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ABSTRACT

Sound signal analysis can involve a large variety of signal pro-
cessing methods. This work addresses the analysis of families of
sound signals through linear transformations that map signals to
each other. These transformations are modeled as Gabor multi-
pliers, which are defined by pointwise multiplication with a given
transfer function in the time-frequency (i.e. Gabor) domain. We de-
velop new approaches for the estimation of such transfer functions,
based upon regularized variational approaches, and propose cor-
responding efficient iterated shrinkage algorithms. The estimated
transfer functions can be used for various purposes in signal anal-
ysis and processing. This paper describes an application to sound
morphing, in which the regularization parameter plays the role of
tuning parameter between input and output signals.

1. INTRODUCTION

A new approach for the analysis and categorization of families of
sound signals has been recently proposed in 11 2} [3]], that exploits
the transformation between signals in the family. In this approach,
the signals are supposed to be similar enough in the time-frequency
domain so that these transformations can be modeled as Gabor mul-
tipliers, i.e. linear diagonal operator in a Gabor representation (sub-
sampled version of Short Term Fourier Transform). Gabor multi-
pliers are characterized by a time-frequency transfer function, here-
after called Gabor mask.

A Gabor mask can be obtained by a simple pointwise quotient
of the Gabor representations of the output and input signals. How-
ever, as we shall see, this is generally an ill-conditioned operation,
that is likely to introduce distortions. We propose here to formulate
the Gabor mask estimation problem as a linear inverse problem,
that is solved using appropriate regularization techniques. The cor-
responding optimization problems are tackled using iterated shrink-
age algorithms, very much in the spirit of the proximal algorithms
(see [IL1] for a review) or thresholded Landweber iterations [6]. We
consider several different choices for regularization, and describe
the corresponding algorithms.

The so-obtained transformations can be used for several pur-
poses. In [2], the Gabor masks were used for sound categorization,
by means of a corresponding complexity measure. We address here
a different problem, namely a sound morphing problem. We show
that in the above mentioned regularized variational formulations,
the regularization parameter may serve as an interpolation param-
eter between input and output signals. More precisely, setting it
to very small values and acting on the input signal with the corre-
sponding Gabor multiplier yields a signal that is very close to the
output signal. Doing the same with a large value of the regular-
ization parameter yields a signal that is very close to the input sig-
nal. We provide examples showing that intermediate values of the
regularization parameter yield meaningful signals that interpolate
between the input and output signals.

This paper is organized as follows: the mathematical back-
ground of Gabor theory is briefly described and corresponding Ga-
bor multiplier are defined in section 2. The proposed Gabor mul-
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tiplier estimation scheme is presented in section 3 and applications
are discussed in section 4.

2. GABOR TRANSFORM AND MULTIPLIERS

Gabor multipliers are defined in the context of Gabor transforma-
tion (see [4} 5] and references therein), which may be thought of
as a subsampled version of the short time Fourier transformation.
For the sake of simplicity, we shall limit the present discussion to
the finite-dimensional setting, i.e. signals are supposed to be fi-
nite length vectors x € CL (with periodic boundary conditions, i.e.
restrictions to {0,...L— 1} of L-periodic infinite sequences). Here-
after, || - || will denote the Euclidean norm. A similar theory can be

developed in ¢2(Z) and L?(R).

2.1 Gabor frames

A Gabor frame is an overcomplete family of time-frequency atoms
generated by translation and modulation on a discrete lattice of a
mother window, denoted by g € CL. These atoms can be written

Zonn [l] _ eZinnVO(lfmbo)g[l _ mb()L

where b and vy are two numbers (such that L is multiple of both by
and vp), which characterize the time-frequency lattice under con-
sideration. Here, all operations have to be understood modulo L.
We set M = L/by and N = L/vy.

The Gabor Transformation associates to each signal x € CL its
Gabor transform ¥x € CM*N _defined by

I=L—-1
Voxlm,n) = (x,gmn) = Y, x[l]e”2ToU=mbolgl] i)
=0

Under suitable assumptions on the mother window g and with a
small enough bg Vg product, this transform is invertible. In addition,
it is possible to find mother windows g so that

vxeCl x= Z"//gx[m,n]gm,, .

m,n

Such Gabor frames are called normalized tight frames. For the sake
of simplicity, we limit the present discussion to this case. The ex-
tension to more general situations can be done easily.

