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ABSTRACT

The performance of automatic speech recognition for signals ac-
quired through a hands-free speech interface is limited by the ad-
verse effect of the noise and the reverberation. Frequency do-
main blind signal processing techniques, like blind signal separa-
tion, have been used with success for suppressing the noise in real
situation but they usually do not take into account the reverberation.
In this paper, we present a method based on frequency domain blind
signal extraction that is aimed at suppressing both the adverse effect
of the noise and the reverberation.

1. INTRODUCTION

The hands-free speech interface not only allows the user to interact
with the machine in a natural way by using speech but it also frees
the user from carrying a microphone or a headset as the speech is
picked up at a distance by means of a microphone array. But this
ease of use comes with a non negligible cost: the performance of
automatic speech recognition system is deteriorated by the effect of
the noise and the room reverberation.

Several microphone array techniques can be used to improve
the captured speech by reducing these adverse effects [1, 2]. Among
these techniques, frequency domain blind signal separation (FD-
BSS), see review paper [3], has been used with success for estimat-
ing the diffuse background noise present in the hands-free speech
interface [4]. In particular, as FD-BSS gives a better estimate of
the diffuse background noise than of the target speech, it has to be
combined with some nonlinear post-filtering techniques in order to
improve the quality of the captured speech. However the approach
proposed in [4] does not suppress the adverse effect of the reverber-
ation.

As showed by the authors of [5, 6, 7], the late reverberation is
the most harmful to the automatic speech recognition system. Con-
sequently, they proposed approaches that suppress the later part of
the reverberation by means of nonlinear filters (for example spec-
tral subtraction of an estimated late reverberant speech). But these
approaches were proposed in the noise free case.

In this paper, we present a method that combines frequency do-
main blind signal extraction (FD-BSE) [8] and nonlinear filter to
suppress the noise as in [4] (we do not use single channel spectral
subtraction but channel-wise Wiener filters as nonlinear post-filters
as in [8]). But the proposed architecture also suppresses the late
reverberation effect in a channel-wise manner by using another set
of Wiener filters. The late reverberation effect is estimated by us-
ing the output after noise suppression, somea priori knowledge of
the room reverberation and the information given by FD-BSE on
the user’s position (see [9] for late reverberation suppression using
statistical room impulse response model). The effectiveness of the
proposed method is illustrated by a dictation task performed with a
hands-free speech interface in presence of both diffuse background
noise and reverberation.

Notations: throughout the paper, vectors and matrices are in
bold face, for signalsX( f ,k) is the frequency domain representation
of x(t) and for filtersH( f ) is the frequency domain representation
of h(τ).

2. HANDS-FREE SPEECH INTERFACE

Let us first define the model of the hands-free speech interface,
when a single user is talking in a noisy and reverberant room. We
assume that the noise is a diffuse background noise created by noise
sources far from the microphone array and that the user, closer to
the array, is a point source.

The multi-dimensional signal (n components) received at the
microphone arrayx(t) is the sum of the speech contributionxS(t)
and the diffuse background noise contributionxN(t).

x(t) = xS(t)+xN(t).

The multi-dimensional speech contribution reflects the effect of the
room impulse responseh(τ) on the clean speechs(t) and is com-
posed of an early parthE(τ) and a late parthL(τ)

xS(t) = (hE(τ)+hL(τ))∗s(t)

= xE(t)+xL(t)

wherexE(t) andxL(t) are the early reverberant speech and the late
reverberant speech.

Modern hidden Markov model (HMM) based speech recogniz-
ers are able to cope with the filtering effect of the room impulse re-
sponse up to a certain delayτd (for example by applying cepstrum
mean normalization). ThushE(τ) andhL(τ) are defined as

hE(τ) =

{
h(τ) for τ ≤ τd
0 for τ > τd

hL(τ) =

{
h(τ) for τ > τd
0 for τ ≤ τd

meaning that the effect ofhE(τ) is handled by the recognizer
whereas the effect ofhL(τ) must be handled by the signal process-
ing front end (for the recognizer we use [10] the early/late reverber-
ation threshold isτd = 75 ms as shown in [7]).

