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ABSTRACT

Internet based communications methods use channels which
cross many nodes in their routes between source and desti-
nation. The user often has little or no control in the routing
process and may be concerned that the medium is insecure.
To combat this, privacy preserving networks have been de-
veloped in an attempt to allow secure, private internet-based
communication. Whilst these networks employ high levels
of encryption between nodes, it is possible to track a users
data by correlating input and output streams. This paper ad-
dresses the implementation of the algorithm first proposed by
Danezis for determining the exit node of data injected into
a privacy preserving network, such as Tor. The algorithm
is discussed along with some modifications and assumptions
necessary for implementation. Results gained from applying
the algorithm to data from a real Tor network are presented
and discussed.

1. INTRODUCTION

A privacy-preserving network (alternatively called an
anonymising network) such as The Onion Router
(Tor) [1] [2] [3] [4] is designed to give some measure
of privacy to those using the internet who wish to conceal
their activity from observation. Tor is designed to provide
anonymity by encrypting data between the end-points of
a route. It is used for internet-based communications and
operates on a large number of machines, mostly those of
individual users.

Tor is an overlay protocol and uses an underlying layer of
transmission control protocol (TCP) / internet protocol (IP)
to handle data transport, delivery and routing. The small
volume of centralised control which exists in any Tor net-
work (including the default internet-based network) comes
from the central directory servers. These maintain thestate
of the network and collect and collate data such as which
nodes are suitable for use as exit nodes, their uptime and any
bandwidth restrictions imposed by the node operators. This
information allows Tor to determine a choice of route for a
specific connection based upon user requirements. Traffic to
and from a directory server uses a different port to that of
the payload traffic and can be easily separated.

There are three types of node commonly encountered in a
Tor network. Exit nodes - which send traffic un-encrypted to
its final destination, entry nodes - which accept un-encrypted
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traffic, encrypt and forward it into the network and routers
- which forward traffic between Tor router nodes. The
entry and exit nodes are generally the end points of any
Tor communication. There are a large number of possible
configurations but it is most common for each user node to
be an entry, router and exit node.

In a typical usage scenario, the user configures their browser
to route traffic to the destination (i.e., a desired web-server)
via Tor. The user’s node becomes a node in the default
internet Tor network and their traffic is routed to the exit
node nearest (i.e. withbestconnection to) the destination.
The security of the traffic is maintained between the user’s
node and the exit node via layered encryption.

Danezis [5] proposed an algorithm for tracking users in a
privacy preserving network. His approach allowed him to
determine the route and probable end-point of communica-
tions in such a network by correlating traffic signatures at
entry and exit nodes. Fundamentally, his approach is based
upon detecting a known signal from amongst a selection of
possible noisy signals. The input signal (knowna-priori)
and an estimate of each possible output signal are correlated
to determine which output signal most likely contains the
input signal. Each estimated output contains noise (gener-
ated by the system) and may be distorted by the estimation
process. Results presented in this paper confirm Danezis’s
work using a physical Tor network with real data.

Work towards a similar goal has been performed by Murdoch
and Danezis [6] which assumes a corrupted node in the Tor
network is available for use by the attacker. This method is
active in its approach but has the advantage of being able
to operate without complete knowledge of the network.
The correlation (template in their nomenclature) function
employed is similar to that used in this paper. Another
active method of identifying relay nodes is presented by
Chakravartyet al in [7]. Other works relating to traffic
analysis attacks of privacy preserving networks [8] which
are similar in nature have been published by Zhuet al [9]
and Levineet al [10]. Syversonet al focus directly on Tor
in [11]. In [12], Bai et al seek a method to identify Tor
network traffic from amongst a mix of traffic.

The remainder of this paper is organised as follows: Section
2 introduces the Danezis algorithm and discusses the modifi-
cations and assumptions necessary for implementation; Sec-
tion 3 introduces the system testbed and describes how the
data was generated and gathered; Section 4 gives some notes
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on how the performance was assessed; Section 5 presents
some results and interpretation and finally Section 6 presents
some conclusions.

