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ABSTRACT

The problem of joint decomposition of sets of complex ma-
trices arises in many problems in signal processing. In this
paper, we address the problem for the general case where
the matrices can be Hermitian and/or complex symmetric.
As such, complete statistical information in the complex do-
main can be taken into account for the given signal process-
ing problem. The proposed algorithm is based on an optimal
step size relative gradient approach and computer simula-
tions are provided to illustrate the behavior of this algorithm
in different contexts and to establish a comparison with other
algorithms.

1. INTRODUCTION

Joint decomposition of sets of complex matrices provides
an important tool for a number of signal processing prob-
lems, seee.g., [2–5, 9, 11, 13]. In [2], joint diagonalization
of a particular cumulant matrix has been used for the blind
beamforming problem, which has led to the popular joint
approximate diagonalization of eigenmatrices (JADE) algo-
rithm. Note that this algorithm is also useful for source sep-
aration and array processing. A generalization of the crite-
rion to any order cumulant can be found in [9]. In this ap-
proach, the searched joint diagonalizer happens to be a uni-
tary matrix. Thus, in practice, first a projection (often called
prewhitening) stage is required. However, this first stage in-
duces a bound on the attainable performance and this is why,
recently, joint diagonalization algorithms for the “non uni-
tary” case have been suggested, seee.g.[3,5,11,12].

Besides, when noncircular complex signals are consid-
ered [10] , one can exploit additional matrix decompositions,
see,e.g., [8,11,13]. Noncircular signals can arise in many ap-
plications such as communications, radar, and medical imag-
ing [1]. For example, in order to account for second-order
noncircularity, both the covariance matrix, which is Hermi-
tian, and the pseudo-covariance matrix, which is complex
symmetric, need to be taken into account.

The goal of this paper is to provide an algorithm for joint
decompositions of complex matrices for this most general
case,i.e., including the presence of Hermitian as well as com-
plex symmetric matrices. Hence, in the application in ques-
tion, we can expect improved performance by taking the full
statistical information in the complex domain into account.
We can also expect an increase in robustness due to a further
use of the available diversity in signal statistics. Moreover,
the diagonalization we propose is introduced through a com-
mon framework in order to not to significantly increase the

computational cost. This is achieved by considering a clas-
sical joint quadratic criterion. The proposed optimization
algorithm is an optimal step-size gradient algorithm with a
multiplicative update.

The paper is organized as follows: the general problem
of joint matrix decompositions of sets of Hermitian and/or
symmetric complex matrices is stated in Section 2. In Sec-
tion 3, the suggested approach based on a(n) (optimal step
size) relative gradient approach is detailed. Computer simu-
lations are provided to illustrate the good performance of the
suggested method and to compare it with other “state-of-the-
art” approaches. The purpose of Section 4 is to enhance the
usefulness of the suggested algorithm. Finally, in Section5,
conclusions are drawn.

2. JOINT MATRIX DECOMPOSITIONS

2.1 Problem statement

The problem that we consider is stated as follows. We
consider two setsM j for j = 1,2 of Nj square matrices

M
( j)
i ∈ CM×M, for all i ∈ {1, . . . ,Nj}. The N1 matrices in

M1 all admit the following decomposition:

M
(1)
i = AD

(1)
i AH

, (1)

while theN2 matrices inM2 all admit the following decom-
position:

M
(2)
i = AD

(2)
i AT

, (2)

where(·)H stands for the transpose conjugate operator and

(·)T for the transpose operator. The matricesD
( j)
i , for j =

1,2, for all i = 1, . . . ,Nj , are complex diagonal matrices. We
further assume thatA is full column rank and belongs to
CM×N with M ≥ N (Assumption A0). For all j = 1,2, the

set of theNj square matricesD( j)
i ∈ CN×N is denotedD j .

The general joint matrix decompositions problem that we
consider consists of estimating the matrixA and the two di-
agonal matrices setsD1 andD2 from only the matrix sets
M1 andM2. We finally remark that when only the first of
these two sets is considered (see (1)), the treated problem
simplifies into a well-known joint-diagonalization problem
[2,3,7]–[12].

