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ABSTRACT 2. HANDS-FREE SPEECH INTERFACE

The performance of automatic speech recognition for signals ad-et us first define the model of the hands-free speech interface,
quired through a hands-free speech interface is limited by the advhen a single user is talking in a noisy and reverberant room. We
verse effect of the noise and the reverberation. Frequency d@&ssume that the noise is a diffuse background noise created by noise
main blind signal processing techniques, like blind signal separasources far from the microphone array and that the user, closer to
tion, have been used with success for suppressing the noise in réhe array, is a point source.

situation but they usually do not take into account the reverberation.  The multi-dimensional signain(components) received at the

In this paper, we present a method based on frequency domain blirgicrophone arra(t) is the sum of the speech contributieg(t)

signal extraction that is aimed at suppressing both the adverse effeand the diffuse background noise contributioq(t).

of the noise and the reverberation. x(t) = xg(t)+xn(t).

1. INTRODUCTION The multi-dimensional speech contribution reflects the effect of the
) ) room impulse responde(t) on the clean speedit) and is com-
The hands-free speech interface not only allows the user to interagbsed of an early pahe (1) and a late pary (1)

with the machine in a natural way by using speech but it also frees

the user from carrying a microphone or a headset as the speech is xs(t) = (he(1)+hi(7))*s(t)

picked up at a distance by means of a microphone array. But this = xg(t)+xL(t)

ease of use comes with a non negligible cost: the performance of

automatic speech recognition system is deteriorated by the effect ¥fherexg (t) andx (t) are the early reverberant speech and the late

the noise and the room reverberation. reverberant speech. _
Several microphone array techniques can be used to improve Modern hidden Markov model (HMM) based speech recogniz-

the captured speech by reducing these adverse effects [1, 2].Amof'S are able to cope ywth the filtering effect of the room impulse re-

these techniques, frequency domain blind signal separation (FLSPONSe uUp to a certain delay (for example by applying cepstrum

BSS), see review paper [3], has been used with success for estim#€an normalization). Thusg (1) andhy (1) are defined as

ing the diffuse background noise present in the hands-free speech h(r) for T<Ty
interface [4]. In particular, as FD-BSS gives a better estimate of he(r) = { 0 for T>1y4
the diffuse background noise than of the target speech, it has to be

combined with some nonlinear post-filtering techniques in order to h (1) = h(r) for 7>19
improve the quality of the captured speech. However the approach - 0 for 1<y

proposed in [4] does not suppress the adverse effect of thebesver

ation. meaning that the effect chg (1) is handled by the recognizer
As showed by the authors of [5, 6, 7], the late reverberation isvhereas the effect di| (1) must be handled by the signal process-

the most harmful to the automatic speech recognition system. CoriRg front end (for the recognizer we use [10] the early/late reverber-

sequently, they proposed approaches that suppress the later pariagipn threshold igg = 75 ms as shown in [7]).

the reverberation by means of nonlinear filters (for example spec- To present the technique used to suppress the diffuse back-

tral subtraction of an estimated late reverberant speech). But theggound noise, we use a simplified frequency domain model of the

approaches were proposed in the noise free case. hands-free speech interface (not taking explicitly into account the
In this paper, we present a method that combines frequency ddate reverberation). The frequency domain signals are obtained us-

main blind signal extraction (FD-BSE) [8] and nonlinear filter to ing @ short time Fourier transform of sife In the remainderf

suppress the noise as in [4] (we do not use single channel specti@notes the frequency bin akdienotes the frame index. Consid-

subtraction but channel-wise Wiener filters as nonlinear post-filterring that the user is a point source, the mixing model inftthe

as in [8]). But the proposed architecture also suppresses the latéguency bin is approximated by

reverberation effect in a channel-wise manner by using another set X(f,k) ~Hg(f)Sy(f,k)+N(f,k), (1)

of Wiener filters. The late reverberation effect is estimated by us- . . .
ing the output after noise suppression, sawiori knowledge of  WhereSi(f.K) is the anechoic speech componeN(f, k) is a vec-

the room reverberation and the information given by FD-BSE or%’nr containing then components ofdthe diffuse background noise

