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ABSTRACT 
In this paper a mixed stochastic and analytic method is pro-
posed to synthesize a robust filter-and-sum beamforming 
system working with an array that is, at the same time, su-
perdirective and undersampled. The method allows to obtain 
a broadband beam pattern with an optimal trade-off among 
directivity and frequency-invariance, over a very large 
bandwidth. The method jointly optimizes the sensors’ posi-
tions (providing an aperiodic layout) and the coefficients of 
the filters used to process the signals, deploying a limited 
number of sensors. The simulation results show the per-
formance and the robustness to array imperfections of the 
obtained solutions, highlighting the improvement over the 
literature methods. 

1. INTRODUCTION 

Systems using sensor arrays are often involved in processing 
broadband signals. In some cases, it is important that the 
performance of the array processor should be adequately 
constant over the entire frequency band of the signals. If the 
array processor is a beamformer [1], its performance is 
mainly measured by the beam pattern, so a frequency-
invariant beam pattern (FIBP) is required. A FIBP allows 
one to receive the broadband signals without any distortion, 
even if they come from directions different from the steering 
direction. In the last decades, some papers have addressed 
the general structure of a broadband filter-and-sum beam-
former, proposing methods to optimise the beamformer in 
such a way that a FIBP is obtained [1-6].  
However, in some applications, like hearing aids [7], 
autonomous underwater vehicles [8], antenna arrays for 
miniaturized wireless radio systems [9] or phased arrays for 
wideband radar systems [10], strong constraints are present 
on the maximum aperture of the array. As a consequence, 
the condition in which the array aperture, D, is shorter than 
some of the involved wavelengths λ is frequently unavoid-
able. In this case, the generation of a superdirective beam 
pattern, achieved by synthesizing specific apodization func-
tions [10], is essential, and the robustness to array imperfec-
tions and random errors becomes a very crucial point. Re-
cently, a few approaches have been proposed [11-14] that 
can be used to synthesize the filters’ coefficients necessary 
to yield a FIBP by using a superdirective array, assuring a 

sufficient robustness against errors in the array characteris-
tics.  
In general, the number of elements of an array strongly af-
fects the array cost and the complexity of the conditioning 
and processing circuits. Therefore, it is very useful to suc-
ceed in decreasing the number of elements, while keeping the 
same spatial aperture of the array. To reduce the number of 
elements and to prevent grating lobes, one may increase the 
spacing, breaking, at the same time, the periodicity of the 
elements' positions. This operation leads to aperiodic arrays, 
where the average space between the elements, d, is larger 
than λ/2, i.e., larger than the Nyquist limit. In the literature, 
different approaches [15-18] have been proposed to optimize 
the elements’ positions and the apodization functions of ape-
riodic arrays, working with narrowband [15-16] or wideband 
[17-18] signals.  
When working with very large bandwidth signals (e.g., audio 
signals), the task of obtaining a FIBP with a satisfying direc-
tivity, while limiting at the same time the array aperture and 
the number of sensors, can be achieved only relying on an 
array structure which is, at the same time, aperiodic and su-
perdirective. This means that at the lowest frequencies of the 
signal band, the array aperture is shorter than the wavelength 
(i.e., D < λ), whereas at the highest frequencies of the signal 
band, the same array is undersampled (i.e., d > λ/2). To the 
best of our knowledge, no work has been published, that is 
aimed at designing a robust frequency invariant beamformer 
applied to an aperiodic superdirective array. To bridge this 
literature gap, in this paper we propose a mixed stochastic 
and analytic synthesis method that, for a given array aperture 
and number of sensors, produces a robust FIBP optimizing 
both the filters’ coefficients and the sensors’ positions. The 
method is slightly computationally expensive, since the sto-
chastic procedure, based on simulated annealing (SA), is 
employed only for the positions optimization, while, at each 
iteration, the filters’ coefficients are analytically calculated. 
Unlike other methods for array synthesis, the critical and 
time-consuming operation of choosing a desired beam pat-
tern (DBP) is avoided: the key optimization criterion lies in 
finding the broadband beam pattern which assures the best 
trade-off among directivity and frequency invariance. Finally, 
the robustness against errors in the sensor characteristics is 
achieved by optimizing the mean performance calculated 
over all the possible array characteristics taking into account 
the statistics of the sensor errors.  
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Although the technique addressed in this paper is mainly 
focused on audio processing, it can also be effective in dif-
ferent application fields, like those addressed in [8-10].  
The paper is organized as follows: after the introduction, in 
section 2 the proposed method is described; in section 3 the 
results obtained by the proposed method applied to a micro-
phone array are shown and compared with the ones obtained 
through literature methods; finally, in section 4, some conclu-
sions are drawn. 

