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ABSTRACT

As verified experimentally in literature, the performance of
the semi-blind cross-relation-based channel estimation may
suffer from significant degradation when the involved chan-
nels are ill-conditioned. In this paper, we investigate this
degradation and we introduce simple conditions for the train-
ing part in order to mitigate the problem. The suggested
training design is based on the minimization of the mean
square error of the estimation in a high SNR regime. The at-
tained performance is studied through analytical arguments
and verified via extensive simulations.

1. INTRODUCTION

An interesting problem in digital communications is the
blind and semiblind identification of finite impulse response
channels ([1], [2]). The methods that have been proposed for
the blind case, are based only on the received signals and, in
some cases, on statistical assumptions about the input and the
channels. The so-called semi-blind methods originate from
pure blind methods which are properly extended so as to in-
corporate a training part. This knowledge makes them more
robust with respect to problems that are frequently encoun-
tered in purely blind methods, such as over/under modeling
and existence of common roots ([3]).

Many of the methods that have been proposed in litera-
ture, formulate the problem using a multichannel model as in
Fig. 1. One of the seminal works was [4], where a blind iden-
tification method was suggested based on second order statis-
tics and the so-called Cross-Relation (CR) criterion. Later it
was proved that, for the two sub-channels case, the CR crite-
rion is equivalent to the subspace method [5]. Over the past
15 years, a number of results appeared in literature concern-
ing either the performance or the algorithmic aspects of the
CR method. Thus, in [6] asymptotic bounds for the normal-
ized mean squared error (MSE) were derived, while in [7]
approximate MSE expressions using perturbation theory and
the Cramer-Rao bound were suggested. In [8], the Karhunen-
Loeve expansion was used to improve the performance of the
method. Recently, a new blind CR based algorithm utilizing
orthogonal frequency division multiplexing has been devel-
oped in ([9]). Semi-blind versions of the CR-based blind
method were presented in several papers (see [10] and the
references therein). In [11], an efficient algorithm for semi-
blind channel estimation was proposed utilizing a parametric
model for the channel. Finally, in [3], identifiability condi-
tions for both the pure blind and the semi-blind case were
presented.
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Figure 1: A single-input, two-output system

If the identifiability conditions hold, the performance of
the CR method depends on whether or not the channels are
ill-conditioned. In [6], performance bounds were derived that
are related to the condition number of the involved channel
matrix. In [7], it was shown that the MSE may degrade con-
siderably if the sub-channels have relatively close zeros.

In this paper, we investigate a similar degradation that
was observed for the semi-blind case. It was shown in [12],
that the degradation of the channel estimation performance
in cases of ill-conditioned channels depends on the partic-
ular structure of the multichannel model. Here we further
investigate this issue and we suggest a simple MSE-based
training design methodology to mitigate the observed degra-
dation and make the CR method to perform acceptably even
in ill-conditioned cases.

In the following, bold capital and small letters denote ma-

trices and vectors, respectively. AT , A∗ and AH denote trans-
position, complex conjugation and conjugate transposition of
A. IN is the identity matrix of size N, Tr{A} is the trace of A,
‖.‖ is the 2-norm of a vector, E {.} denotes expectation over
the noise samples and ∗ denotes the operation of convolution.

In Section 2, a description of the problem and the afore-
mentioned channel degradation is provided. In Section 3, the
system model is presented and in Section 4 the equations for
the semi-blind cross relation estimation are given. Section 5
describes the procedure for the training design. In Section
6, experimental results are presented and, finally, Section 7
concludes the paper.

2. PROBLEM DESCRIPTION

In this paper, we are interested in communication systems
that can fit into a multichannel model with a single input and
two outputs (Fig. 1). Such a model is important if a (semi-
)blind method, utilizing second-order statistics, is to be used
and, actually, it is capable of describing many of the contem-
porary communication systems.

There are two distinct cases related to this model ([3]).
According to the first one, the transmitted signal passes
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(c) A single-antenna receiver (at double the symbol rate).

Figure 2: Examples of communication systems that can fit
into the multichannel model of Fig. 1.

through two (or more) different paths in space (so-called
“space” oversampling case). Some examples of the first case
are provided in Figs. 2(a), 2(b). Thus, for instance, the re-
ceiver of Fig. 2(a) has two antennas and fits naturally to the
multichannel model of Fig. 1. Another example comes from
cooperative communications where a source node S sends in-
formation to a destination node D and a relay node R assists
the transmission. In Fig. 2(b), S sends the signal s(n) to D
during the first phase and the relay forwards the same sig-
nal at the second phase. Obviously, the two received signals
constitute the upper and lower branches, respectively, of the
model of Fig. 1. Note that in the “space” oversampling case
the received signal is time-sampled at a symbol rate.