2.2 Gabor multipliers

Let m = {m[m,n],m=1,..M and n = 1,..,N} denote a bounded
sequence, The Gabor multiplier My, associated with m is then de-
fined by :

Mmx = Y m[m,n]¥ex[m,n)gmn - (1)

m,n

m is called Gabor mask (or the upper symbol in the mathematics
literature) and can be viewed as a time-frequency transfer function
(so that My, is seen as a time-varying filter). My, is then a linear
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operator on the space of signals CL and is diagonal in the Gabor
representation g,,. Approximation properties of linear operator by
Gabor multipliers have been studied in [9].

A Gabor multiplier acts on a signal x by pointwise multiplica-
tion of the Gabor mask with the Gabor transform ¥,x of x. Point-
wise multiplication by m is denoted by a linear operator Yy,. For-
mally, a Gabor multiplier is then written as follows:

Mpmx = ’Vg*Ym”Vgx.

3. ESTIMATION OF GABOR MULTIPLIERS
3.1 Estimation problem

The estimation problem is expressed as follows. Let xp and x| de-
note respectively input and output signals, assumed to be linked by
the relation

x1 =Mmxo+€,

where € is an additive gaussian noise, and m is an unknown Gabor
mask, which we aim at estimating. A possible solution is obviously
m = ¥gx1 /¥4xp, but such a solution is not bounded in general. We
prefer to turn to a regularized least squares solution. More precisely,
we seek m € CM*N which minimizes the expression

®[m] = ||x; — Mmxo||*> + A d(m), )

where d(m) is a regularization term, whose influence on solution is
controlled by the parameter A .

For d(m) = ||m — 1|2, it is easily seen that the optimization of
the function ® with respect to m leads to the matrix problem

= Vox1 - Vexo+ A
Dexo K g Dexo + Ald

U
G ©)

Gm =U where {

Here Zgx( is the diagonal matrix Z,xg = diag(¥,x), and 7,
the reproducing kernel matrix (¢ (m,n, mo,no) = (8mn> &mo,no))-
The authors of [1l 2] proposed to work with an approximation of
above matrix problem that results from an optimization formulation
defined directly in the Gabor domain

Pm] = || Vx; —m- Vx> + 4 d(m), Q)

or equivalently to a reduction of G in (3) to its diagonal. Such an
approximation yields a simple explicit solution for m, which dit-
fers from the solution of problem (2). More precisely, this approach
does not account for intrinsic correlations of redundant Gabor trans-
forms, represented here by the non-diagonal terms of the matrix G,
and contained in the reproducing kernel.

We develop here an alternative formulation in the form of an inverse
problem. Equation (2)) can be rephrased as

®[m] = [Am —x;|* + 2 d(m) , )
where the operator A and its adjoint (needed later on) reads
A=Y 0y, and A*:T%O‘I/g (6)

Yy, , denoting the operator of pointwise multiplication with VeXo-
Notice that this operator depends on the source signal. Even in situ-
ations where a closed form expression for the solution of (3)) exists
(for example when the regularization term is the squared norm of
the Gabor mask) the latter can hardly be exploited practically, as it
involves huge matrix calculus. In such cases, as well as cases where
no closed form solution exist, we rather rely on dedicated numerical
algorithms.

3.2 Choice of the Regularization for mask estimation:

For the regularization term, classical choices are given by the ¢
norm (i.e the Euclidean norm). In [IJ, the choice d(m) = ||m)]?
was used, while in [2], d(m) = ||m — 1||? was preferred. The latter
choice was motivated by the desire of retaining m = 1 as reference,
corresponding to “no transformation”.