2. DANEZIS’S ALGORITHM

In [5], Danezis proposes a method for attacking privacy
preserving networks such as Tor based on the correlation
of input and output packet streams. He assumes that a Tor
network can be modelled as a delay mixing model [13]
which adds delay to incoming packets in a predictable man-
ner before ejecting them. He indicates that it is possible to
deduce the exit node by calculating the correlation between
the input stream and a number of possible output streams
and selecting the exit node whose output stream has highest
correlation.

More specifically, what Danezis’s algorithm states is: two
time-series can be estimated, with lengths equal to that of
the observed output streams and where each estimate is com-
posed of the input stream, delayed by some function, added
to a uniformly distributed background traffic stream (which
models network traffic that arises independently of the pres-
ence of the input stream). The background stream rate is
adjusted such that the combined output rate is equal to the
rate of the observed stream. If one was to consider these
estimated series only at the instances corresponding to ob-
servations of packets in the true output series then a more
accurate estimate would be made. Division of the estimated
series will indicate which output stream most likely contains
the input stream.
The formula given by Danezis to estimate any output traffic
distribution is shown in (1) with an explanation of the pa-
rameters used given in Table 1. One element which is not
generally clear is the uniform distributionU(t) and how it
is computed:U(t) is the uniform distribution in the interval
[0,T] and as such it conforms to (2). In any practical imple-
mentation,t will be discrete so the integral may be replaced
with a sum.

CX(t) =
λ f (d∗ f )(t)+ (λX −λ f )U(t)

λX
(1)

∫ T

0
U(t) = 1 (2)

d(x) is a function which represents they input/output rela-
tionship of the network in terms of packet delay, a temporal
transfer function for packets. Given that this function can
change over time as the network changes or as Tor changes
its routing it is more practical to estimate it empirically using
some training data. If access to individual nodes is possible
then one can make the assumption that a given number of
packets travelling on one link will have a delay distribution
similar to packets on any other link, but with a change in
scale. The use of a Gaussian mixture model (GMM) as an
estimator for the distribution ofd(x) is therefore appropriate
and is what is used in this work.

Once an estimated distribution (CX) has been computed for
each output stream then they can be compared to determine
which is most likely to contain the input stream. IfCY de-
notes a second output stream emanating from nodeY, Xi=1...n
denotes the set of times that packets are observed at nodeX,

Yj=1...m denotes the set of times packets are observed at node
Y, H0 denotes the hypothesis that the input stream in con-
tained in the output stream from nodeX andH1 denotes the
hypothesis the input stream is contained in the output stream
from nodeY, then it is possible to calculate the likelihood
ratio of the two hypothesis as shown in (3).

L (H0|Xi ,Yj)

L (H1|Xi ,Yj)
=

∏n
i=1CX(Xi)∏m

j=1u

∏n
i=1u∏m

j=1CY(Yj )
> 1 (3)

Equation (3) can be cumbersome to compute numerically and
leads to large values which suffer from rounding errors when
implemented. However, it can be manipulated into a log-
likelihood form as shown in (4) which reduces the scope of
the possible values and so this form is used instead.

logLH0/H1
=

n

∑
i=1

logCX(Xi)

−
m

∑
j=1

logCY(Yi)+ (m−n) logu> 0 (4)

In his paper, Danezis gives no source code and little imple-
mentation detail so the following assumptions are made:
1. It is assumed that the algorithm is functional when im-

plemented in a discrete form. It is originally presented
in a continuous form which does not lend itself to easy
implementation. Variables such asCX are treated as dis-
crete vectors by applying a binning process to the con-
tinuous time series data which arises from measurement.
This implies thatCX depicts packet counts over the seg-
ment of interest witht being the bin index. Similarly,
f (t), d(x) and the other estimated series (CY etc.) are
binned with the same resolution and thusXi andYj are
discretized. Perhaps more intuitivelyCX , f (t), Xi andYj
can be thought of as packet counts per unit of time where
t indexes the time interval and where the temporal reso-
lution is equal for all variables includingd(x).

2. It is assumed that the algorithm is robust to changes in the
scaling oft such that it is possible to vary the temporal
resolution oft and therefore the bin width ofCX with
the caveat that the temporal resolution must be consistent
across all variables.

3. It is assumed that Tor traffic can be separated from other
traffic at any node. The Tor traffic which flows from one
exit node to any other Tor node (to pass acknowledge-
ments (ACK) back upstream, for example) will be highly
correlated with the exit stream and may disrupt the algo-
rithm.