the user’s position (see [9] for late reverberation suppression usin _ ; a . )

statistical room impulse response model). The effectiveness of the Ho () {exp(j.2n(f/F)fS sme(f))}'?[o’”’l] )

proposed method is illustrated by a dictation task performed with 45 an>x 1 vector depending of the speech direction of arrival (DOA)

hands-free speech interface in presence of both diffuse baatayrou &(f) (also of the sampling frequendy, microphone inter spacing

noise and reverberation. d, and sound velocitg). Note that the vectoHg(f) is function
Notations: throughout the paper, vectors and matrices are iﬁf the frequency. The reason is that tiqeparentDOA at a given

bold face, for signalX(f, k) is the frequency domain representation 'Te€duency, that accounts for the effect of the reflection and the re-
of x(t) and for filtersH (f) is the frequency domain representation Verberation, differs from thphysicalDOA of the speech, which is
of h(1). the angle defined by the user’s position relatively to the microphone
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array. With this model, some amount of the late reverberation effect  y 0. Jo -, | SPEe n_1 n )
is included in the noise. 1 1

We can reformulate (1) as a noiseless instantaneous mixture Rmmamammmnmmnninn vl () y
} 7 » DS oS>3

X(f,k)=[ Hg(f) | #n ]{ %E;B

where. ¢, is the identity matrix of size. Figure 1: BSSA architecture.
For convenience we define

S(f,k) = [Su(f, k), Sa(,K), -+, Shya (F,K)]T

with S(£,K),-- . Svia(F,K) = N(f,K). 4. SUPPRESSION OF THE LATE REVERBERATION
EFFECT
Then the noiseless instantaneous mixture is re-written as In presence of heavy reverberation, the performance drop\@sser
X(f,k)=A(f)S(f,k). (2)  for the automatic speech recognition based on HMM is mainly

It is a realistic assumption that, in a given frequency bin, the targelif]zﬂzfg dbg t?ﬁel?fcropirt grf Egger?;ﬂg?rgﬂg'nrir%et)ha}:g?rt]ﬁgt r?eison
speech component is statistically independent of the diffuse back:" y i gniz this effect b X _p C tlh h
ground noise components. But the statistical independence of kIS necessary to suppress this effect by pre-processing the speec

. ; . with a dereverberation algorithm.
diffuse background noise components is not assumed. The method proposed in this paper uses the framework pre-

3. DIFFUSE BACKGROUND NOISE SUPPRESSION sented in [6] and in [7]. The speech signal has a strong correla-
tion within each local time frame due to articulatory constraints but
early and late reflections are uncorrelated. Consequently the au-
thors of [6] proposed to estimate the early reverberant component
by subtracting in the power spectrum domain an estimate of the late
Y(f k) =W(f)X(f,k) reverberant component to the observed signal.
this matrix is updated in order to minimize the mutual information ~ A blind estimation of the late reverberant component with
of the components of (f,k) (see [3, 4] for FD-BSS method de- multi-step forward linear prediction was proposed in [11] where
tails). an effective suppression of the late reverberation was achieved by
In [4], Takahashi et al. showed that in this situation the squargpectral subtraction.
matrix W () estimated by BSS is such that the row corresponding ~ The method proposed in [7] uses prior knowledge to avoid the
to the speech component estimate is a delay and sum (DS) beagpstly blind estimation of the late reverberant component. It as-
former in the direction of the speech’s apparent DOA at that fresumes that the late part of the impulse respdng@) that creates
quency. The other rows corresponding to the estimates of the noigge late reverberation is not varying significantly within the room
components are null beamformers at the speech’s apparent DOA @@ntrary to the early part of the impulse respomsg(1) that is
that frequency. strongly affected by the position of the speaker and the microphone
After separation, assuming that the speech component is tr@fray within _the room. Consequently it i_s possible to obtain an ac-
first component o (f, k), the noise estima@y(f,k) is obtained ~ CepPtable estimate of the late reverberation for the room by measur-
by projecting back thé noise components ’ ing one impulse response before hand (thus this method is designed
for systems that operate in a given room). The method in [7] uses

In the fth frequency bin, the estimat¥$f, k) of the separated com-
ponents estimate are obtained by applying demixing matvitey
to the observed signals

)/(E(f, k) = W(f)"IDW(f)X(f,k) the received speech to estimate the late reverberant speech and re-
whereD is a diagonal matrix with entrief,1,---,1] along the ~ guires amodification of the spectral subtraction in order to compen-
diagonal. We have 7 sate the estimation error on the late reverberant part.