To present the technique used to suppress the diffuse back-
ground noise, we use a simplified frequency domain model of the
hands-free speech interface (not taking explicitly into account the
late reverberation). The frequency domain signals are obtained us-
ing a short time Fourier transform of sizeF . In the remainderf
denotes the frequency bin andk denotes the frame index. Consid-
ering that the user is a point source, the mixing model in thef th
frequency bin is approximated by

X( f ,k) ≈Hθ ( f )S1( f ,k)+N( f ,k), (1)

whereS1( f ,k) is the anechoic speech component,N( f ,k) is a vec-
tor containing then components of the diffuse background noise
and

Hθ ( f ) = {exp( j2π( f/F) fs
id
c

sinθ( f ))}i∈[0,n−1]

is an×1 vector depending of the speech direction of arrival (DOA)
θ( f ) (also of the sampling frequencyfs, microphone inter spacing
d, and sound velocityc). Note that the vectorHθ ( f ) is function
of the frequency. The reason is that theapparentDOA at a given
frequency, that accounts for the effect of the reflection and the re-
verberation, differs from thephysicalDOA of the speech, which is
the angle defined by the user’s position relatively to the microphone
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array. With this model, some amount of the late reverberation effect
is included in the noise.

We can reformulate (1) as a noiseless instantaneous mixture

X( f ,k) = [ Hθ ( f ) In ]

[
S1( f ,k)
N( f ,k)

]
,

whereIn is the identity matrix of sizen.
For convenience we define

S( f ,k) = [S1( f ,k),S2( f ,k), · · · ,Sn+1( f ,k)]T

with S2( f ,k), · · · ,Sn+1( f ,k) = N( f ,k).

Then the noiseless instantaneous mixture is re-written as

X( f ,k) = A( f )S( f ,k). (2)

It is a realistic assumption that, in a given frequency bin, the target
speech component is statistically independent of the diffuse back-
ground noise components. But the statistical independence of the
diffuse background noise components is not assumed.

3. DIFFUSE BACKGROUND NOISE SUPPRESSION

In the f th frequency bin, the estimatesY( f ,k) of the separated com-
ponents estimate are obtained by applying demixing matricesW( f )
to the observed signals

Y( f ,k) = W( f )X( f ,k)

this matrix is updated in order to minimize the mutual information
of the components ofY( f ,k) (see [3, 4] for FD-BSS method de-
tails).

In [4], Takahashi et al. showed that in this situation the square
matrixW( f ) estimated by BSS is such that the row corresponding
to the speech component estimate is a delay and sum (DS) beam-
former in the direction of the speech’s apparent DOA at that fre-
quency. The other rows corresponding to the estimates of the noise
components are null beamformers at the speech’s apparent DOA at
that frequency.

After separation, assuming that the speech component is the
first component ofY( f ,k), the noise estimatêXN( f ,k) is obtained
by projecting back the noise components

X̂N( f ,k) = W( f )−1
DW( f )X( f ,k)

whereD is a diagonal matrix with entries[0,1, · · · ,1] along the
diagonal. We have

X̂N( f ,k) ≈ [ On×1 In ]S( f ,k).

Consequently the quality of the noise estimate is highly superior
to that of the speech estimate as the null beamformers efficiently
suppress the speech (a point source) from the estimated noise com-
ponents whereas the DS beamformer does not suppress the noise
from the estimated speech component. For this reason the authors
in [4] propose to use FD-BSS for estimating the diffuse background
noise and then apply a nonlinear post-filter to suppress the noise.
This architecture, called blind spatial subtraction array (BSSA), is
composed of two paths (see Fig. 1 ). The primary path (bottom) is
a DS beamformer in the user’s direction

X̂S( f ,k) = B(θ( f ))X( f ,k)

and the second path (top) is the FD-BSS based noise estimation.
The same DS beamformer is applied to the noise estimate

X̂N( f ,k) = B(θ( f ))X̂N( f ,k)

then spectral subtraction is used to suppress the diffuse background
noise from the primary path

|Ŝ( f ,k)| =





|X̂S( f ,k)|2−α |X̂N( f ,k)|2

if |X̂S( f ,k)|2−α |X̂N( f ,k)|2 > 0
β |X̂S( f ,k)|2 else

(3)

where the over subtraction parameterα and the flooring parameter
β control the processing.

n n n-1 n

n 1

1
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Figure 1: BSSA architecture.