4. It is assumed there is enough training data to model the
delay function,d(x), using a GMM of three elements;
should it be found that a three element mix has redun-
dancy, the order is reduced to two or one. Tor incoming
packet delays are measured at all exit nodes for packets
originating at other Tor nodes and it is assumed that the
statistical distribution of these packets is representative
of the delay distributions experienced by packets exiting
the Tor network.

5. It is assumedλ f (and subsequently,λX, λY, etc.) is com-
puted as the mean number of packets per unit time (one
unit is the elapsed time between time indext and time
indext +1) in the interval[0,T]. Thus, if there are 2000
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Parameter Meaning
λX The rate of packets in the interval in question exiting nodeX
λ f The rate of packets in the interval in question in the input stream f (t)
U(t) The discrete uniform distribution in the interval in question
u The value ofU(t) at anyt
d(x) A function describing the delay mix of the network
f (t) The input signal (stream)
CX(t) An estimate of the number of packets in the estimated output stream att
t The time index
(d∗ f )(t) The convolution of the input signal with the delay mix function

Table 1: Parameters used in Danezis’s formulae.

packets in an interval of 25 seconds with a unit size of
0.1s then the rate is 2000/(25/0.1) = 8 packets per unit
time.

3. THE TOR TEST NETWORK AND DATASET
GENERATION

In this work a small Tor network over which full control and
monitoring capabilities are available1 is used as a testbed
with which to generate a dataset to test the algorithm. There
are four nodes in the network: three are directory servers,
routers and exit nodes (node 94, node 104 & node 110)
whilst the remaining one is solely an entry node (node 93).
The network is restricted such that the entry node cannot be
the exit node and therefore the exit must be one of nodes
94/104/110. The exit node is fixed to be one node (node
94) for the duration of any measurements which allows it to
be used as a ground truth against which any estimates the
exit node of the network can be evaluated. A topology of
the network showing the nodes and data flows is shown in
Figure 1.

The dataset was recorded usingtcpdump [14] [15] on
the network described above for a period of twelve hours
beginning at approximately 1700 hours to minimise the
effect of any user traffic on the dataset. The dataset was
split into twenty four contiguous segments of thirty minutes
which enables averaging of results across segments in order
to reduce the impact of any unusual network circumstances.

Network traffic was generated by directing a web-browser
(Konqueror) to access the home-page of the BBC news web-
site (http://news.bbc.co.uk) at timed intervals. The intervals
are on the order of seconds and randomly generated as the
result of selecting a random number from a Poisson distribu-
tion with parameter equal to 30. Using a Poisson distribution
removes the periodicity which would be encountered with a
uniform process but retains some element of regularisation.
Algorithm 1 shows the traffic generation method.
Filtering was performed to isolate packets serving different
functions by port number and included removal of any
SSH packets (port 22) which were part of the recording or
monitoring processes (such as status indicators).

The traces were processed using a range of AWK scripts to
extract packet delays and time series. Once processed, traces

1This implies that is it possible to inspect any of the traffic flowing into
or out of the nodes and that it is possible to configure Tor in any manner
desired.

Algorithm 1 Network traffic generation
1: loop
2: Generateinterval using Poisson-based random num-

ber generator with parameter equal to 30.
3: Start web browser and access web page via Tor net-

work.
4: Wait for interval seconds.
5: Kill web browser.
6: end loop

were loaded into MATLAB for further processing. The data
were first scaled by the trace start time i.e., subtracting from
all elements in the series the lowest value before using the
histc function to convert from a series of timestamps to
a binned representation of the data. The scaling allows the
binned respresentation to be computed with an arbitrary res-
olution for any segment without having to change the resolu-
tion of the whole dataset, i.e. it makes the segments indepen-
dent of the time they were recorded.

4. TEST METHODOLOGY

In order to test the algorithm against the dataset, some
standardized methodology must be used. In this paper, each
of the 30 minute segments are examined individually and the
overall accuracy of identification (of the correct exit node) is
expressed out of 24, the total number of segments.

