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ABSTRACT

In uplink transmissions of a coded orthogonal frequency di-
vision multiple access (C-OFDMA) system, a frequency syn-
chronization has to be addressed. Few papers deal with this is-
sue. Expectation - maximization (EM) approaches have been
proposed but initialization strategies must be consideredbe-
cause the EM may converge to a local extremum. Here we
propose a joint estimation of the channel and the carrier fre-
quency offset (CFO) based on a sigma point Kalman filter.
When considering an OFDMA uplink system over a Rayleigh
fading channel, simulation results confirm that the proposed
algorithm corresponds to a good compromise between CFO
and channel estimation, bit error rate and computational cost.
Since our approach has a lower computational complexity, the
power consumption is lower, which is a great advantage in a
wireless system.

1. INTRODUCTION

Today, orthogonal frequency division multiple access
(OFDMA) is one of the most common solutions for high data
rate transmission systems. OFDMA, initially used for ca-
ble TV network and for DVB-RCT standard is applied in
WiMAX technology (802.16x). When considering this mod-
ulation technique, different users simultaneously transmit their
own data by modulating an exclusive set of orthogonal sub-
carriers. Allocation algorithms [1] exploit this spectraldiver-
sity to allocate the communication resources to the different
users, such as power, constellation size and necessary band-
width to maximize the link efficiency.
In an uplink OFDMA system, orthogonality between sub-
carriers is not satisfied without carrier-frequency offset(CFO)
compensation. Therefore, CFOs have to be estimated. This
issue has been addressed in several papers such as [1], [2] and
[3]. In [4], the CFO estimation is obtained by comparing the
phases of two received OFDMA blocks. Zhaoet al. [5] use
an extended Kalman filter (EKF) to estimate the CFO, pro-
vided that a training sequence is known. In [6], we propose
to combine a Kalman filter based method for the CFO estima-
tion and the so-called minimum mean square error successive
detector, the purpose of which is to estimate the signal sentby

each user; unlike existing approaches, no training sequence is
required.
However, in the above approaches the channel is assumed to
be known or estimated. Recently, the joint CFO/channel es-
timation has been investigated. In [7], [8] and [9], Punet
al. study how to obtain the joint maximum likelihood esti-
mation of the channels and the CFOs of the multiple users.
Thus in [7], a conventional expectation-maximization (EM)is
first proposed: during the E-step the received signals transmit-
ted by each user, namely the ”complete data”, are estimated.
During the M-step, all the CFOs and the channels are jointly
estimated by using these complete data. To simplify the op-
timization issue, the value of the channel is replaced by its
expression depending on the CFO in the criterion to be min-
imized. Therefore, only the estimation of the CFO of each
user has to be addressed. Even if the criterion is explicitly
given, the authors do not mention the estimation method they
use. For instance, exhaustive grid search could be considered
as suggested by the same authors in [8]. To reduce the compu-
tational cost, the authors in [7] suggest using the space alter-
nating generalized expectation-maximization (SAGE). In that
case, instead of simultaneously estimating every-user param-
eters, one iteration of the EM algorithm is dedicated to one
user. Instead of addressing a multi-dimensional optimization
issue, the authors in [8] use the so-called alternating projec-
tion estimator. This method consists in iteratively estimating
the CFO of one user, by means of an exhaustive grid search
over the possible range of the CFO value and by setting the
other CFOs to their last updated values. In [9], a suboptimal
method is presented. In [10], Xiaoyuet al. propose two iter-
ative estimation approaches using the SAGE method. Never-
theless, the EM-based algorithms do not necessarily converge
to the global extremum. An initialization step is thereforere-
quired. Another drawback of the above methods is the high
computational cost due to the iterative estimation and the ex-
haustive grid search.
In this paper, our contribution is the following: a sigma point
Kalman filter (SPKF) [11], namely the unscented Kalman fil-
ter (UKF) or the central difference Kalman filter (CDKF), is
used to simultaneously estimate the channel and the CFO for
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all users. Even if the proposed estimator needs a training se-
quence, its computational cost is lower than the existing ap-
proach ones. This advantage is crucial because one of the
goals in the design of wireless systems is to reduce the energy
consumption of the system. It should be noted that our work
is complementary to the study presented in [12], in which an
unscented Kalman filter (UKF) makes it possible to jointly
estimate the CFO and the channel, but it is designed for an
orthogonal frequency division multiplexing (OFDM) single-
user system.
The paper is organized as follows. The OFDMA system and
the signal models are presented in section 2. Section 3 shows
how to jointly estimate the CFO and the channel coefficients
of each user in order to restore orthogonality among the re-
ceived users’ signals. Simulation results are presented insec-
tion 4 and finally conclusions are given in section 5.
In the following, Re{.} denotes the real part of{.}, Im{.}
the imaginary part of{.} andIL the identity matrix of sizeL.