According to the second case, a single-antenna receiver
samples the received signal at a rate higher than the symbol
rate (e.g. by a factor of 2 in Fig. 2(c)). In this case (so-called
“time” oversampling case), the single output of the system is
split into two data streams that correspond to the outputs of
two different sub-channels to the same input signal s(n).

It is pointed out that, in the first case (i.e. multi-antenna
receivers and cooperative systems), the procedure of “time
oversampling’ can, also, be applied to each separate branch,
treating them as single-input and single-output systems. In
this case, the model of Fig. 1 is easily transformed to the
mixed model of Fig. 3 where, for instance, h1i’s (i = 1,2) are
the sub-channels of h1.
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Figure 3: The multichannel model after “time” oversam-
pling.

Is is important to emphasize that the above mentioned
two cases, i.e. “space” and “time” oversampling, do not
exhibit the same performance under the same conditions.
This fact should be taken into account if both options are
possible for a particular application. Let us see this point
via a typical example. Let us assume that the involved
sub-channels (either “space” or “time” sub-channels) can be
modeled as multipath channels with distinct components, i.e.
hi(t) = ∑k ai,kg(t − τi,k), (i = 1,2), where ai,k’s are indepen-
dent random variables and τi,k is the delay introduced by the

kth path of the i− th sub-channel. The g(.) function is the
combination of the transmit and receive filters (e.g. a raised
cosine pulse).

In case of “space” oversampling, we have symbol rate
sampling (i.e. t = nT ) and therefore the sub-channels can
easily be written in the form hi = G(τ i)ai and can be thought
as uncorrelated if there is a sufficient antenna spacing. Ma-
trix G(τ i) contains as columns delayed and scaled versions
of the sampled g(.) function.

On the other hand, in case of “time” oversampling at in-
stances t1 = nT and t2 = nT +T/2, the sub-channels h1(nT )
and h2(nT + T/2) are created, respectively. These can also
be written in matrix form as h1 = G(τ1)a1 and h2 = G(τ2)a2.
Note however that now, since the sub-channels come from
“time” oversampling of the same channel impulse response,
we have τ2 = τ1 + T/2 and a1 = a2. Thus, the two sub-
channels are correlated and have a covariance matrix equal
to G(τ1)E {a1aH

1 }G(τ2)
H (i.e., their correlation is mainly re-

lated to the form of the pulse shaping function g(.)).
For the purely blind case, it was shown in [6] that the per-

formance is related to the condition number of the involved
channels’ matrix which, in turn, depends on the relation
among the sub-channels. The more related the sub-channels
are, the more degraded the performance is. For the semi-
blind case, a similar dependence was observed experimen-
tally for a cooperative communication system ([12]). Here,
we describe a simple training design procedure based on the
MSE at the high SNR regime in order to combat this degra-
dation. Moreover, a closed-form expression for the MSE is
derived which provides some intuition concerning different
aspects of the performance of the semi-blind method.

3. SYSTEM MODEL

In this section, the multichannel models of Figs. 1, 3 will be
described mathematically. Specifically, if the receiver sam-
ples the received signals at symbol rate (first case in Section
2), the input-output equations are

yi(n) = hH
i s(n)+wi(n), with i = 1,2. (1)

Alternatively, if the receiver oversamples the input sig-
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Figure 4: The blind CR criterion.

nals at a higher rate (e.g. by a factor of 2 - see second case in
Section 2), the input-output equations are

y1i(n) = hH
1is(n)+w1i(n), with i = 1,2, (2)

y2i(n) = hH
2is(n)+w2i(n), with i = 1,2. (3)

In the above equations

hH
j = [h∗j(0),h∗j(1) . . .h∗j(L−1)],

s(n) = [s(n),s(n−1) . . .s(n−L+1)]T

where j ∈ {i,1i,2i} and n = 0, . . . ,M + N − 1. The L and
w j(n) denote the channel length and the noise samples, re-
spectively. The latter are assumed independent and identi-
cally distributed zero mean complex Gaussian random vari-
ables with variance σ2. The first M outputs, i.e. n = 0 . . .M−
1, correspond to known input symbols (training part). The
blind part consists of the remaining N outputs. Finally, the
channels incorporate the transmit and receive filters as al-
ready explained.

4. SEMI-BLIND CR CHANNEL ESTIMATION

In the following, we focus on the input-output description of
the multichannel model as given in Eq. (1). The respective
derivation for Eqs. (2), (3) is straightforward and is omit-
ted. We will start with the noise-free case (i.e. wi(n) = 0 in
Eq. (1)).

