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ABSTRACT

Sound classification is a topic that has been of a major inter-
est for the scientific community. Recently, a low complexity
solution for classifying sounds in wildlife regions has been
proposed. The motivation of such a classification was in de-
tecting the intruders from these regions. In this paper we pro-
pose a different approach, one that uses Mel-frequency cep-
stral coefficients in a Gaussian Mixture Model framework.
The tests are performed on 4 databases of 100 recordings
each. The sounds of interest are represented by recordings
from humans, cars, birds and animals. In order to simulate
situations as close as possible to real environments, several
types of noises have been considered. The new approach
proves to be more robust than the previous one at the cost
of increased computational complexity. Since low complex-
ity systems are more likely to be feasible for wildlife appli-
cations, the complexity issue is discussed and a solution is
proposed.

1. INTRODUCTION

Sound classification shows a continuous development and its
applicability was demonstrated in various fields. Besides the
well-known speech/speaker recognition applications, there
are also other areas in which sound classification proved to be
successful. Medical applications, like classification of heart
sounds [1], hearing aids [2] or remote monitoring systems [3]
are very popular these days. Different solutions for envi-
ronmental sound classification applications were proposed
in [4,5]. An application for the classification of acoustic
events in a kitchen environment can be found in [6]. Also,
vehicle identification using wireless sensor networks [7] is a
promising topic, with different applications in real life.
Natural reserves, forests, protected lakes, or the coastal
regions, are very often the target of different intruders in-
terested in forest cutting, hunting, or simple curious people.
The actions of these intruders could affect the continuity of
the endangered species and the overall integrity of the wild
places. As a consequence, systems for monitoring these wild
regions are needed. Video surveillance systems can not be
considered as a unique solution for such purposes. The main
reason is related to their increased complexity, amount of in-
formation that has to be processed, high power consumption
and of course their high costs. We want to propose a different
approach for this type of surveillance system, one that uses
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sounds not image. The final goal is to realize an acoustic
sensor network that could be seen as an ’acoustic eye’.

In recent studies [8,9] a low complexity solution for de-
tecting intruders in wildlife regions has been proposed. The
sound classification algorithm used was based on Time En-
coded Speech Processing and Recognition (TESPAR). The
most simple TESPAR coder is using two descriptors for each
segment situated between two consecutive zeros of a signal:

e D - number of samples between two consecutive zeros;
e S - number of points of minima/maxima in the segment.

The D/S pairs are used to encode the original signal using
an alphabet. This alphabet is the result of a vector quantiza-
tion process. Basically the resulted symbol stream is con-
verted in some classification operands called TESPAR ma-
trices (A and S matrices). Finally, some archetypes are con-
structed for each class of sounds, and they are used later in
the classification process. More details about TESPAR can
be found in [10].

The work in [9] has improved the results from [8], espe-
cially when the S matrices have been used in the classifica-
tion process. This proved to be very important; indeed, using
only the S matrices, this would lead to a decrease in the com-
plexity of the algorithm, which can be crucial in a standalone
system with low power consumption. Even though there was
also an improvement in the classification rates when various
types of noisy environments were simulated, the rates were
not fully satisfying.

In this paper we propose a sound classification approach
that uses Mel-frequency cepstral coefficients in a Gaussian
Mixture Model framework. The motivation of this work is
threefold:

1. We want to compare the results of these two different ap-
proaches, to see exactly how well does TESPAR perform
in comparison to standard sound classification methods.

2. Taking into consideration the improved results of the
standard classifier presented in this work, we suggest
a combined solution, which utilizes both of these ap-
proaches.

3. Finally, even though our purpose is to realize a system
that has to be used in wildlife, our method can also be
used for property surveillance. In this different situation
low power consumption should not be mandatory any-
more, thus more complex and robust algorithms can be
utilized.
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The rest of the paper is organized as follows. The theoretical
background of this paper is presented in Section 2. Technical
design and implementation details are provided in Section
3. Section 4 presents the experimental results and Section 5
concludes the paper.

2. THEORETICAL BACKGROUND
2.1 Mel-Frequency Cepstral Coeficients Overview

One of the most popular features used in sound classifica-
tion applications are the Mel-frequency cepstral coefficients
(MFCCs). They are a short-term spectrum-based feature
which give good discriminative performance.
The extraction of the MFCCs includes the following
steps:
1. Pre-emphasis: for reducing the noise and also for enhanc-
ing high-frequency spectrum, a finite-order impulse re-
sponse (FIR) filter is applied to the audio signal:

Hpr(z) =1—az !

The value for a is usually selected from the [0.95, 0.98]
interval.

2. After the pre-emphasis, the signal is divided into frames.
This framing comes from the necessity of transforming
the signal into statistically stationary blocks. Overlap-
ping frames with a 30-50% overlap are used, in order to
avoid losing information at the end of the frames.