2. SYSTEM DESCRIPTION

Let us consider an OFDMA network consisting of a single
base station andU simultaneously independent users. The
available bandwidthB is divided amongN sub-carriers, and
a fair distribution of the bandwidthBu = B/U between each
user is supposed.
The signal received by the base station is a superposition of
the contributions from theU active users. In the following, let
S

p
u be the symbols emitted by theuth user with

u ∈ {1, . . . , U} and corresponding to thepth OFDMA sym-
bol:

S
p
u = [Sp

u(0), Sp
u(1) . . . Sp

u(N − 1)]
T (1)

According to the frequency allocation of each user,Sp
u(k) can

be non-zero if thekth carrier is allocated to theuth mobile ter-
minal, fork ∈ {0, . . . N − 1}. The corresponding transmitted
signal from theuth user is given by:

Xp
u(n) =

1√
N

N−1
∑

k=0

Sp
u(k)ej2πnk/N (2)

where−Ng ≤ n ≤ N − 1 andNg < N is the length of the
cyclic prefix.
Moreover, let us assume that the channel impulse response of
theuth user and related to thepth OFDMA symbol is:

h
p
u(n) = [hp

u(n, 0), hp
u(n, 1), . . . , hp

u(n,Lu)]
T (3)

whereLu is the length of the maximum channel delay spread
andLu ≤ Ng so that the cyclic prefix discards the inter block
interference. We suppose a multipath quasi-static Rayleigh
fading channel:

h
p
u(n) = h

p
u(n − 1) = h

p
u (4)

At the receiver, due to the propagation conditions, time off-
set and CFO are induced into the baseband signal. By choos-
ing an appropriate cyclic prefix lengthNg = max

u
{τu + Lu},

whereτu is the normalized spacing and timing error related to
theuth user, the effects of the uplink timing errors are coun-
teracted, i.e they are incorporated as a part of their channel
responses1.
Let us now introduce the normalized CFO to the sub-carrier
spacingǫp

u:
ǫp
u(n) = ǫp

u(n − 1) = ǫp
u (5)

In the following, we will focus our attention on the row vec-
tors ǫp andh

p which contain the normalized CFO and the
channel impulse response of each user respectively:

ǫp = [ǫp
1, ǫ

p
2, . . . , ǫ

p
u, . . . , ǫp

U ] (6)

h
p =

[

h
p
1
T
,hp

2
T
, . . . ,hp

u
T , . . . ,hp

U
T
]

(7)

The U incoming waveforms are naturally combined by the
receiver antenna. After cyclic prefix removing, the resulting
pth received signal can be expressed as follows:

R
p = [Rp(0), Rp(1), . . . , Rp(N − 1)]

T

=

U
∑

u=1

R
p
u + B (8)

whereB = [B(0), . . . , B(N−1)]T is a complex white Gaus-
sian noise vector with covariance matrixσ2

b IN , whileR
p
u, the

pth signal received from theuth user, can be expressed as:

R
p
u = [Rp

u(0), Rp
u(1), . . . , Rp

u(N − 1)]
T

= E
p
u(ǫp

u)Hp
u(hp

u)Xp
u (9)

whereXp
u = [Xp

u(0),Xp
u(1) . . . Xp

u(N − 1)]
T , Hp

u is a circu-
lant matrix formed by N cyclic shifts of h

p
u

T and
E

p
u = diag

[

1, ej2πǫp
u/N , . . . , ej2π(N−1)ǫp

u/N
]

.
Let Yp be the2 × N observation matrix that stores the real
and the imaginary parts of the received signalR

p:

Y
p = [Y p(0), Y p(1), . . . , Y p(N − 1)]

= A
p(ǫp,hp) + V (10)

where
A

p(ǫp,hp) = [Ap(0, ǫp,hp), · · · , Ap(N − 1, ǫp,hp)]

=







Re
{

∑U
u=1 R

p
u(ǫp

u,hp
u)

}T

Im
{

∑U
u=1 R

p
u(ǫp

u,hp
u)

}T






(11)

andV =

[

Re {B}T

Im {B}T

]

which is a white Gaussian noise

vector, the covariance matrix of which is(σ2
b/2)I2.