4. SUPPRESSION OF THE LATE REVERBERATION
EFFECT

In presence of heavy reverberation, the performance drop observed
for the automatic speech recognition based on HMM is mainly
caused by the later part of the reverberationhL(τ) that cannot be
handled by the recognizer (see [7] for example). For this reason
it is necessary to suppress this effect by pre-processing the speech
with a dereverberation algorithm.

The method proposed in this paper uses the framework pre-
sented in [6] and in [7]. The speech signal has a strong correla-
tion within each local time frame due to articulatory constraints but
early and late reflections are uncorrelated. Consequently the au-
thors of [6] proposed to estimate the early reverberant component
by subtracting in the power spectrum domain an estimate of the late
reverberant component to the observed signal.

A blind estimation of the late reverberant component with
multi-step forward linear prediction was proposed in [11] where
an effective suppression of the late reverberation was achieved by
spectral subtraction.

The method proposed in [7] uses prior knowledge to avoid the
costly blind estimation of the late reverberant component. It as-
sumes that the late part of the impulse responsehL(τ) that creates
the late reverberation is not varying significantly within the room
contrary to the early part of the impulse responsehE(τ) that is
strongly affected by the position of the speaker and the microphone
array within the room. Consequently it is possible to obtain an ac-
ceptable estimate of the late reverberation for the room by measur-
ing one impulse response before hand (thus this method is designed
for systems that operate in a given room). The method in [7] uses
the received speech to estimate the late reverberant speech and re-
quires a modification of the spectral subtraction in order to compen-
sate the estimation error on the late reverberant part.

5. PROPOSED JOINT SUPPRESSION OF DIFFUSE
BACKGROUND NOISE AND LATE REVERBERATION

EFFECT
5.1 Suppression of the diffuse background noise

In FD-BSE, at thef th frequency bin, the estimatey( f ,k) is obtained
by applying an extracting vectorW( f ) to the observed signals

Y( f ,k) = W( f )X( f ,k)

The vectorW( f ) that extract the speech component can be ob-
tained by the method presented in [8] that minimize the cost func-
tion

J(W( f )) =
1
2
E {|Y( f ,k)|}2 under the constraint

E

{
|Y( f ,k)|2

}
= 1 with an iterative gradient descent.

Then the diffuse background noise is estimated by subtracting the
projection of the speech component from the observation

X̂N( f ,k) =
(
In−ΓX( f )λ H

W
H( f )λW( f )

)
X( f ,k)

whereΓX( f ) is the covariance ofX( f ,k) andλ is a scalar such
that Z( f ,k) = λW( f )X( f ,k) verifiesE {|Z( f ,k)|2} = 1. With a
few assumption on the diffuse background noise we have [12]

X̂N( f ,k) =
[

On×1 In−
1
nHθH

H
θ

]
S( f ,k).

To suppress the diffuse background noise effect, a Wiener filter
is applied on each component of the observed signal
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X̂Si( f ,k) = W

(
Xi( f ,k),αNX̂Ni( f ,k)

)
.

whereαN is a parameter controlling the noise reduction and the
Wiener filterW (·, ·, ·) is defined as

S( f ,k) = W (X( f ,k),N( f ,k))

=
√

G( f ,k)|X( f ,k)|2
X( f ,k)
|X( f ,k)|

with G( f ,k) =
|X( f ,k)|2

|X( f ,k)|2 + |N( f ,k)|2
.

5.2 Suppression of the late reverberation effect

Assuming the noise suppression was efficient, then components
of X̂S( f ,k) contains the early reverberant speech components
XE( f ,k) and the late reverberant speech componentsXL( f ,k).

As proposed in [11, 7] we use nonlinear filtering to suppress
the late reverberation effect: another channel-wise Wiener filter is
applied to the signal after noise suppression

X̂Ei( f ,k) = W

(
X̂Si( f ,k),αRX̂Li( f ,k)

)

where theX̂Li( f ,k) are the components of the late reverberant
speech estimate andαR controls the filter strength.