3. For preventing abrupt changes at the end points of the
frames, a window function is used (usually a Hamming
window):

4. For each frame the Discrete Fourier Transform (DFT) is
applied. Because humans do not perceive pitch linearly,
the frequency band has to be divided using a filter-bank
of triangular filters spaced on the Mel-scale [11]:

f

Mel(f) = 11271n <1+700>

5. Spectral envelope in dB is obtained by applying loga-
rithm to the amplitude spectrum. Finally, the discrete
cosine transform (DCT) is applied [12]:

M
nn,, 1
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where

¢y is the n'" MFCC coefficient;

M is the number of filterbanks;

N is the number of coefficients one wants to compute;
S; is the magnitude response of the j™ filterbank
channel.

The zeroth coefficient is usually dropped because it is the
average log-energy of the frames. Most of the times first
and second order differences of the MFCCs are included as
a feature. Those are called delta and delta-delta coefficients.

2.2 Gaussian Mixture Models

A Gaussian Mixture Model can be written as a weighted sum
of M component densities and has the following form [13]:

x‘)‘ ZWsz

where x is a d-dimensional random vector, p;(x),i =1,...,M,
is the component density and w;,i = 1,...,M, is the mixture
weight.

The component densities are d-variate Gaussian func-
tions given by [13]:

1 1 Torl
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where L; is the mean, ¥; is the covariance matrix, d is the
number of features incorporated into every feature vector.

The weights w; have to satisfy the following relation:
Z?i] w; = 1. Each model can be written as a function of the
following parameters: A = (w;, l;,%;), i =1,....M

The log of the likelihood function is [14]:

In p(x|w,u,X) = Zln{ZW:P (o | i, Zi }

where x = xq,...,Xy

Finally, for finding the maximum likelihood solutions for
the models different algorithms are used. In the present
study, the expectation-maximization (EM) algorithm was
employed, which is known as an elegant and powerful
method for finding a maximum likelihood solution [14, 15].

3. DESIGN AND IMPLEMENTATION
3.1 Databases

For our research we have used four databases of over 100
recordings each.

e Database 1 is a small part of xeno-canto America, a
database that contains over 25.000 recordings made by
bird watchers from all over continental America. All the
recordings are performed in different forests and areas
with various species of birds.

e Database 2 was recorded by the authors and contains
recordings of vehicle sounds (mostly sedan cars); this
database was used also in other projects.

e Database 3 has over 100 recordings of speech sounds,
most of them belonging to students from the Technical
University of Cluj-Napoca. They were asked to record
themselves when uttering their names or different sen-
tences.

e Database 4 has contains recordings of different animal
sounds: lions, bears, snakes, horses, cows, cats, frogs and
others. All the recordings were collected from different
animal databases on the internet.

In the previous studies [8,9] only the first three databases
were used. In this approach we present some comparative
results with the first study and also the new results after
Database 4 is introduced.

3.2 Experimental setup

Our practical work is structured as follows. Firstly, the Mel-
frequency cepstral coefficients were extracted from the sig-
nals and then the training of the models and testing using the
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Number of MFCCs
GMMs H 10 [ 14 [ 20

10 97.33 | 98.00 | 99.33
30 98.66 | 99.00 | 99.66
50 99.00 | 99.00 | 99.66

Table 1: Classification rates for clean sounds (human, car,
bird)

Number of MFCCs
GMMs H 10 [ 14 [ 20
10 84.66 | 85.33 | 92.00
20 85.00 | 91.00 | 94.00
30 88.66 | 91.66 | 95.00
40 88.00 | 92.00 | 96.66
50 90.00 | 94.66 | 97.33

Table 2: Classification rates when rain is added to the test
sounds (human, car, bird)

Gaussian-Mixture Models was employed. For each class of
sounds we had 100 recordings of a few seconds each. All the
recordings were sampled at 8 kHz and stored in 16 bits mono
* wav files.

For pre-emphasis a (FIR) filter with the pre-emphasing
coefficient a=0.97 was used. The signal was divided in 256-
sample frames with an overlap of 128 samples (50% over-
lap). This corresponds to a frame length of 32 ms. We also
tried decreasing of the frame length, but the results shown no
improvement. A filter-bank of 40 triangular filters spaced on
the Mel-scale was used.

In our experiments we have implemented 10 to 20 cep-
stral coefficients and the results were compared. First coef-
ficient was all the times discarded, as it is dependent of the
channel gain. Along with MFCCs we have also used the delta
coefficients.

For modeling the Gaussian Mixtures, different numbers
of Gaussian components were selected. The expectation
maximization algorithm was used, with a maximum of 1000
iterations and the value for the threshold was set to 0.01.

In order to get statistically good results, when performing
our tests we have considered leave one out cross-validation
[16] method. Consequently, we separated the sounds in two
sets: testing set and validation set; 99 recordings were used
for training the system and the remaining recording was used
for testing. This process has been repeated 100 times, every
time changing the test recording.

After the regular experiments were performed, we de-
cided to simulate some scenarios that could be encountered
in real life. For this, noise was added to the test signals. The
training of the models was done with clean sounds, while for
testing we added rain and wind sounds (real sounds, recorded
in the nature) to the test signals. The maximum amplitude of
the noise signals was set to 1/3 of the maximum amplitude
of the clean recordings in the databases.