In order to restore orthogonality among each user sub-carrier,
both the synchronization error vectorǫp and the channel vec-
tor hp have to be estimated, givenYp. Due to the non-linear
feature of the estimation, a new method based either on the
EKF or the SPKF is proposed in the next section.

1Since this paper deals with the CFO/channel estimation,τu andLu are
supposed to be known, foru ∈ {1, . . . , U}.
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3. FREQUENCY OFFSET AND CHANNEL
ESTIMATION

When dealing with a non-linear state-space representation of
a system, local methods such as the extended Kalman filter
(EKF) and global methods including UKF and CDKF can be
considered [11]. In the SPKF, the state distribution is approxi-
mated by a Gaussian. It is then characterized by a set of points
lying along the main eigenaxes of the Gaussian random vari-
able covariance matrix. Then, these so-called sigma-points
propagate through the non-linear system. A weighted com-
bination of the resulting values makes it possible to estimate
the mean and the covariance matrix of the transformed ran-
dom vector, i.e. the random variable (RV) that undergoes the
non linear transformation. On the one hand, the UKF is based
on the unscented transformation. When the density is odd,
the weights are chosen to provide the 2nd order Taylor ex-
pansion around the mean of the RV. On the other hand, the
CDKF is based on the 2nd order Sterling polynomial inter-
polation formula. The difference between CDKF and UKF
stands in the way the mean and the covariance matrix of the
transformed RV are calculated. According to various studies
[6], [11] and [13], there is a very slight difference between
UKF and CDKF. The advantages of the SPKF over the EKF
is that does not require calculations of Jacobians or Hessians
and that the EKF is more likely to diverge. SPKF makes it
possible to recursively estimate the following state vector:

x
p(n) =

[

ǫp(n) Re {hp(n)} Im {hp(n)}
]T

=
[

x
p
1(n) x

p
2(n) x

p
3(n)

]T
(12)

Given (4), (5) and (12),xp(n) satisfies the following state-
equation2, which is the representation of what happens for an
OFDMA symbol:

x
p(n) = x

p(n − 1) ∀n ∈ [0, N − 1] (13)
Given (10) and (11), the measurement equation is defined as
follows:

Y p(n) = Ap(n,xp(n))+V (n) ∀n ∈ [0, N−1] (14)

Hence, (13) and (14) define the state space representation of
the system making it possible to estimate both the channels
and the CFOs. The resulting SPKF estimator is given by:

x̂
p(n) = x̂

p(n − 1) + Re
{

K
p(n)Ỹ (n)

}

(15)

wherex̂
p(n) =

[

x̂
p
1(n) x̂

p
2(n) x̂

p
3(n)

]T
is the estima-

tion of x
p(n), Ỹ (n) = Y p(n) − Ŷ p(n) is the so-called in-

novation and̂Y p is the estimation ofY p, obtained by using a
weighted combination of the sigma points. In addition

K
p(n) =

[

P
p

ǫỸ
(n)

] [

P
p

Ỹ
(n)

]

−1

(16)

is the filter gain, wherePp

ǫỸ
(n) is the covariance matrix be-

tween the state prediction error and the innovation, andP
p

Ỹ
(n)

2It should be noted that transition matrix is equal toIM , where
M = U + 2ULu and there is no state noise.

is the covariance matrix of the innovation. Both are estimated
by using a weighted combination of the sigma points. For
details about the SPKF algorithm description, the reader is
referred to [11]. After some recursions, the algorithm can
provide an ”accurate” joint estimation of the CFO value and
the channel impulse response for theuth user, which is de-
noted aŝǫp

u(n) andĥ
p
u(n) respectively withu ∈ {1, . . . , U}.