Thus the focus is on the determination of the late reverberant
speech estimatêXL( f ,k). Using the relation

xL(t) = hL(τ)∗s(t)

this estimation is separated in two tasks: Obtaining an estimate of
the filterhL(τ) and obtaining an estimate of the signals(t).

The estimate of the late reverberation filter exploits the fact that
the late reverberation is rather room dependent and can be approxi-
mated by using a synthetically generated tail. Here we use a simple
random tail with exponential decay

hi(τ) = au(τ)e−d(τ−τ0)

wherea is a scalar,u(τ) a Gaussian random random variable with
zero mean and unit variance,τ0 is the limit between early and late
reverberation (τ0 = 75 ms for our recognizer) andd is a decay fac-
tor. The decay factor is set to have an impulse response with a given
T60 (the time after which the power of the tail decreased by 60dB).
We use the approximation

d =
ln106

2(T60− τ0)

obtained by neglectingu(τ) while computing the integral in the
power ratio

∫ ∞
T60

a2u(t)2e−2d(t−τ0)dt
∫ ∞

τ0
a2u(t)2e−2d(t−τ0)dt

≈

∫ ∞
T60

a2e−2d(t−τ0)dt
∫ ∞

τ0
a2e−2d(t−τ0)dt

.

Consequently the method requires an estimate of the reverberation
time T60 and setting a value toa.

In the second task, the estimate ofs(t) is just instrumental in
obtainingX̂L( f ,k). We propose an approach that uses the output of
the noise suppression stagêXS( f ,k) to get an intermediary signal
for suppressing the late reverberation effect.

The FD-BSE method estimates a vectorW( f ) from which we
can estimates a projection back filter for the speech signal

X̂S( f ,k) = ΓX( f )λ H
W

H( f )λW( f )X( f ,k)

= K( f )X( f ,k).

The energy for each microphone of the filterK( f ) is used to get the
scale parametersa of the synthetic tail.

Assuming thatW( f ) converged toλ
n H

H
θ ( f ) we have

d

T60 = 900ms

Figure 3: Experimental setting.
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Figure 4: Comparison methods.

{K( f )}p+1,q

{K( f )}p,q
= exp( j2π( f/F) fs

d
c

sinθ( f ))

from which we can estimateθ( f ) by taking

θ̂( f ) = asin

(
cF

2π f fsd
angle

(
{K( f )}p+1,q

{K( f )}p,q

))

this method is quite similar to the one in [13] but does not require
a matrix inversion (estimatingθ( f ) directly fromW( f ) is possible
but it is less robust in practice when the relationW( f ) = λ

n H
H
θ ( f )

is approximate). Then a mean DOÂθ is obtained from theθ̂( f )
and used to apply a DS beamformer in the directionθ̂ to X̂S( f ,k).
The output of this DS beamformer is used as speech estimate to
get the late reverberant speech. This signal is slightly closer to the
true S( f ,k) than the components of̂XS( f ,k) because of the DS
beamformer but it is a coarse estimate as the room impulse response
effect is still present. However, the method is quite robust to this
mismatch as can be seen in Sect.6.

5.3 Architecture

Fig. 2 shows the proposed architecture. The BSE algorithm is used
to obtain both the DOA estimatêθ and the diffuse background noise
(an component signal) then the first set ofn Wiener filters suppress
the noise. After noise suppression, the upper path estimates the
late reverberant speech. First the DS beamformer in the directionθ̂
gives the intermediary speech estimate, then the synthetic tail is ap-
plied (in the time domain) to this signal to get then component esti-
mate of the late reverberant speech that is suppressed by the second
set of Wiener filters. Finally the speech estimateŜ( f ,k) is obtained
by applying the DS beamformer in the directionθ̂ of the estimated
target speech to merge the output components of the second set of
Wiener filters.