2. PROPOSED METHOD 

2.1 Filter-and-Sum Beamforming 
In filter-and-sum beamforming, tapped delay line architec-
tures, where each array element feeds a transversal filter and 
the filter outputs are summed up to produce the beam signal, 
are typically exploited to design a broadband spatial filter [1]. 
Let us consider a linear array composed of N omnidirec-
tional, point-like sensors, each connected to an FIR (Finite 
Impulse Response) filter composed of L taps. The far-field 
beamformer response, i.e. the actual beam pattern (ABP), is a 
function of the direction of arrival (DOA) and of the fre-
quency, and can be expressed [1] as follows:  

( ) ([ cn

N

n

L

l
nln lcfjAfBP T/sind2-expw,

1

0

1

0
, +⋅⋅= ∑∑

−

=

−

=

θπθ )]  (1) 

where f is the frequency, θ is the arrival angle belonging to 
the interval [-90°, 90°], c is the speed of the acoustic waves 
in the medium, Tc is the sampling interval of the FIR filters, 
dn is n-th element position along the array, wn,l represents the 
l-th tap coefficient of the n-th filter and An = an·exp(-γn)  
represents the n-th sensor characteristic including the gain an 

and the phase γn, both of them supposed to be frequency-
invariant. The L coefficients of the N FIR filters are inde-
pendently adjustable, and can be arranged in the row vector 
w of length M = NL. Analogously the N sensors’ positions 
can be arranged in a vector d of length N. 
 
2.1.1 Beamforming performance analysis  
The beamformer performance can be derived from the direc-
tivity and the white noise gain (WNG). The directivity indi-
cates the improvement in the signal-to-noise ratio (SNR) 
provided by the array, as compared with a single omnidirec-
tional sensor, for an isotropic noise field and plane waves 
[10,19]. The WNG indicates the improvement in the SNR 
provided by the array, as compared with a single omnidirec-
tional sensor, for sensor self-noise, assumed to be spatially 
white [19]. The inverse of the WNG is called “sensitivity 
factor” [19] and corresponds to the sensitivity of the array 
beam pattern to array imperfections (e.g., element position 
errors and element response errors). Consequently, an exces-
sive decrease in the WNG value cannot be accepted. The 
equations for the computation of the directivity and WNG of 
a broadside linear array can be found in [19].  
 
2.2 Proposed cost function 
Let P be the odd number of points used in discretizing the 
DOA axis, from -90° to 90°, Q the number of points used in 
discretizing the frequency axis over the desired bandwidth, 
BPpq(w,d) the value of the broadband ABP in θp and fq, com-

puted by (1) using the tap coefficients in w and the element 
positions in d, and BPdp the value of the DBP calculated in 
θp for an arbitrary frequency (as the DBP is supposed to be 
frequency-invariant, it doesn’t depend on the index q). Let be 
θS  the steering angle, and let us organize the values of BPdp, 
for p = 1, 2, …, S-1, S+1, …, P into the vector BPd of length 
P-1. The DBP at the steering angle is not inserted into the 
above vector and is kept fixed at the normalized value 1. 
A cost function well tailored to our aim is the following: 
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Such a cost function is made up of two terms: the first ac-
counts for the adherence between ABP and DBP, in a least 
squares sense, for all the frequencies and angles of interest, 
and the second expresses the DBP energy. The relative 
weight of the two terms can be tuned by the parameter K. 
This cost function has to be minimized in respect to the FIR 
filter’s coefficient w, the elements positions d and the values 
of the DBP, contained in the vector BPd, calculated for every 
discretized angle, except the steering one. Considering the 
constraint on the DBP at the steering angle and the definition 
of directivity [19], the minimization of the DBP energy is 
equivalent to the maximization of the DBP directivity, ap-
proximately calculated using a discrete number of angles.  
The minimization process produces both the DBP which 
assures the best trade off between directivity and adherence 
to the ABP, and the filters’ coefficients and sensors’ positions 
which assure the best adherence to the optimized DBP.  
Unlike other synthesis methods, the adherence between DBP 
and ABP is intended not only in modulus but also in phase: in 
order to avoid phase distortions on the acquired signals the 
phase of the obtained beam pattern should be a linear func-
tion of frequency, for each DOA. Consequently a proper lin-
ear phase term has to be imposed in the DBP [21].  