4. RESULTS AND DISCUSSIONS

Experiment I: In the first experiments we tried to compare
the results from our previous studies with the results obtained
in this new approach. Table 1 presents the results when the
sounds of interests where only the birds, humans and cars,

Number of MFCCs
GMMs H 10 [ 14 [ 18 [ 20
10 92.75 | 93.75 | 93.25 | 92.75
20 95.25 | 94.50 | 95.00 | 96.00
30 94.25 | 96.00 | 95.25 | 96.25
40 94.75 | 95.50 | 96.00 | 96.25
50 95.25 | 96.50 | 96.00 | 95.50

Table 3: Classification rates for clean sounds (human, car,
bird, animal)

Number of MFCCs
GMMs H 10 [ 14 [ 18 [ 20
10 74.75 | 79.25 | 79.75 | 78.25
20 80.25 | 81.75 | 82.50 | 84.00
30 81.50 | 84.00 | 82.50 | 82.25
40 81.25 | 83.25 | 83.00 | 85.00
50 81.25 | 82.75 | 84.75 | 86.50

Table 4: Classification rates when rain sound is added to the
test sounds (human, car, bird, animal)

and clean sounds where used for both training and testing.
We also tried adding noise to the test signals, in order to see
how this influences the classification rates. The results with
rain added to the test sounds are presented in Table 2. When
wind was added to the test signals the best correct classifica-
tion rate obtained was 93.33%.

Experiment 2: We repeated the previous tests but with
an extra class of sounds of interest, represented by animals.
The results for this study are presented in Table 3 and the
confusion matrix for MFCC=20 and GMM=40 can be seen
in Table 5.

Experiment 3: We added again rain to the test sounds (all
four databases), similar to the procedure explained in Experi-
ment 1. Table 4 shows the evolution of the classification rates
in this case. For the combination MFCC=20 and GMM=50
the confusion matrix can be observed in Table 6. When wind
was added to the test sounds, our classification rates were
situated between 70 and approximately 80%; best score was
82.25%.

The results from Experiment I show us an increase from
our previous approach [9]. For clean sounds we managed
to achieve an overall correct classification rate of 99.66%
while previously our best score was 97.33%. When the test
sounds were affected by noise our scores were 97.33% for
rain and 93.33% for wind. Previously we had 94% for rain
and 89.33% for wind. Obviously, the standard classifier per-
forms better than TESPAR.

When using the forth database also, we encountered a
decrease in the classification rates. For clean sounds, the best
scores obtained were of 97.33%. As it can be seen in the
confusion matrix from Table 6 for both human and car we
have 100% correct classification rate. After adding noise to
the test sounds, the decrease was considerable. Best score
obtained was 86.50% for rain and 82.25% for wind sounds.

Even though, in the confusion matrix presented in Table 6
an interesting aspect can be noticed. For human we have a
correct classification rate of 98%, while for car it is 97%,
which can be considered quite satisfying. The worst results
are for animals, where only 57% were correctly classified.
This results was somehow expected, since our databases with
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bird | car | animal | human
bird 94 0 6 0
car 0 100 0 0
animal 9 0 91 0
human 0 0 0 100

Table 5: Confusion matrix, clean sounds

bird | car | animal | human
bird 94 2 4 0
car 3 97 0 0
animal | 43 0 57 0
human 0 0 2 98

Table 6: Confusion matrix, rain sound added

animals contains various species, so the classifier can not re-
ally construct an accurate model, because the sounds present
are not very similar.

Another interesting aspect that has to be pointed out here
is that all the misclassified animals were considered as birds.
For the purpose of our goals, this aspect does not affect us too
much. Indeed, we are interested in intruders, namely cars or
human; if an animal is considered a bird or vice versa, that
may be rather acceptable for a first step in analysis.

S. CONCLUSIONS AND FUTURE WORK

As one may expect, the standard sound classification method
presented in this paper proved to be more robust than the low
complexity solution suggested in the previous works. How-
ever, we are aware that such a complex system could not
be implemented easy on a cheap controller and placed in a
wildlife region. Even though, a possible combined solution
that overcomes this difficulty will be tried.

A future goal is to develop a low complexity system that
identifies possible intruders and sends to a base station the
corresponding recording. At the base station, one can try
more complex approaches in order to make sure that we are
facing with an intruder.

Moreover, an intruder verification system seems to be
more suitable for our goals. Consequently, because of the
various sounds encountered in the nature, we would think
of a slightly different approach, in which the low complexity
system does not try to classify the sounds in different classes,
but only only checks if a certain recorded event belongs to
a human, a car or an engine, a gun shot or other possible
sounds of interest that could be considered as an intruder.

A higher threshold could be set, even though this could
lead to the possibility of increasing false alarms. Obviously, a
certain compromise has to be made, when setting the thresh-
old, because a high number of false alarms could lead to a
’system jam’.

Finally, one of the future goals is to increase our
databases, with sounds that reproduce gun shot, thunder,
chain saws etc.
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