Motivated by specific applications, weighted norm version
can also be used; for example, introducing frequency-dependent
weights wy, regularization terms of the following form can be used:

2 2
ml[7, =Y wilm(k,0)|> .
Kl

However, given that Gabor transforms of real valued signals are
complex valued, and that the phase of the Gabor transform is gen-
erally difficult to handle precisely, the reference choice may be
|m| = 1 rather than m = 1. This suggests to use as regularization
term penalizations of the form d(m) = |||m| — 1]|, or weighted
variants. This will be further discuss below.

Other choices of regularization can be used, such as ¢ regular-
ization, which yield Gabor masks that are 1-sparse, i.e. whose coef-
ficients tend to be shrunk to 1 rather than O in the usual approaches.
Notice that the choice of regularization has to be guided by applica-
tions; for the morphing application we shall describe at the end of
this paper, the ¢, regularization appeared to be quite adequate.

3.3 Estimation of Gabor mask with shrinkage iterative algo-
rithms

The formulations given in (3] and (6) for our problem, together with
the choice of regularization in section (3.2) allow us to use iterated
shrinkage algorithms similar to those described in [6} [7] to which
we refer for more details and proofs. Those algorithms can also
be formulated in the language of proximal algorithms (see [11] for
a review), but we limit the discussion here to Landweber-type ap-
proaches. Our problem, as explained previously, is written as fol-
lows

ming, ®(m), with ®(m) = [|[Am—x||>+Ad(m) (7)
It is known that for d(m) = ||m)||}, with p > 1, this functional is
convex and then has a unique minimizer. However, the latter is gen-
erally hard to compute in large dimensions, and one has to resort to
appropriate numerical algorithms. The solution that was proposed
in [6], which converges to the solution with minimal assumptions
on A, is based upon surrogate functionals. Assuming A is bounded,
we can pick a constant C such that ||A*Al|p, < C (with || —[|op
the operator norm). In the considered situation, [|[A*A||p, can be
computed explicitly and reads

14" Allop < B sup| Yo 2

where B is the upper bound of the considered Gabor frame (see e.g.
the introduction of [4]). Then, the surrogate functional

X (m; ) = B(m) — [Am —Aa|’ +Cm-af> @)

is still convex and has the advantage to admit a closed form ex-
pression for its unique minimizer. Starting from some initial guess
o =mg € CM*VN | the idea is then to successively determine the
minimizer of (8) for o = my_;. This thus defines the iterative al-
gorithm

CI)SUR(m;rnk,l)7 mec (CMXN}

my, = argmin{
For the sake of clarity let us set
Vi1 =Cmy_ — A" (x) —Amy_1)

where the adjoint A* of A is given in (6). The following choices for
the regularization terms are of interest.
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e d(m) = ||m)|)3. This choice leads to an iterative shrinkage algo-
rithm, which is a damped version of Landweber iterative method
(corresponding to the case A = 0) and expressed as

Yik—1

e(cMXN7 _
o C+A

my

e d(m) = ||m— 1|3. As in the previous case, this choice leads to
a shrinkage iterative algorithm expressed as

_1+4
€ CM*N, _ Ykl
o T ToR

As mentioned above, to avoid creating phase distortions, it is
also interesting to consider the case

d(m) = |||lm| —1[}3 .

to which the usual convergence analysis unfortunately does not ap-
ply straightforwardly.

The blind application of the above approach to this situation
yields the following update rule: given some initialization mg €
CM*N jterate

Vet +leiarg(mk,|)
C+A

Unfortunately, such a regularization term d(m) is not convex and
the uniqueness of the solution in general situations is lost. Neverthe-
less, the algorithm itself is still easily implemented, and shows good
experimental convergence properties when suitably initialized.

In addition, we shall see below that the corresponding results
are quite satisfactory. In particular, for audio applications, this ap-
proach has the advantage of avoiding artifacts caused by an inaccu-
rate phase estimation for large values of A. More details are pro-
vided below.

Remark 1 Technically speaking, the algorithms described above
belong to the class of first order methods and therefore converge as
O(1/k). The authors in [10] proposed a second order algorithm that
converge as O(1/k*) without important increased complexity in the
iterations. The extension of the present work to such algorithms is
currently under study.