)/(E(f K) % [ Onw1 | #n ] S(F,K). 5. PROPOSED JOINT SUPPRESSION OF DIFFUSE

BACKGROUND NOISE AND LATE REVERBERATION

Consequently the quality of the noise estimate is highly superio . _EFFECT .

to that of the speech estimate as the null beamformers eﬁicientl§'l Suppression of the diffuse background noise

suppress the speech (a point source) from the estimated noise com-+D-BSE, at thefth frequency bin, the estimayéf k) is obtained
ponents whereas the DS beamformer does not suppress the noiseapplying an extracting vectdV () to the observed signals

from the estimated speech component. For this reason the authors Y(f,k) = W(f)X(f,k)

in [4] propose to use FD-BSS for estimating the diffuse background ’ ’

noise and then apply a nonlinear post-filter to suppress the noiséNe vectorW(f) that extract the speech component can be ob-
This architecture, called blind spatial subtraction array (BSSA), idained by the method presented in [8] that minimize the cost func-
composed of two paths (see Fig. 1). The primary path (bottom) igon

aDS beamformeriAn the user’s direction IW()) = }é"{\Y(ﬂ K)[}2 under the constraint
Xs(f,K) = B(O(F)X(f.K) 2

. ) & {|Y(f, k)|2} =1 with an iterative gradient descent.
and the second path (top) is the FD-BSS based noise estimation.

The same DS beamformer is applied to the noise estimate Then the diffuse background noise is estimated by subtracting the

Xn(f,k) =B(8(f)Xn(f,K) projection of the speech component from the observation
then spectral subtraction is used to suppress the diffuse background ~ Xn(f,k) = (fn —Tx(HARWH (H)aw( f)) X(f.k)

noise from the primary path wherel x (f) is the covariance oK (f,k) andA is a scalar such
thatZ(f,k) = AW (f)X(f,k) verifies£{|Z(f,k)|2} = 1. With a

~ ‘XAS(ka)‘Z*a‘fN(ka”Z few assumption on the diffuse background noise we have [12
IS(F K= if Xs(f.R—alXu(f,kZ>0 () i e 2
BIXs(f,k)[2 else Xn(f.k) = [ Ona | Sn—{HgHG ]S(1.K).

To suppress the diffuse background noise effect, a Wiener filter

where the over subtraction parameteand the flooring parameter | ] ;
P gp is applied on each component of the observed signal

B control the processing.
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External

s = # (X% (F,K), anXui(1.K)).

l\ﬂl:r.vr:‘ll'!o‘ne array T Lﬂ H
where ay is a parameter controlling the noise reduction and the iew tb'ﬁm) poia
Wiener filter# (-,-,-) is defined as 4 Be—> 3=

- =" =
Sk = MX(f’k)’N(f’k))x(f . s HE
= JG(F,RX(f. k)2
|x(f’k)‘ T60 =900ms !__________ S
|X( f 7 k) |2 Outeide of statlon

with G(f.k) =

2 2
XCE 1=+ N, K] Figure 3: Experimental setting.

5.2 Suppression of the late reverberation effect

Assuming the noise suppression was efficient, theomponents

e - 1 - ~
of Xg(f,k) contains the early reverberant speech componenth‘»spSSCh n La[lPcHa S
XEg(f,k) and the late reverberant speech compon&ntéf, k). 1

As proposed in [11, 7] we use nonlinear filtering to suppress 1

presvihenrnny 0

the late reverberation effect: another channel-wise Wiener filter irX —¢&+|BSE S 7 oo B H
applied to the signal after noise suppression - r “(’EEEE; n L a[Trckia §
et = 7 (Xa(f.k, 00X (1K) ’