The blind CR criterion is shown in Fig. 4. Specifically,
the criterion states that if y1 ∗w1 = y2 ∗w2, then w1 = ah2 and
w2 = ah1, where a is a constant. In matrix form, this criterion
can be written as

[ Y2 −Y1 ]

[

h1

h2

]

= 0, (4)

where

Yk =






yk(M +L−1) . . . yk(M)
yk(M +L) . . . yk(M +1)

. . . . . . . . .
yk(M +N −1) . . . yk(M +N −L)




 , k = 1,2

is a Toeplitz matrix. It is easily verified that in Yk the N
outputs yk(n), with n = M, . . . ,N + M − 1, are used for the
blind part. The training part, i.e. outputs yk(n) with n =
0, . . . ,M−1, can be written as

Sthk = zk, k = 1,2, (5)

where

St =






s(0) . . . s(−L+1)
s(1) . . . s(−L+2)
. . . . . . . . .

s(M−1) . . . s(M−L)






is a Toeplitz matrix constructed by M +L−1 known training
symbols and zk = [yk(0), . . . ,yk(M−1)]T .

Finally, Eqs. (4), (5) are merged together in a single ma-
trix form and a linear system of equations with the desired
channels as unknowns is derived. The corresponding relation
is the semi-blind CR based channel estimation ([11]) and is
given as

Y
︷ ︸︸ ︷
[

Y2 −Y1

St 0
0 St

]
h

︷ ︸︸ ︷
[

h1

h2

]

=

z
︷ ︸︸ ︷
[

0
z1

z2

]

. (6)

In Eq. (6), if noise is added, the relation is transformed
into

Ỹh̃ = z̃, (7)

where

Ỹ = Y +W,

h̃ = h+δh,

z̃ = z+w

and

W =

[
W2 −W1

0 0
0 0

]

, w =

[
0

w1

w2

]

.

The matrices Wk and the vectors wk are defined similarly to
Yk and zk, respectively, by replacing yk(n) with wk(n). Fi-

nally, δh = [δhT
1 δhT

2 ]T is the estimation error.
The channel estimator that is used, is based on Eq. (7)

and is given by

ĥ = Ỹ
†
z̃, (8)

where A† = (AHA)−1AH is the pseudo-inverse of A. Finally,
using Eq. (6) in Eq. (7), the equation

δh = Ỹ
†
(w−Wh) (9)

is derived for the error δh.

5. PERFORMANCE ENHANCEMENT

The performance of the estimator of Eq. (8) is related to
the condition of the Y matrix which, in turn, is related to
the desired channels involved in matrix [Y2 −Y1]. In this
section, we will follow a simple training design procedure
in order to enhance the performance of the estimator. From
the experiments in the next section, we will observe that this
training design actually makes the estimator independent of
the relation between the sub-channels involved in any of the
two cases that were described in Section 2 (i.e., “space” and
“time” oversampling cases).

The proposed training design is based on the minimiza-
tion of the MSE = E {‖δh‖2} at a high SNR regime. Specifi-
cally, following similar arguments as in [13], we write Eq. (9)
as

δh = Y†(w−Wh)

+(Ỹ
†
−Y†)(w−Wh)

a
≈ Y†(w−Wh). (10)
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The approximation in Eq. (10) is reasonable at a high SNR
regime, where W and w contain relatively small elements.

The MSE, using the approximation of Eq. (10), becomes

MSE = E {‖δh‖2}

= Tr{Y†RY†H}, (11)

where R = E {(w−Wh)(w−Wh)H}. The matrix R can be
written as

R =

[

R1 0
0 R2

]

, (12)

where R2 = σ2I2M , while concerning matrix R1, it can be
shown that it is a symmetric and diagonally dominant ma-
trix with its diagonal elements equal to σ2‖h‖2. To sim-
plify the subsequent analysis, we approximate R1 as R1 ≈
σ2‖h‖2IN−L+1. This choice is fully justified by the experi-
ments in Section 6. We also define

Yb = [ Y2 −Y1 ] , Sb =

[

St 0
0 St

]

. (13)

Using Eqs. (12) and (13), the MSE in Eq. (11) becomes

MSE = Tr{(YHY)−1YHRY(YHY)−1}

= Tr{(YH
b Yb +SH

b Sb)
−1

·(σ2‖h‖2YH
b Yb +σ2SH

b Sb)

·(YH
b Yb +SH

b Sb)
−1}. (14)

Using Yb = UΣVH , i.e. the singular value decomposition

of Yb, and the identity Tr{ABA−1}= Tr{B} ([14]), the MSE
in Eq. (14) becomes

MSE = Tr{(Σ2 +VHSH
b SbV)−1

·(σ2‖h‖2Σ2 +σ2VHSH
b SbV)

·(Σ2 +VHsH
b sbV)−1} (15)

= Tr{Q−1PQ−1}, (16)

where matrices Q and P are defined by the respective quanti-
ties of Eq. (15).