2.2 An optimization problem

In what follows, the pseudo-inverse (Moore-Penrose gener-
alized matrix inverse)A+ of A is denoted byB. Due to
the matrix factorization, a rather classical way to solve the
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given problem minimizes a positive cost function. Thus, we
suggest to use:

J (B) = α
N1

∑
i=1

‖offDiag(BM
(1)
i BH)‖2

F

︸ ︷︷ ︸

C (B)

+(1−α)
N2

∑
i=1

‖offDiag(BM
(2)
i BT)‖2

F

︸ ︷︷ ︸

D(B)

, (3)

where α ∈ [0, 1], ‖ · ‖F stands for the Frobenius norm.
offDiag{M} = M−Diag{M}, i.e., the offDiag{·} opera-
tor sets to zero all the diagonal elements of the matrix in
argument while theDiag{·} operator sets to zero all the
off-diagonal elements of the matrix in argument. When
α = 1, J (B) = C (B) which is the cost function used in
[2, 3, 7]–[12]. The caseα = 0.5, with an additional third
term log|det(B)| (det(·) is the determinant of a square ma-
trix) was studied in [13]. Even if the purpose of this addi-
tional “constraint” term is to insure thatB does not become
singular, it has two drawbacks: first, it implies the search
for a square matrixB, and second, the log(·) function is not
bounded which may induce numerical problems too. Finally,
in order to avoid the trivial zero matrix solution, a normal-
ization has to be imposed. This will be done in constraining
the norm of the searched matrix to be equal to one.

3. PROPOSED RELATIVE GRADIENT
ALGORITHM

To estimate the matrixB ∈ CN×M, the cost functionJ (B)
given in (3) has to be minimized. To that aim, we propose,
as in [5], to use a relative gradient algorithm. The main in-
terest of such an approach is that for small enough step sizes
the invertibility of the matrixB can be guaranteed which is
not the case with the standard gradient algorithm, see,e.g.,
[12]. We also provide an alternative algorithm in which the
step size is no more fixed but computed algebraically at each
iteration.

3.1 Fixed step size relative gradient approach

We consider a relative gradient approach written as4B =
−µr∇rJ (B)B sinceJ (B) has to be minimized versusB.
µr is a positive small enough number called the step size or
adaptation coefficient and∇rJ (·) is defined as:

∇rJ (B) = 2
∂J (B)

∂B∗
BH = ∇aJ (B)BH

, (4)

whereB∗ stands for the complex conjugate of the complex
matrixB, ∂ is the partial derivative operator and∇aJ (B) =

2∂J (B)
∂B∗ is the complex gradient matrix of the real-valued

scalar cost function given in (3). Subsequently, the suggested
relative gradient-based algorithm can be derived,B is then
updated at each iterationk (for all k = 1,2, . . .) according to
the following scheme:

B(k) = B(k−1)− µr∇rJ (B(k−1))B(k−1)

=
(

IN − µr∇rJ (B(k−1))
)

B(k−1)
. (5)

This updating relation is followed by a normalization of ma-
trix B(k) to unit norm at each iteration. In what follows, the
resulting algorithm will be denoted byJMDRG.
To be able to derive this algorithm, the complex gradient ma-
trix ∇aJ (B) has to be evaluated. Using (3), we have:

∇aJ (B) = α∇aC (B)+ (1−α)∇aD(B). (6)

In [7], it has been demonstrated that∇aC (B) equals:

∇aC (B) = 2
N1

∑
i=1

[

offDiag{BM
(1)
i BH}BM

(1)
i

H

+
(

offDiag{BM
(1)
i BH}

)H
BM

(1)
i

]

. (7)

Focusing now, on the second term∇aD(B), it was shown
[13] that it equals:

∇aD(B) = 4
N2

∑
i=1

[

offDiag{BM
(2)
i BT}B∗M

(2)
i

∗]

. (8)

3.2 Seek of the optimal step size

To eliminate the difficult problem of the choice of the step
size, while decreasing the total number of iterationsNi
needed by the previous algorithm to reach convergence, it
is possible to compute its optimal step sizeµopt at each it-
erationk which means that the algebraical calculation of the
following quantity:

J
(

B(k)
)

= αC
(

B(k)
)

+(1−α)D
(

B(k)
)

= J
(

B(k−1)− µ∇rJ (B(k−1))B(k−1)
)

, (9)

has to be performed to be minimized with respect toµ . To
simplify, we opt to omit the dependency with respect to the
iteration k in what follows. The quantity defined in (9) is
found to be a fourth order polynomial whose expression is
given by:

J (B− µ∇rJ (B)B)

= αC (B− µ∇rJ (B)B)+ (1−α)D (B− µ∇rJ (B)B)

= c0 + µc1+ µ2c2 + µ3c3 + µ4c4

= α(a0 + µa1+ µ2a2 + µ3a3 + µ4a4)

+ (1−α)(b0+ µb1+ µ2b2 + µ3b3+ µ4b4), (10)

where the coefficientsak, ∀k= 0, . . . ,4,bk, ∀k= 0, . . . ,4 (and
consequentlyck, ∀k = 0, . . . ,4), are defined below:

ak = (−1)k ∑N1
i=1(vec{M

(1)
i })HAkvec{M

(1)
i }, (11)

and:

A0 = PToffPH

A1 = PToffQH +QToffPH

A2 = PToffRH +RToffPH +QToffQH

A3 = QToffRH +RToffQH

A4 = RToffRH
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bk = (−1)k
N2

∑
j=1

(vec{M
(2)
j })HBkvec{M

(2)
j }, (12)

and

B0 = LToffLH

B1 = LToffMH +MToffLH

B2 = LToffNH +NToffLH +MToffMH

B3 = MToffNH +NToffMH

B4 = NToffNH

where:
• P = BT ⊗BH

• Q = BT ⊗ (∇rC (B))H +(∇rC (B))T ⊗BH

• R = (∇rC (B))T ⊗ (∇rC (B))H

• L = BH ⊗BH

• M = BH ⊗ (∇rD(B))H +(∇rD(B))H ⊗BH

• N = (∇rD(B))H ⊗ (∇rD(B))H

⊗ is the Kronecker product,vec{·} includes all the columns
of matrix given in argument into a column vector andToff is
a matrix defined as:

Toff = IN2 −diag{vec{IN}} = Toff
H
, (13)

whereIN2 is theN2 ×N2 identity matrix,IN is theN×N
identity matrix matrix,diag{·} is a square matrix containing
the elements of the vector given in argument on its diagonal.
The derivative of (10) with respect toµ leads to:

∂J (B− µ∇rJ (B)B)

∂ µ
= 4c4µ3 +3c3µ2 +2c2µ +c1.

(14)

The optimal step size is obtained in two steps: after finding
all the roots of (14), they are inserted into (10). The root that
provides the minimum value is the optimal step size.

4. COMPUTER SIMULATIONS

In this section, computer simulations are presented to illus-
trate the performance and robustness of the proposed algo-
rithm in comparison with the (adapted) one given in [8].

We consider anM ×N complex matrixA built from a
normal distribution with zero mean and unit variance. The
diagonals of theN×N matricesD(1)

i andD
(2)
i are generated

with a complex Gaussian process with zero mean and vari-

anceσ2
s . Now the matricesM(1)

i andM
(2)
i are then built as

defined in (1) and (2).
To test the robustness of the algorithm, different levels

of additive noise is considered. Then, (1) and (2) have to be
modified, taking into account perturbations:

M̃
(1)
i = AD

(1)
i AH +B

(1)
i , (15)

and
M̃

(2)
i = AD

(2)
i AT +B

(2)
i , (16)

whereB
( j)
i ∀ j = 1,2 are matrices∈ CM×M generated with

a Gaussian process with zero mean and varianceσ2
b . The

Signal-to-Noise Ratio (SNR) is then defined as: SNR=

10log10(
σ2

s
σ2

b
) (in dB).

We use the Performance Index defined in [4] as:

I(G) =
1

r(r −1)

r

∑
i=1





r

∑
j=1

‖Gi, j‖
2
F

max
l

‖Gi,l‖
2
F

−1





+
1

r(r −1)

r

∑
j=1





r

∑
i=1

‖Gi, j‖
2
F

max
l

‖Gl , j‖
2
F

−1




, (17)

whereG = BA is the so-called global matrix. Next, the
proposed algorithmJMDRG is illustrated and compared to
the extendedFAJD one which was introduced in [8] in the
square case. In order to consider the rectangular case for this
method, a dimension reduction by projection is first realized
in order to come back to the square case. For the two algo-
rithms, the initial guess is fixed in using the above projection
that corresponds to the range space of matrixA.
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Figure 1: Influence of noise level on the Performance Index
for square case

In Figure 1, the square case is considered withM = N = 3
andN1 = N2 = 20. The mean performance index over 100
Monte Carlo trials is plotted w.r.t. the SNR in the square
case. We can see that theJMDRG algorithm nearly reaches
the same performances asextendedFAJD in the square case.

In Figure 2, the rectangular case is considered withM =
5, N = 2 andN1 = N2 = 20. 100 Monte Carlo trials are per-
formed. We notice that for low SNR values (between 0 and
20 dB), algorithmextendedFAJD has better performances
while for higher SNR it is the converse. This is certainly
due to the projection stage which reduces the noise influ-
ence onto considered matrices. Remark for SNR greater than
40dB, JMDRG the performance index becomes infinite im-
plying that the sought matrix is perfectly estimated.

5. DISCUSSION

In this article, we present a new approach for joint decom-
position of matrices. Using potentially different matrix de-
compositions, the approach allows the use of more statisti-
cal information in the complex domain. Relative gradient
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Figure 2: Influence of noise level on the Performance Index
for rectangular case

search procedure helps improve the conditioning of the esti-
mated matrix and a search procedure for the optimal step size
(instead of fixing the step size) increases the overall conver-
gence speed. Computer simulations highlights potential ad-
vantage of the proposed algorithm for high SNR in the rect-
angular case while preserving the performance gain in the
square case.
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