 
2.2.1 Robust Cost function  
The cost function presented above lies on the hypothesis that 
the sensors’ characteristics are perfectly known. However, 
using small-size sensor arrays, the resulting beamformers 
are known to be highly sensitive to errors in the array char-
acteristics, especially the sensor gain and phase. To over-
come this drawback the strategy presented in [11] has been 
adopted. The idea is to optimise the mean performance, i.e., 
the weighted sum of the cost functions for all feasible sen-
sors’ characteristics using the probability density functions 
(PDFs) of the sensors’ characteristics as weights. To this end 
a total cost function can be defined as: 
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where ( )10 ,,,,, −NAAdJ KBPdw  is the cost function defined 
in (2) for a specific set of sensor characteristics {A0,…, AN-1} 
and fA(An) represents the PDF of the random variable An for n 
= 1,…, N. Regarding fA(A), we assume the following hy-
pothesis: fA(A) is independent of frequency and DOA; all the 
sensor characteristics An are described by the same PDF 
fA(A); fA(A) is a joint PDF of the independent stochastic vari-
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ables a (gain) and γ  (phase), such that fA(A) = fa(a)fγ(γ) where 
fa(a) is the PDF of a and fγ(γ) is the PDF of γ ; finally,  fγ(γ) is 
an even function. 

 
2.3 Cost function minimization 
The robust cost function defined in (3) has to be minimized 
in respect of the three vectors w, d and BPd. If the vector d is 
kept fixed, the resulting function of w and BPd has only a 
global minimum which can be found analytically. On the 
contrary, keeping fixed w and BPd, no analytic expression is 
available for the minimum of the resulting function of d, due 
to the fact that the elements of d appear in the argument of 
the exponentials in the ABP equation (see (1)). Many local 
minima, leading to suboptimal solutions, are typically pre-
sent, and for this reason SA has been adopted. SA is an itera-
tive procedure aimed at minimizing an energy function f(x), 
x being the vector of the state variables At each iteration, a 
small random perturbation is induced in the current state con-
figuration xi, i being the iteration. If the new configuration, 
x*, causes the value of the energy function to decrease, then 
it is accepted. Instead, if x*causes the value of the energy 
function to increase, it is accepted with a probability depend-
ent on the system temperature, in accordance with the 
Boltzmann distribution. The temperature is a parameter that 
is gradually lowered, following the reciprocal of the loga-
rithm of the number of iterations. The higher the temperature, 
the higher the probability of accepting a perturbation causing 
a cost increase and of escaping, in this way, from unsatisfac-
tory local minima. Further details can be found in [20].  
In our implementation the vector of state variables is the vec-
tor of sensors’ positions d, while the energy function (d) 
is defined as the minimum of the robust cost function Jtot (w, 
d, BPd ) in respect of w and BPd. Such a minimum is found 
in closed form, as it is described in the next subsection. At 
each iteration, the sensors of the array, except the first and 
last one, are visited once, following a random sequence. The 
position of each sensor is perturbed by letting it assume a 
random value, according to a uniform distribution, in the 
range defined by two adjacent sensors’ positions. To take into 
account the physical dimensions of the sensors, a minimum 
distance among adjacent sensors is imposed. The energy 
function is evaluated for the new position vector d* and the 
perturbation is accepted or refused according to the SA pro-
cedure. If the initial temperature Tstart and the number of itera-
tions NUM_ITER are sufficiently high, the final state of d 
will be, in a statistical sense, close to the argument of the 
global minimum of the energy function. Since the analytical 
minimization is embedded into the SA procedure the global 
minimum of the energy function in respect of d will be iden-
tical to the global minimum of the robust cost function in 
respect w, d and BPd. On the contrary, it should be noted that 
a two step optimization in which the filter coefficient are 
optimized after the positions, or vice-versa, would lead (in 
general) to a sub-optimal solution. This combined strategy 
allows to greatly reduce the computational load associated 
with SA by diminishing the degrees of freedom of the itera-
tive search. 