4. AUDIO APPLICATIONS

Let us now turn to the application of Gabor masks to sound analysis.
The information provided by Gabor masks characterizes the differ-
ences between the time-frequency representations. The information
is two-fold:

e The modulus of the mask characterizes the time-frequency en-
ergy differences between the input and output signals.

e The argument of the mask provides a more subtle information
which is for example related to small time-shifts between com-
ponents of input and output signal.

The information present in the masks was shown in [2] to be rel-
evant for audio signals analysis, in a categorization context: dis-
similarity measures extracted directly from masks were shown to
suffice to yield sensible classifications of single note signals from
four different musical instruments. We investigate here potential
applications in the context of sound morphing. We shall illustrate
our results on examples constructed from two single note signals
from (synthetic) clarinet and saxophone of L = 32768 samples, with
fundamental frequency fy =196 Hz (G3). Their time-frequency
representations are shown in Figure |I| and were obtained using a
gaussian mother window and parameter values M = 1024, by = 32.
On all figures, amplitudes are represented with a logarithmic scale.
These two images show significant differences, which can be in-
terpreted physically, and which will be captured by the estimated
Gabor masks. Both signals exhibit a harmonic structure, with the
following two most striking differences

e The overall frequency decay of the clarinet signal is signifi-
cantly faster.
e Harmonics 1,3,5,... have much smaller amplitudes in the clar-
inet signal.
e The attack is much sharper in the saxophone case, and its har-
monic structure is more irregular.
Prior to mask estimation, the signals are adjusted so that their on-
set coincide, which will make the subsequent analysis simpler. It
is worth mentionng that such adjustments can be made within the
Gabor mask estimation. For the sake of simplicity we shall not go
into such details here.

Source signal

o) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)
Target signal

7000 B

0.1 0.2 03

0.4 0.5 0.6 0.7
Time (s)

Figure 1: Source signal: clarinet (top) and target signal: saxophone
(bottom)

In the musical instrument signal processing literature, differ-
ences between instruments are mainly characterized by time and
spectral descriptors (such as attack time, spectral centroid, spec-
tral flow,...). We shall see that these sounds descriptors are implic-
itly captured in the time-frequency representation of a signal and so
their differences are carried by the Gabor masks.

4.1 Comparison of methods

We used the algorithms described above on the clarinet and sax-
ophone signals. First, let us compare the iterative methods with
the diagonal approximations, using the convex regularization term
d(m) = |m — 1|3, and a moderate value of the regularization pa-
rameter A. For small values of A (results not shown here), we found
the outputs of the two approaches being quite close to each other.

We display in Figure[2|the Gabor masks obtained with A = le —
4, using both the iterative method and the diagonal approximation.
The comparison shows that the iterative method tends to provide
clearer harmonic components for the Gabor mask. The increased
computational cost induced by the iterative approach is therefore
justified.
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Figure 2: Gabor masks modulus obtained with regularization ||m —

1||3 for A = le —4: output of iterative algorithm (bottom), diagonal
approximation (top).

Diagonal Gabor Mask

Frequency (Hz)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

Figure 3: Gabor masks modulus obtained with regularization |||m|—
1|3 for A = le — 4 by diagonal approximation.

However, a closer examination reveals the presence of spurious
oscillations in the estimated Gabor mask. These oscillations turn
out to result from the unappropriateness of the regularization term
[m — 1|2, The latter constrains the argument of the mask and there-
fore does not account properly for relative phase behaviors of input
and output signals.

This motivated us to turn to the non convex constraint |||m| —

1 ||%, for which we used the diagonal approximatiorﬂ Figureillus-

trates the influence of regularization |||m| — 1||3 on the modulus. We
clearly see that the spurious oscillations are not present any more in
the estimated Gabor mask.

4.2 Sound morphing

We now turn to applications to sound morphing. This expression
covers a wide variety of techniques whose aim is to “interpolate”
between two sound signals. Applications can be found in various
domains, including speech processing, sound design for industry,
or definition of new timbres in computer musics. Our approach is
closer to that domain, and we illustrate it below on musical instru-
ments. Sound morphing is often achieved in two steps: estimation
of low level features from input and output signals (followed by
several processing steps including smoothing, rescaling,...), and ap-
plication of some interpolation method to the selected features. We
refer to [12]] and references therein for a more thorough description.