4. SIMULATION RESULTS

In the following, a comparative study is carried out between
our approach based on EKF, CDKF or UKF and the method
presented in [7] where a grid search approach is used to up-
date the CFO estimation.
Simulation protocol: we performed 500 Monte-Carlo runs.
We consider an OFDMA uplink system, which is composed
of U = 4 users sharingN = 128 sub-carriers and with cyclic
prefix Ng = N/8 ≥ Lu. We suppose a transmission over a
Rayleigh quasi-static frequency selective channel composed
of Lu = 3 multi-paths. QPSK is used to modulate the infor-
mation bits. The carrier frequency is atfc = 2.5GHz and the
channel bandwidth is set toW = 20MHz. The duration of
an OFDMA symbol isTs = N/W . The users’ normalized
CFO errors satisfy:ǫu = N vu

c fcTs , wherevu is the user
speed andc is the light speed. In addition they are randomly
and uniformly generated in the interval [-0.3,0.3]. We define

Eb/No =
σ2

u

σ2

b

, whereσ2
u is the mean power of the received

signal from theuth user. Here, the EM algorithm proposed in
[7] is based onα = 20 iterations and a grid search precision
equal to10−3; this means thatβ = 2×0.3

10−3 +1 = 601 values of
CFO are studied in the grid search algorithm. For the CFO,
the initialization parameters of the algorithm isǫ̂p

u(0) = 0
whenp = 1 andǫ̂p

u(0) = ǫp−1
u otherwise.

Performances: first of all, our approach provide similar re-
sults when UKF and CDKF are used. Therefore, in the fol-
lowing, we speak of SPKF filtering performances. We focus
our attention on the first user in the system. Figure 1 and 2
show the results in terms of CFO and channel minimum mean
square error (MMSE).
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Fig. 1. CFO estimation performances, 20 iterations per-
formed when using the EM [7].
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Fig. 2. Channel estimation performances, 20 iterations when
using the EM [7].
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Fig. 3. Recursive CFO estimation using EKF and SPKF.

The SPKF algorithms give a better estimation of the CFO
and the channel than the EKF. Figure 3 shows that the SPKF
seem to require less observations than the EKF to estimate
the CFOs. The EM-based algorithms proposed in [7] provide
better performances in terms of MMSE. Nevertheless, the es-
timation error of our algorithm is small enough to guarantee
bit error rates (BERs) that are similar to the ones obtained
when [7] is used. See table 1.
Computational complexity: in the following let us have a
look at the computational cost of both algorithms. The EM-
based algorithm [7] and the SPKF provide similar results in
terms of BER, but the EM algorithm has a a higher compu-
tational complexity due to the exhaustive grid search over the
possible range of CFOs and the iterative estimation.
Table 2 shows the number of arithmetic operations performed
by the EM;Nob represents the number of observations for the
algorithms and it is set toNob = N . The computational cost
of the EM approach depends on the number ofα iterations
and on the number ofβ tested values. The M-step is based on
the inversions ofU matrices of sizeLu ×Lu. In addition, the

Eb/No (dB) theoretical BER BER (EM) BER (SPKF)
0 1.464 × 10−1 1.469 × 10−1 1.584 × 10−1

5 6.418 × 10−2 6.452 × 10−2 6.681 × 10−2

10 2.327 × 10−2 2.361 × 10−2 2.395 × 10−2

Table 1. BER performance.

decision test has to be done to decide which is the best value
of the CFO. Table 3 shows the number of arithmetic opera-
tions performed by the SPKF. The first step of the algorithm,
corresponding to the selection of the sigma points requiresthe
Cholesky decomposition of a matrix of sizeM × M , where
M = U + 2ULu. The measurement update also requires the
inversion of a2 × 2 matrix .