tot
posJ

 

FOR i = 1 TO NUM_ITER 
      Ti = TEMP (Tstart, i) 
      di = di-1

 
      FOR k = 1 TO N-2 
            dk

* = RND (dk-1
i + limit , dk+1

i - limit)  
            d*  = [ d0

i , … dk
*, …] 

           (d*) = (w, d*, BPd)   tot
posJ tot

d
J

BPw,
min

            ΔΕ = (d*) - (di) tot
posJ tot

posJ
            r = RND (0 ,1)  
            IF = ΔΕ <  0 OR r > exp (-ΔΕ/κΤι ) 
            THEN di = d* 

            ENDIF 
      ENDFOR 
ENDFOR 

 
• TEMP (Tstart, i) updates the current temperature depending on 

the initial temperature Tstart and the current i-th iteration.  
• RND(arg1,arg2) selects randomly a real number in the range 

[arg1,arg2]. 
• limit is the minimum distance allowed among two adjacent 

sensors. 
•  k is the Boltzmann constant. 

Figure 1 – Code-like implementation of the combined analytical-
stochastic method  

2.3.1 Closed form minimization  
Let us consider the non-robust cost function defined in (2): 
for a fixed d, by substituting the ABP expression (1) in (2) 
and developing the squared moduli, it is possible to express 
the cost function as a quadratic form in respect of the com-
pound vector v = [w, BPd]. In particular: 

( ) ( ) ( sdJ +⋅−⋅⋅= drvvdMvBPdw TT 2,, )  (4) 
where M is an (NL+P-1) x (NL+P-1) matrix, r is a (NL+P-1) 
vector, and s is a scalar constant that can be ignored. The 
matrix M can be written as an element-wise product among 
two matrices M1 and M2: the first one depending only on the 
complex exponentials in (1), and the second one depending 
only on the array characteristics An. A similar statement can 
be made for the vector r, opportunely defining the vectors r1 
and r2. Now, it is straightforward to express the robust cost 
function in (3) as a quadratic form, by performing on (4) the 
multiple integrals over the array characteristics. In fact, the 
integrals act only on the matrix M2 and the vector r2 , pro-
ducing respectively the matrix 2

~M and the vector 2
~r . These, 

under the hypotheses stated in subsection 2.2.2, have the 
following structure: 
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where μa and Pa  are respectively the mean value and the 
power of a, μγ  is the mean value of cos(γ), while 1XxY 
 denotes an X x Y identity matrix. Denoting with M~  and  r~
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the element-wise multiplication of M1 with 2
~M  and r1 

with 2
~r , respectively, the robust cost function can be ex-

pressed as: 
( ) ( ) ( sdJ tot +⋅−⋅⋅= drvvdMvBPdw TT )~2~,,  (6) 

The argument of the global minimum of Jtot in respect of v 
can be found as: 

( ) T1

,

~~,,minarg rMBPdwv
BPw

−== dJ tot
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It is worth noting that the multiple integrals on the array 
characteristics need to be calculated just once, at the starting 
of the SA procedure. In fact, at each iteration, the updated 
vector d affects only the matrix M1 and the vector r1 . This 
closed form minimization follows a similar procedure to that 
used in [11, 21] for different cost functions. 

