So, in each MCEM itera-
ized near full model. So, for large values @42, the algorithm is

S he initialized On the other hand Il val tion, a batch omsamples is generated from the RJI-MCMC sampler
sensitive .tOt e Initialized state. n_t e other hand, too small valueg e 1o compute (6). The computationally efficient point of this
of Bs2 which corresponds to assuming low ESNR, would cause th

3 ; . . ?)rocedure is that once the IS based MCEM algorithm is stopped,
algorithm to explore many regions of low probability of the space iNthe generated samples are not discarded. They can be used to gen-

low SNR situations which can be really computationally expensivé, e the desired posterior distribution of the unknown parameters
and causes convergence problems. by using the importance weights.

A possible solution to the mixing issue would be to use a com-  However, one should note that this procedure is sensitive to the

bination of simulated annealing and MCMC sampler as is done, fovalue ofﬁgz. In order to reduce the variationswf, it is proposed in
example, in [7]. In the next section we follow a different path and[13] to run a few burn-in iterations using a simple MCEM method
use an EB approach to estimgig from the data. without importance reweighting.
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overestimates the number of components. On the other hand, larger
values off352 leads to a sampler that underestimates the number of
components. According to the obtained results, choosing a very
small value forf52, one say, is not suitable. For the values of
SNR < 0 dB, it makes convergence problems for the sampler by
accepting most of proposed birth or death moves. More precisely,
it leads to a sampler which explores all possible regions, even low
probable ones, which would be really computationally expensive
whenkmay is large. However, one should note that for all simula-
tions the samplers were initialized near null model, otherwise for
values off35> > 100 the results would definitely changed. In the
case thalN = 256, the sensitivity of the sampler to the choice of
Bs2 is less critical. This may be caused by the fact that the ob-

MCEM iteration served signal is more informative in this case. Finally, a fixed value

of Bs2 € [50,100 provides a sampler with more reasonable perfor-

Figure 3: Estimated values @f. using the IS-based MCEM algo- mance for most values of SNR.

Bs>

rithm. The signal is generated undef, with N = 64,611 =02, Turning to the results of the EB approach used here to automati-
for several values of the SNR (see legend). The vertical line indically estimate the value ¢ from the data, it can be seen from the
cates the burn-in period. table that the sampler equipped with the IS-based MCEM algorithm

has a quite satisfactory behavior in moderate to high SNR situations
(0 dB, —2 dB, and even-5 dB for N = 256). However, it is clear
that the algorithm fails to select an appropriate valueBprin low
5. SIMULATION RESULTSAND DISCUSSION SNR situations{10 dB, and-5 dB forN = 64): the selected value
In this section, we will investigate the capability of the IS basedis typically much too small, leading to severe overfitting. A similar
MCEM algorithm for assessings in different situations. More- behavior is observed in experiments under the null modgl(not
over, we will compare the performance of the sampler with severashown here).

fixed values off3s.. Simulations are performed on two different In fact, based on Table 1, it seems that usfig = 50 gives,
sample size8l = 64 andN = 256 generated according t# with in all the situations considered here, results that are similar to or
different SNRs. The SNR is defined as better than the results of the EB approach. Additional experimental
results under various configurations and sample sizes are required,
SNR2 HDkakH2 however, to issue a general recommendation regarding the choice of
No2 an appropriate fixed value f¢s. (possibly depending oN) and,

also, to confirm the capability of the EB approach to automatically

The parameters of the single sinusoid are as followsi = 0.27T,  ggject such a value in moderate to high SNR situations.

—arctartap1/a11) = 11/3, andag; + a3 ; = 20.
In the IS based MCEM algorithm, first, 20 burn-in iterations 6. CONCLUSION

with m = 100 samples were carried out. Then, the 20 IS based . . . .
MCEM procedure iterations with = 5000 were performed to es- In this paper, first, the sensitivity of the RJ-MCMC algorithm pro-

timate 8. So, finally, in addition to an approximate estimate of PoS€d in [1] for detection and estimation of sinusoids to the hyper-
Bs2, 100k samples from the RI-MCMC sampler are obtained an§2rametemz. has been investigated. Then, an IS-based MCEM
can be used to produce the posterior distributions of the unknowf!g0rithm has been used to estimate this parameter given the data,

parameters, of course by using the importance weights. Figure ®!lowing an empirical Bayes (EB) approach. The IS-based MCEM

shows the performance of the IS based MCEM algorithm in esti_method has proved able to automatically estimate an appropriate

mating the value 0B for different observed signals. This relation Value forBs2 in moderate to high SNR situations. .
between the value g5 and SNR, that is illustrated in figure 3, is 1€ main limitation of the EB approach is that it cannot esti-
remarkably consistent with expectations. It is worthwhile to noteMat€ a proper value fd in very low SNR situations. This limita-

that variation of the estimated values@ is substantially reduced tion was, however, predictable as in such cases the observed signal
after the burn-in period, as it is shown in figure 3, which illustrates