EM algorithm
E-step

additions and αN2
obU + αNobU(2Lu + 6) 1.4336 × 106

subtractions
multiplications αN2

obU + αNobU(U + 2Lu) 1.4131 × 106

and divisions
M-Step

add./sub. for αβN2
obULu + αβNobU(3ULu + L2

u) 2.6382 × 109

the grid search − αβU(3ULu + Lu + 1)
mult./div. for αβU + αβUN2

ob(3ULu + Lu) 3.1190 × 1010

the grid search + αβUNob(L
2
u + 15U + 2Lu + 1)

other αN2
obULu + αNobU(3ULu + L2

u) 4.3901 × 106

add./sub. − 3αU2Lu

other αN2
obU(3ULu + Lu) 5.1855 × 107

mult./div. αUNob(L
2
u + 15U + Lu)

Total arithmetic operations 3.3887 × 1010

Table 2. Number of arithmetic operations performed by the
EM algorithm, 601 tested CFO values and 20 iterations.

SPKF algorithm
step 1: calculation of the sigma points

additions and 2NobU
2(4L2

u + 4Lu + 1) 2.0070 × 105

subtractions
multiplications 2NobU

2(4L2
u + 4Lu + 1) 2.0070 × 105

and divisions
step 2: estimation update

additions and 2NobU(8U2L3
u+12U2L2

u+6U2Lu 6.2290 × 106

subtractions 12UL2
u+U2 + 12ULu+3U+2Lu+1)

multiplications NobU(16U2L3
u+24U2L2

u+12U2Lu 6.1286 × 106

and divisions 20UL2
u+2U2+20ULu+5U+4Lu+2)

step 3: measurement update
additions and 2N3

obU(4ULu+2U+1) 9.6471 × 108

subtractions +2N2
obU(4ULu+2U+1)+ 20Nob

+NobU(28UL2
u+36ULu+11U+96Lu+50)

multiplications 2N3
obU(4ULu+2U+1) +2N2

ob 9.6601 × 108

and divisions +2N2
obU(4ULu+2U+4Lu+3)+18Nob

+2NobU(4UL2
u+4ULu+U+46Lu+23)

Total arithmetic operations 1.9435 × 109

Table 3. Number of arithmetic operations performed by the
SPKF algorithm.

Table 4 shows the number of Giga-operations per second (Go/s)
performed by the EM for different grid search precisions.
Table 5 shows the number of Go/s for different numbers of
users in the system with a channel composed of 3 multi-paths.
In addition, table 5 shows the number of Go/s for different
number of channel multi-paths with4 users in the system.
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grid search precision β Go/s
10−1 7 0.4531
10−2 61 3.4925
10−3 601 33.8871
10−4 6001 337.8323

Table 4. Number of Go/s performed by the EM for different
grid search precisions.

4 users in the system 3 multi-paths
Multipaths Go/s(EM) Go/s(SPKF) Number of users Go/s(EM) Go/s(SPKF)

1 11.5235 0.8477 2 9.6945 0.4935
2 22.6930 1.3934 3 19.9786 1.0984
3 33.8871 1.9435 4 33.8871 1.9435
4 45.1058 3.0628 6 72.5776 4.3584
6 67.6173 3.6352 7 97.3597 5.9304
7 78.9101 4.2183 8 125.7662 7.7467
8 90.2274 4.8136 9 157.7972 9.8086
9 101.5695 5.4226 10 193.4528 12.1169
10 112.9362 6.0469 11 232.7328 14.6728
11 124.3276 6.6882 12 275.6373 17.4773
12 135.7436 7.3479 13 322.1664 20.5314

Table 5. Number of Go/s performed by the EM and the SPKF
algorithm.

The computational complexity of the EM increases faster when
the number of users (or the number of channel multi-paths)
increases. Indeed the EM works in blocks in an iterative way
whereas the SPKF is recursive.
We clearly see by the results, that the computational com-
plexity of the EM is higher than the one of the SPKF. When 4
users in the system and a channel composed of3 multi-paths
are considered, the SPKF algorithm requires only6% of the
number of operations required by the EM. In addition due to
the grid search, the implementation of the EM is relatively
difficult in real environments.

5. CONCLUSIONS

The architecture of the proposed receiver requires a training
sequence, but it does not need an initialization step. In addi-
tion, its computational cost is lower than the EM-based meth-
ods. This advantage is crucial because one of the goals in
the design of wireless systems is to reduce the energy con-
sumption of the system. In current wireless communication
systems only a few Go/s are dedicated to the channel estima-
tion and the synchronization. The proposed approach is hence
completely applicable to practical environments, unlike the
EM-based methods.
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