In (3) the forumla for computing the most likely output node
from two choices is shown, however, a solution is required
for the case of≥2 nodes which is scalable. Whilst it would
be possible to use a tree-search type of algorithm, it makes
sense to use a ratio combining algorithm. Define the ratioA
to be the ratio of the estimated distributions for nodes 94 and
104;B to be the ratio for nodes 104 and 110 andC to be the
ratio for nodes 94 and 110. Recall the estimated distributions
as being the instantiations of (4) with the relevant data. Itis
then possible to define the following:

P94 = A+C (5)
P104 = −A+B (6)
P110 = −B+−C (7)

By selecting max[P94,P104,P110] the most likely exit node
for the data in question can be estimated; the difference be-
tween the selected node and the others gives some measure
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Figure 1: Network topology for Tor test network showing the entry node (with associated input stream) and the three possible
exit nodes (with associated output streams).

of confidence in the decision; the larger the difference, the
greater the confidence.

5. RESULTS

Before considering the complete dataset, it is informativeto
observe the operation of the algorithm upon one segment,
segment 24, which is plotted below.

To begin, the input stream (Figure 2) is observed in isola-
tion. The traffic appears near-periodic but with some vari-
ation which is expected given the Poisson-based generation
method used.
Next, the output streams from each of three possible exit
nodes are observed (Figure 3 (a)). Any packets travelling
towards the target web-server have been removed to show
only the background traffic at each exit node with a tempo-
ral resolution of one second. Node 104 is observed to send
out a periodic stream of packets; as there is no Tor traffic or
exit-stream traffic then it can be assumed this is either due
to a user process running on this machine or, more likely, a
network operation (backup, file handling etc). Node 94 sends
out more frequent traffic than Node 104 and the lack of pe-
riodicity would indicate a user process (web browsing, email
etc). Node 110 has little outgoing traffic perhaps because
there were no active users during the time the traffic capture
was in operation.
Finally, the outputs from each of the possible exit nodes are
observed when the input stream is applied to the network
(Figure 3 (b)). There is a large rise in the volume of traffic
emanating from Node 94 with a near-periodic pattern which
appears to be similar to the input stream giving an indication
that this may be the true exit node.

The results for the complete dataset are shown in Table 2. It
can be seen that the algorithm has correctly identified node
94 as the exit node in each of the twenty-four segments for
three different temporal resolutions. Increasing the temporal
resolution (ie, from 1s to 0.1s) increases the computational
load but can be of help in situations where the input and
output streams are of such a density as the binned represen-
tations have a 1 in each bin. This can disrupt the algorithm
as the signature becomes masked at that resolution. Using a
finer resolution can restore some degree of sparseness to the

Figure 2: The input stream in isolation.

signature allowing the algorithm to function.

It should be noted that the delay functiond(x) was estimated
as a vector with 1 in the first bin and 0 elsewhere for each of
the temporal resolutions. This can be interpreted as an indi-
cation that the model for the delay is at a resolution smaller
than the resolution at which the algorithm is being run. De-
lays on the order of milliseconds are observed but the algo-
rithm is run at a resolution of seconds hence the above result.
In the original paper, Danezis places some emphasis on an
accurate model for this function but it would appear that in
practise, a crude model is sufficient to generate results.

Resolution (s) Node 94 Node 104 Node 110
1 24 0 0
0.1 24 0 0
0.01 24 0 0

Table 2: Results for the dataset. These indicate the number
of times that each node is chosen as most likely exit node and
are scored out of 24 - the total number of segments for this
dataset.
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(a) Network traffic observed at each node when no input is applied.

(b) Network traffic observed at each node when input is applied to the
Tor network.

Figure 3: The output streams from the three possible exit
nodes showing: (a) - no input being applied to the network,
i.e. the background traffic and (b) - the result when the input
stream is applied.

6. CONCLUSIONS

It has been shown that it is possible to remove the privacy
afforded by the use of a Tor network by correlating time se-
ries representations of the input and output streams of the
network. The algorithm proposed by Danezis is shown to
work - albeit with some minor modifications to make imple-
mentation possible. The advantage of this method is that it
does not require any attempt to break the encryption of pack-
ets performed by Tor, relying on signature matching, which,
whilst crude, has been shown to work with real data gathered
from an experiment upon a live Tor network.
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