3. RESULTS AND DISCUSSION 

As an example of application of the proposed method, let us 
consider a linear array, made up of 8 point-like omnidirec-
tional microphones, with a spatial aperture of 20 cm. It has 
been designed to work in air where the sound speed is c = 
340 m/s. Each microphone feeds a 70th-order FIR filter (i.e., 
having L = 71 taps) with a sampling frequency equal to 24 
kHz. The frequency interval considered for the design of the 
FIBP ranges from 350 to 12000 Hz (i.e., more than 5 oc-
taves) and is discretized by using Q = 100 equally spaced 
points. The DOA angle, θ, ranges between –90° and 90°; it 
is discretized by using P = 51 points that are equally spaced 
in the domain of sinθ. The steering angle has been fixed at 
broadside, i.e. θS = 0°. 
It is very important to note that the array aperture is shorter 
than the wavelengths up to 1700 Hz. Moreover, if the array 
is equispaced, the Nyquist limit (i.e., d ≤ λ/2) is not re-
spected for all the frequencies exceeding 5900 Hz.  
In order to obtain a linear phase behavior for every DOA, 
the DBP phase has been set as a pure delay equal to half the 
filter’s total delay.  
The parameter K, setting the trade-off between directivity 
and frequency-invariance in the cost function, has been 
tuned to 0.01 in order to privilege the frequency-invariant 
behaviour. The PDFs of the microphone gain and phase are 
assumed to be Gaussian functions with a mean value respec-
tively equal to 1 and 0 rad, and a standard deviation respec-
tively equal to 0.0225 and 0.0225 rad.  
Regarding the SA procedure an initial temperature of 20 and 
a number of iterations equal to 500 have been set. Such val-
ues allow a satisfying oscillation in the initial values of the 
energy function, so as to escape from local minima, and a 
stabilization in the final values. The initial position configu-
ration has been chosen randomly, with a minimum distance 
allowed among adjacent microphones of 0.015 m. The over-
all procedure has been run several times, yielding similar 
results in terms of the minimum reached. 
The resulting broadband beam pattern, normalized to the 
mean value in the steering direction, is displayed in Fig. 2: it 
has a main lobe of nearly constant width with nulls at about 
±55°. The visible portion of the first side lobes rises at -16 
dB at ±90°. The shape appears to be very uniform over fre-

quency: only below 1500 Hz a slight broadening of the main 
lobe and an increase in the side lobe level is visible. 

 
Figure 2 – Broadband beam pattern modulus vs. direction of arrival 

and frequency, obtained by the proposed method.  

 
Figure 3 – Directivity and white noise gain vs. frequency for the 

broadband beam pattern shown in Fig. 2. 

In Fig. 3 the directivity and the WNG of the obtained beam 
pattern are displayed versus frequency. The directivity has a 
constant enough profile with an average value of 4.60 dB and 
a minimum value of 3.2 dB at 350 Hz. The WNG is greater 
than 0 dB for frequencies higher than 880 Hz For lower fre-
quencies, the white noise self-produced by the system is am-
plified by a limited amount, e.g., about 6 dB at 600 Hz and 
14 dB at 350 Hz. These values are usually considered an 
index of satisfying robustness to the array imperfections, as 
can be seen observing that other robust synthesis methods, 
like [12,13], yield similar WNG profiles and values.  
In Table I a comparison among the results of the FIBP design 
methods reported in literature is summarized. The bandwidth 
BW, measured in octaves, is referred to the range of frequen-
cies over which a nearly frequency invariant behaviour has 
been obtained: our method allows to extend BW of about 2 
octaves in respect to the best literature result [2]. Such an 
achievement is even more significant considering the re-
duced number of sensors N employed and the reduced array 
aperture D. The latter, in our case, is only 0.2 times the 

2099



maximum involved wavelength λmax. It is to note that a small 
D/λmax characterizes the methods [12,13] dealing with super-
directive arrays; on the contrary an high value of the mean 
sensor spacing normalized by the minimum wavelength 
dmean/λmin is typical of methods dealing with aperiodic under-
sampled arrays, like [2]. The proposed method is the only 
one which bears both this features. 
 

Reference BW [oct] N D/λmax dmean/λmin 
[2] 3.3 17 2.5 1.47 
[6] 1.16 14 3.17 0.55 
[5] 1 15 3.5 0.5 
[4] 2.6 21 1.66 0.5 
[13] 3.0 8 0.4 0.66 
[12] 2.8 8 0.18 0.18 
Proposed 
method 

5.09 8 0.20 1.01 

Table I – Main features of the frequency invariant beamformers 
obtained by the literature and the proposed methods. 

4. CONCLUSIONS 

In this paper a method aimed at designing a robust fre-
quency-invariant beamformer applied to a superdirective 
and, at the same time, undersampled array has been de-
scribed. Such a method is based on the joint optimization of 
the sensors’ positions and the filters’ coefficients by means 
of a computationally advantageous mixed stochastic and 
analytic procedure. The results account for the ability of the 
method in achieving a frequency invariant beam pattern, 
with a satisfying directivity and robustness over a very large 
bandwidth of more than five octaves, while limiting the ar-
ray aperture and the number of sensors employed. Future 
advancements will include the minimization of the array 
aperture and the number of sensors, by adding ad hoc terms 
in the cost function, and the extension of the robustness to 
other types of errors, such as sensor position errors. 
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