Our point is not here to propose a new sound morphing method
directly comparable with the state of the art, but rather to propose
and describe a new paradigm (to be further developed), exploiting
Gabor multipliers and the estimation algorithms described above.
Gabor representation therefore serves as low level representation,
and Gabor masks are used for interpolation.

More precisely, we approach the sound morphing problem as
follows: given input and output sounds (or families of sounds), es-
timate the Gabor mask of a Gabor multiplier that maps input to out-
put, and associate with it a one-parameter family of Gabor masks
my, g € [0,1] that interpolates between unity and the so-obtained
Gabor mask. For simplicity, assume we are given one input and one
output sounds xp and x;. Then the morphed signal with parameter
U is constructed as

Xy = Mm, x0 = Z my [m,n] (X0, §mn) &un - ©

m,n

A natural choice for the one parameter family of Gabor masks
would be

my [m,n] = mm,n]" .

However, the mask being complex-valued, such a choice raises
complicated determination problems for non-integer values of .
The latter can be addressed by ad-hoc phase unwrapping tech-
niques, which are however poorly understood mathematically and
therefore quite unsatisfactory.

We privilege here a different approach, that uses the solutions
of the above penalized approaches. Given a regularization function
d(m) = |[|m| — 1||3 with its diagonal approximation, the estimated
Gabor mask depends on the parameter A. For very large values of
A, m is close to one, the corresponding multiplier My, is close to
the identity operator, and the morphed signal M, x is close to the
input signal xo. For small values of A, My xo is close to the output
signal x;. Therefore, any one parameter family of signals of the
form

p€[0,1] — xy = Mm,, X0 , (10)

where ¢ is some decreasing function such that lim,_.o (i) = oo
and @(1) = 0 provides a morphing between x( and x;.

We illustrate this approach with three examples of morphed
sounds between the above mentioned clarinet and saxophone sig-
nals. Figures [4] give three examples of time-frequency represen-
tations of corresponding morphed sounds, obtained with increasing
values of A (i.e. decreasing tt). As can be seen, the three considered
values of A yield time-frequency images that go gradually from the
saxophone time-frequency image to the clarinet one:

e Energy gradually appears in the high frequency domain.
e Harmonics 1,3,5,... gradually show up when A decreases.

The development of an iterative algorithm for this case is currently un-
der study
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Figure 4: Morphed sounds between sounds represented in Figure [I]
forA=1le—1,A=1le—4and A =1le—7

e The attack is gradually modified, to appear sharper and more

“irregular”.

These visual findings are confirmed by listening to the correspond-

ing morphed waveforms, which can be found and listened to at the

web page [13]], where more complete examples are also provided.
This shows the relevance of the proposed approach to sound

morphing. Further work is obviously needed to determine the real

dependence on the regularization parameter A, which is a problem

we plan to address in the continuation of this work.

5. CONCLUSION

In this paper, we have proposed a new method to solve the Ga-
bor mask estimation problem, given source and target signals. The
method can be easily modified to account for multiple input and
output signals, as well as time-frequency shifts, following the lines

of [1]. Our method is based on a variational formulation, solved
by an iterative shrinkage algorithm. While this algorithm is per-
fectly understood in situations where the regularization term yields
a convex functional, further work is still needed to understand its
behavior for some non convex regularization terms of interest. Ex-
tensions to second order methods such as those described in
and will also be studied.

We also proposed a way to perform sound morphing based on
this penalized variational approach, using the regularization param-
eter as tuning parameter. The goal was not here to compete with
state of the art sound morphing techniques, but rather to provide
a proof of concept. The numerical results shown here, as well as
further results described in the companion web site [13]] show the
relevance of this new approach, which has the advantage of being
purely signal-based, and not depending on higher level descriptors.
Further work will investigate the influence of the choice of the reg-
ularization term, and extensions to online morphing, where the pa-
rameter i in (T0) varies continuously as a function of time.
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