6. EXPERIMENTAL RESULTS

The simulation uses data recorded in a train station, see Fig. 3. A
four (n = 4) microphone array (inter microphone spacing of 2.15
cm) was used to record the diffuse background noise, and estimate
the impulse responses from two locations, 50 cm and 150 cm, in
front of the array (DOA of 0o). Since our goal is speech recogni-
tion, a 20K-word Japanese dictation task from the database JNAS is
used as performance measure [14]. The test set (100 signals, female
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Table 1:System specifications.
Sampling frequency 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1−0.97z−1

Feature vectors 12-order MFCC,
12-order∆MFCCs
1-order∆E

HMM PTM , 2000 states
Training data Adult and Senior (JNAS)
Test data Adult and Senior female (JNAS)

speakers only) is convoluted with the impulse responses and mixed
with the recorded noise at different SNRs.

The quality of the speech estimate given by the proposed
method (prop) is compared to the quality of the speech estimate ob-
tained by: unprocessed signal (obs), FD-BSE alone (bse), FD-BSE
with noise suppression by channel-wise Wiener filter (bse-w) and
each of the three previous approaches cascaded with the multi-LPC
dereverberation (obs-lpc, bse-lpc and bse-w-lpc). Fig. 4 shows
some of these methods. The LPC block refers to the dereverber-
ation method in [11] where the delay isd = 400 and the prediction
filter is 3000 taps (these parameters correspond to the ones in [11]).

For the frequency domain processing, the short time Fourier
transform uses a 512 point hamming window with 50% overlap.
The separation is performed by 600 iterations of a BSE method
with adaptation step of 0.3 divided by two every 200 iterations (the
method is presented in [8]). For the proposed method, the parame-
terτ0 is set to 75 ms and we useT60 = 450 ms (this is a mismatched
value, simulations withT60 = 900 ms were also performed but the
under estimation ofT60 gave better results; maybe because the latest
part of the reverberation is masked by the noise).

The recognizer is JULIUS [15] using Phonetically Tied Mixture
(PTM) model. The conditions used in recognition are given in Table
1. The acoustic model is a clean model with super-imposed noise
(office noise 30dB SNR). The recognition was performed with and
without a masking noise; the same office noise as the acoustic model
is mixed with the processed signal before recognition is performed
(the mixing SNR is 30dB).

The word accuracies achieved with the different methods are
given in Table. 2. The word accuracies displayed forbse-w, bse-w-
lpc andprop are the higher one obtained from the parameter sets
αN = {0,1,3,5,7,9,11,13,15} andαR = {0,1,3,5,7,9}.

The proposed method gives the best performance except for 10
dB SNR when the user is close to the microphone array and there
is no masking noise in which case the suppression of the diffuse
noise alone (bse-w) is the most efficient method. Using a masking
noise especially improves the performance at the higher SNR. But
the proposed method is less affected than thelpc methods by the
presence or not of the masking noise.

Fig. 5 shows the effect of the parametersαN and αR on the
word accuracy for a distance of 150 cm at both 10 dB and 30
dB SNR. The case(αN = 0,αR = 0) corresponds tobse and the
cases(αN 6= 0,αR = 0) correspond tobse-w whereas all the other
cases correspond toprop. At 10 dB of SNR, good performance is
achieved by taking a set of parameters with similar average sizes or

Wacc[%] Wacc[%]SNR 10dB SNR 30dB

Figure 5: Effect of the set of parameters(αN,αR) on the word ac-
curacy.

by taking a set with a big and a small coefficient. Whereas at 30 dB
of SNR it is preferable to have a smallαN as one can expect.

7. CONCLUSION

In this paper, we proposed a method that both suppresses the dif-
fuse background noise and the late reverberant speech in order to
improve automatic speech recognition performance while using a
hands-free speech interface. The method that relies on blind signal
processing for the noise and somea priori knowledge for the re-
verberation proved to be efficient in a realistic simulation. The next
development is to include a blind estimation ofT60 in the method
and to propose better strategy for the choice of the set of parameters
(αN,αR) (done in a room/SNR dependent manner now). Prelimi-
nary results showed that the method is robust to error estimation on
T60 but also that the selection of appropriate values for the set of
parameters(αN,αR) is closely related to the estimate ofT60.
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