In order to minimize the MSE, we use the bound ([15])

Tr{A−1} ≥ ∑
i

[A]−1
ii , (17)

which holds if the matrix A is positive definite. [A]nm stands
for the element of A in position (n,m). Now, the use of the
above bound in Eq. (16) results in

MSE = Tr{(QP−1Q)−1}

≥
2L

∑
i=1

[QP−1Q]−1
ii . (18)

The equality holds when the matrix QP−1Q is diagonal. By
a simple inspection of Eq. (15), we can see that the matrix

is diagonal when the condition SH
b Sb = β I2L holds true or,

equivalently, when SH
t St = β IL (see Eq. (13)). In order for

this to be possible, M ≥ L should be satisfied. Here, we use
the constant amplitude zero autocorrelation sequences that
are described in [16] in oder to construct the training matrix
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Figure 5: The singular values of matrix Yb in decreasing or-
der for the models described by Eqs. (1) and (2), respectively.

St . We, also, assume M = L, i.e. the smallest possible value.
Finally, because the symbols that are used for training have
magnitude equal to one, the constant β is equal to M because

M symbols participate in the inner products of SH
t St .

Using the condition SH
b Sb = MI2L in Eq. (15), the follow-

ing analytical expression is derived.

MSE = σ2
2L

∑
i=1

‖h‖2σ2
i +M

(σ2
i +M)2

, (19)

where the σi’s are the singular values of Yb. The main obser-
vation in Eq. (19) is that the denominator grows faster with
M as opposed to the numerator and, hence, the MSE tends to
zero as M increases.

If, for intuitive reasons, we assume that ‖h‖2 = 1 then
Eq. (19) is simplified to

MSE = σ2
2L

∑
i=1

1

σ2
i +M

. (20)

Eq. (20) provides a more intuitive interpretation regarding
the impact of the training design. In a way, the training part
increases the magnitude of the singular values and assuming
(reasonably) that M ≥ 1, then all denominators are greater
than 1. This mitigates the degradation that is caused by the
singular values that are less than one. In Fig. 5, the values
of the σi’s (averaged over a number of realizations) of the
matrix Yb created by Eqs. (1) and by Eqs. (2) are plotted in
decreasing order. As it can be seen, the training is expected
to be more beneficial to the channel estimation method based
on Eqs. (2), i.e. the model with “time” oversampling because
there are more singular values near zero.

6. SIMULATION RESULTS

In this section, we present simulation results obtained for
the channel estimator of Eq. (8). The channel estimator was
based on the models of (a) Eqs. (1) (“space” oversampling)
and (b) Eqs. (2) (“time” oversampling). In either case, the
training sequence was constructed using (a) the procedure
of Section 5 and (b) the training symbols were selected ran-
domly from a quadrature phase shift keying (QPSK) constel-
lation.

The multipath model hi(t) = ∑k akg(t − τi,k),(i = 1,2),
was used for the channels as already described in Section
2. The ak’s were assumed to be independent and identically
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Figure 6: NMSE curves.

distributed zero mean complex Gaussian random variables
with variance 2. The function g(.) was the combination of
the transmit and receive filters. Here, we used a raised co-
sine pulse extending to two symbols at each side and roll-
off factor equal to 0.3. Both channels hi(t), with i = 1,2,
are assumed to have four paths and the corresponding delays
are assumed independent and identically distributed random
variables following U(0,4), where U(a,b) denotes the uni-
form distribution in the interval [a,b]. The information sym-
bols were drawn from a QPSK constellation. Finally, it was
assumed that N=150 and M=L.

Fig. 6 shows the normalized MSE ‖ĥ−h‖2/‖h‖2 curves
versus SNR for the two estimators with and without training
design. The results are in accordance with the conclusions
drawn in Section 5, namely, the estimator based on Eq. (1)
(“space” oversampling) is better when random training is
used because the involved channel matrix Yb is better condi-
tioned. Additionally, the estimator based on Eq. (2) (“time”
oversampling) is the one that is mostly benefited from the
training design and its performance is similar to the other,
which implies that the dependence on the channels has been
highly mitigated.

7. CONCLUSION

In this paper, a simple training design procedure is suggested
in order to enhance the performance of the semi-blind CR
channel estimation due to ill-conditioned channels. The main
conclusions are two. First, if a system can be described by
either Eqs. (1) or (2), then the first one is preferable because
in this case (a) the channels are well-conditioned, and (b) no
restrictions are imposed on the training sequence. Second, in
a SISO system, where the use of Eqs. (2) is the only possible
choice, the training sequence should be designed as proposed
in Section 4 in order to overcome ill-conditioning.
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