— Figure 4: Comparison methods.
where theX_;(f,k) are the components of the late reverberant ¢ P

speech estimate armk controls the filter strength.
Thus the focus is on the determination of the late reverberant {(K(H)} o1
speech estimat¥_(f,k). Using the relation W)?,q =
P4

x(t) =hy (1) *s(t)
this estimation is separated in two tasks: Obtaining an estimate c]}om which we can estimat( f) by taking

exp(j27(f /F) fsg sind(f))

the fiIteth(_r) and obtaining an estima_te of the sigs(a_tl). — ) cF {K(f)}pﬂ_c|
The estimate of the late reverberation filter exploits the fact that 6(f) =asin ma ' W
the late reverberation is rather room dependent and can be approxi- s P4

mated by using a synthetically generated tail. Here we use a simple. . L . .
random ¥ai| witgh exgonential c)ile%ay ptﬁls method is quite similar to the one in [13] but does not require

s a matrix inversion (estimating( f) directly fromW (f) is possible
hi(1) = au(r)e (™) but it is less robust in practice when the relatf( f) = A HH ()

wherea is a scalary(t) a Gaussian random random variable with 'S @PProximate). Then a mean DORis obtained from thed(f)

zero mean and unit variancg, is the limit between early and late and used to apply a DS beamformer in the direcBaio Xg(f,k).
reverberation®y = 75 ms for our recognizer) ardlis a decay fac- The output of this DS beamformer is used as speech estimate to
tor. The decay factor is set to have an impulse response with a giveget the late reverberant speech. This signal is slightly closer to the
Teo (the time after which the power of the tail decreased by 60dB)true S(f,k) than the components &g(f,k) because of the DS

We use the approximation beamformer but it is a coarse estimate as the room impulse response
oF effect is still present. However, the method is quite robust to this
In1 . .
d=—"" mismatch as can be seen in Sect.6.
2(Teo — To)

5.3 Architecture
obtained by neglectingi(t) while computing the integral in the Fig. 2 shows the proposed architecture. The BSE algorithm is used

power ratio to obtain both the DOA estimatgand the diffuse background noise
0 2112 —2d(t—Tp) w .2 —2d(t—Tp) (an component signal) then the first setrofViener filters suppress
acu(t)ce dt a‘e dt . : - X
'[TGO ® ~ '[TBO the noise. After noise suppression, the upper path estimates the

© ~2(t)2e—2d(t— e 2e-2d(t— ) Py
Jrp@u(t)?e 2t T)dt [T aPe 2Tt late reverberant speech. First the DS beamformer in the dire@tion

. . _gives the intermediary speech estimate, then the synthetic tail is ap-

Consequently the method requires an estimate of the reverberatigfiied (in the time domain) to this signal to get theomponent esti-

tlmelTeohand settlgg a za“rl]e . o ¥ mate of the late reverberant speech that is suppressed by the second
nt e second task, the estimatesf) is just instrumental in set of Wiener filters. Finally the speech estim8{é, k) is obtained

obtainingX, (f,k). We propose an approach that uses the output O[)y applying the DS beamformer in the directiBrof the estimated

the noise suppression stade;( f,k) to get an intermediary signal target speech to merge the output components of the second set of

for suppressing the late reverberation effect. Wiener filters.
The FD-BSE method estimates a vecWi( f) from which we

can estimates a projection back filter for the speech signal
- H~x7H The simulation uses data recorded in a train station, see Fig. 3. A
Xs(f.k) = Tx(HATWIHHAW(H)X(T.k) four (n = 4) microphone array (inter microphone spacing d]f%'z
K(f)X(f.k). cm) was used to record the diffuse background noise, and estimate
) ) ) the impulse responses from two locations, 50 cm and 150 cm, in
The energy for each microphone of the fill€( f) is used to getthe  front of the array (DOA of 8). Since our goal is speech recogni-
scale parametegsof the synthetic tail. tion, a 20K-word Japanese dictation task from the database JNAS is
Assuming thatW (f) converged to%H'(;| (f) we have used as performance measure [14]. The test set (100 signaédefem

6. EXPERIMENTAL RESULTS
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Figure 2: Proposed architecture.

Table 1:System specifications.