carries very little information about the parameter of interest. To
the convergence of the algorithm. overcorzne this limitation and avo_id the problem of choos_imgake
Table 1 presents the probabilities of argnpdk|y) in 100 re- for p(69), 'a'truncated Jeffrey prior ha§ been proposed in [19] and
alizations of the algorithms. In each realization, 100k samples wer4e"Y Promising results have been obtained.
generated and the first 20k samples were discarded as the burn-in AS mentioned in Section 1, this model and RJ-MCMC sampler
period. The results are presented for different fixed valuggsof ~ave also been used in other applications such as polyphonic sig-
together with the results obtained by applying the IS based MCEM'@ analysis [3], array signal processing [12], and nuclear ennissio
algorithm for estimating3. spectra ar_1aIyS|s [10]. _The_ contributions of this paper are likely to
First, let us consider the case of fix@gz. From the results P€ usefulin these applications as well.
presented in Table 1, it can be concluded that the valygsohas
a strong influence on the posterior distribution of the number of REFERENCES
components. Indeed choice Bf. would become more critical 8 (1] ¢. Andrieu and A. Doucet. Joint Bayesian model selectind esti-
the SNR decreases. Though the sampler produces reasonable re- mation of noisy sinusoids via reversible jump MCMCEEE Trans.
sults for a wide range of values @y, i.e. 10< B52 < 1000, in Signal Process, 47(10):2667—-2676, 1999.
high SNR situations (not shown here), the behavior of the sam- ) - )
pler significantly varies by changing the value of this parameter [2] W. Cui and E. |. George. Empirical Bayes vs. fully Bayesiatle
in low SNR situations. For instance, when SNR-5 dB, while selection.J. Sat. Plann. Inference, 138(4):888-900, 2008.
the probability of detecting one component is almost the same for[3] M. Davy, S. J. Godsill, and J. Idier. Bayesian analysigolyphonic
the mentioned interval, settins. = 10 provides a sampler which western tonal musicl. Acoust. Soc. Am., 119:2498-2517, 2006.
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N | Bs P P P P; Py N | Bs P P P P; Py
1 0.25] 0.04| 0.04 | 0.03| 0.64 1 0.03] 0.09| 0.13 | 0.06 | 0.69
10 0.64 | 0.13| 0.05| 0.02 | 0.16 10 0.09] 056 | 0.12 | 0.07 | 0.16
64 50 0.81] 0.09| 0.00| 0.00| 0.10 64 50 0.27 | 0.57| 0.11 | 0.00 | 0.05
100 | 0.87| 0.11 | 0.00| 0.01| 0.01 100 | 0.31| 0.60 | 0.08 | 0.00 | 0.01
1000 | 0.97 | 0.02 | 0.01 | 0.00 | 0.00 1000 | 0.54 | 0.45| 0.01 | 0.00 | 0.00
EB 0.05| 0.04 | 0.02| 0.06 | 0.83 EB 0.01| 0.22 ] 0.25| 0.12 | 0.42
1 0.01] 0.05| 0.16 | 0.18 | 0.60 1 0.00| 0.71] 0.22 | 0.05| 0.02
10 0.08| 0.45| 0.25| 0.12 | 0.10 10 0.00| 0.79 | 0.18 | 0.01 | 0.02
256 50 0.18| 0.76 | 0.04 | 0.02 | 0.00 256 50 0.00 | 0.92 | 0.06 | 0.00 | 0.02
100 0.22 | 0.73 | 0.05| 0.00 | 0.00 100 0.00 | 0.93 | 0.07| 0.00 | 0.00
256 0.35| 0.63 | 0.02| 0.00 | 0.00 256 0.00 | 0.99| 0.00| 0.01 | 0.00
1000 | 0.48 | 0.51 | 0.01 | 0.00 | 0.00 1000 | 0.00 | 0.99 | 0.01| 0.00 | 0.00
EB 0.00 | 0.22 | 0.16 | 0.12 | 0.50 EB 0.00| 0.92 | 0.05| 0.02 | 0.01
N | Bs Po Py P Ps P4 N | Bs Po Py P Ps Py
1 0.00| 0.32 ] 0.32| 0.14 | 0.22 1 0.00| 0.72 | 0.17 | 0.07 | 0.04
10 0.00 | 0.68| 0.23 | 0.07 | 0.02 10 0.00| 0.86| 0.08 | 0.05| 0.01
64 50 0.02| 0.84| 0.10 | 0.02 | 0.02 64 50 0.00| 0.87| 0.11 | 0.02 | 0.00
100 0.01| 0.93| 0.04| 0.01 | 0.01 100 0.00| 0.95| 0.05| 0.00 | 0.00
1000 | 0.02 | 0.97 | 0.01 | 0.00 | 0.00 1000 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00
EB 0.00| 0.69| 0.22 | 0.04 | 0.05 EB 0.00| 0.88| 0.09 | 0.02 | 0.01
1 0.00| 0.89| 0.10 | 0.01 | 0.00 1 0.00| 0.91| 0.09 | 0.00 | 0.00
10 0.00| 0.95| 0.05| 0.00 | 0.00 10 0.00| 0.95| 0.05| 0.00 | 0.00
256 50 0.00| 0.95| 0.04 | 0.00 | 0.01 256 50 0.00 | 0.98 | 0.02 | 0.00 | 0.00
100 0.00| 0.95| 0.05| 0.00 | 0.00 100 0.00| 0.94 | 0.06 | 0.00 | 0.00
256 0.00| 1.00| 0.00 | 0.00 | 0.00 256 0.00| 0.98| 0.02 | 0.00 | 0.00
1000 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 1000 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00
EB 0.00| 0.94 | 0.04 | 0.02 | 0.00 EB 0.00 | 0.98| 0.02 | 0.00 | 0.00

Table 1: Probability of argmax(k|y) = 0, argmaxp (Kly) = 1, argmaxp (Kly) = 2, argmayp (K|y) = 3, and argmap(k|y) > 4, are
denoted, respectively, B, Py, P>, P3, andP4. The value of the SNR is respectivelyl0 dB (top-left),—5 dB (top-right),—2 dB (bottom-
left) and 0 dB (bottom-right). These probabilities have been estimated baste output of 100 runs of the algorithm undgf with two
different sample sizes\(= 64 andN = 256). The length of the chain was set to 100k, with a burn-in period ofs20kples. Results are
presented for several fixed values@t and for the 1S-based MCEM algorithm.
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