Sampling frequencyl 16 kHz
Frame length 25ms
Frame period 10 ms
Pre-emphasis 1-097z1

12-order MFCC,
12-orderAMFCCs
1-orderAE

Feature vectors

HMM PTM, 2000 states
Training data Adult and Senior (JNAS)
Test data Adult and Senior female (JNAS)

SNR 30dB Wacc[%)]

74
72
7
o 1 3 5 7 9
aR

SNR 10dB Wacc[%)]

-1::71&
R

[ B EEXEEEEEXK]
E]

R 2 8 8

Figure 5: Effect of the set of parametéisy, ar) on the word ac-
curacy.

by taking a set with a big and a small coefficient. Whereas at 30 dB

speakers only) is convoluted with the impulse responses and mix
with the recorded noise at different SNRs.

The quality of the speech estimate given by the propose
method prop) is compared to the quality of the speech estimate ob
tained by: unprocessed signabg), FD-BSE alonelfse), FD-BSE
with noise suppression by channel-wise Wiener filtese{w) and
each of the three previous approaches cascaded with the multi-L
dereverberationaps-Ipc, bse-lpc and bse-w-Ipc). Fig. 4 shows
some of these methods. The LPC block refers to the dereverbels
ation method in [11] where the delayds= 400 and the prediction
filter is 3000 taps (these parameters correspond to the ones in [11}).

For the frequency domain processing, the short time Fourie
transform uses a 512 point hamming window with 50% overlap
The separation is performed by 600 iterations of a BSE metho%6
with adaptation step of.8 divided by two every 200 iterations (the
method is presented in [8]). For the proposed method, the parame-
terpis setto 75 ms and we u3gp = 450 ms (this is a mismatched
value, simulations witiigg = 900 ms were also performed but the 1]
under estimation 0fgg gave better results; maybe because the latest
part of the reverberation is masked by the noise).

The recognizer is JULIUS [15] using Phonetically Tied Mixture
(PTM) model. The conditions used in recognition are given in Table [
1. The acoustic model is a clean model with super-imposed noise
(office noise 30dB SNR). The recognition was performed with and
without a masking noise; the same office noise as the acoustic model
is mixed with the processed signal before recognition is performed]3]
(the mixing SNR is 30dB).

The word accuracies achieved with the different methods are
given in Table. 2. The word accuracies displayeddssw, bse-w- [4]
Ipc andprop are the higher one obtained from the parameter sets
an ={0,1,3,5,7,9,11,13 15} andar = {0, 1,3,5,7,9}.

The proposed method gives the best performance except for 10
dB SNR when the user is close to the microphone array and there[s]
is no masking noise in which case the suppression of the diffuse
noise alonelfse-w) is the most efficient method. Using a masking
noise especially improves the performance at the higher SNR. But
the proposed method is less affected thanlfftemethods by the [6
presence or not of the masking noise.

Fig. 5 shows the effect of the parameteng and ar on the
word accuracy for a distance of 150 cm at both 10 dB and 30 [7]
dB SNR. The caséan = 0,ar = 0) corresponds tse and the
caseg an # 0,ar = 0) correspond tdse-w whereas all the other
cases correspond fwop. At 10 dB of SNR, good performance is
achieved by taking a set of parameters with similar average sizes or
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aN,
ary results showed that the method is robust to error estimation on
o but also that the selection of appropriate values for the set of
arametergan, aR) is closely related to the estimate Tf.

1 S. Doclo, A. Spriet, and M. Moonen.

ecg SNR itis preferable to have a smat as one can expect.

7. CONCLUSION

?n this paper, we proposed a method that both suppresses the dif-
fuse background noise and the late reverberant speech in order to
improve automatic speech recognition performance while using a
IJ@nds-free speech interface. The method that relies on blind signal
processing for the noise and someriori knowledge for the re-
erberation proved to be efficient in a realistic simulation. The next
development is to include a blind estimation®gf in the method
nd to propose better strategy for the choice of the set of parameters

oR) (done in a room/SNR dependent manner now). Prelimi-
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