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ABSTRACT
In this paper, a robust framework for automatic music tag-
ging is proposed. First, each music recording is represented
by its auditory temporal modulations. Then, a multilin-
ear subspace learning algorithm based on sparse label cod-
ing is proposed to effectively harness the multi-label infor-
mation for dimensionality reduction. The proposed algo-
rithm is referred to as Sparse Multi-label Linear Embed-
ding Nonnegative Tensor Factorization. Finally, a recently
proposed sparse representation-based method for multi-label
data is employed to propagate the multiple labels of the train-
ing auditory temporal modulations to annotate the auditory
temporal modulations extracted from a test music record-
ing with the sparse ℓ1 reconstruction coefficients. The pro-
posed framework outperforms both humans and state-of-the-
art computer audition systems in the music tagging task,
when applied to the CAL500 dataset.

1. INTRODUCTION

The emergence of Web 2.0 and the success of music-oriented
social network websites, such as last.fm, has revealed the
concept of music tagging. Tags are text-based labels that en-
code semantic information related to music (i.e., instrumen-
tation, genres, emotions, etc.) resulting into a non-acoustic
representation of music, which can be used as input to col-
laborative filtering systems assisting users to search for mu-
sic content. However, a drawback of these systems is that a
newly added music recording must be tagged manually first,
before it can be retrieved [18, 19], which is a time consum-
ing, expensive process. Therefore, an interesting problem in
Music Information Retrieval (MIR) community is how to au-
tomate the process of tagging music recordings when they
become available. This problem is referred to as automatic
music tagging or automatic multi-label music annotation.

MIR has mainly focused on content-based classification
of music by genre [11, 12, 13], and emotion [14]. Such
classification systems effectively annotate music with class
labels, such as “rock”, “happy”, etc by assuming a prede-
fined taxonomy and explicit labeling of a music recording
into mutually exclusive classes. However, this assumption is
unrealistic and results into a number of problems since mu-
sic perception is inherently subjective [19]. These problems
can be overcome by the less restrictive approach of anno-
tating the audio content by more than one labels, which re-
flect more aspects of music. However, has been made little
work on multi-label automatic music annotation compared
to that on the multi-label automatic image annotation (re-
fer to [2, 20] and the references therein). Automatic mu-

sic tagging algorithms can be roughly classified into three
categories: 1) classification-based methods, 2) probabilistic
modeling-based methods, and 3) web game related meth-
ods. The classification-based methods treat audio tag predic-
tion as a set of binary classification problems where standard
classifiers such as the Support Vector Machines [17] or Ada-
Boost [1] can be applied. The probabilistic modeling-based
methods [19, 5] attempt to infer the correlations or joint prob-
abilities between the tags and the low-level acoustic features
extracted from audio. Web game related methods try to solve
the music tagging problem via games [7].

In this paper, the problem of automatic music tagging is
addressed as multi-label multi-class classification problem
by employing a novel multilinear subspace learning algo-
rithm and sparse representations. Motivated by the robust-
ness of the auditory representations in the music genre clas-
sification [11, 12, 13], each audio recording is represented in
terms of its slow temporal modulations by a two-dimensional
(2D) auditory representation as in [13]. Consequently, an en-
semble of audio recordings is represented by a third-order
tensor. The auditory temporal modulations do not explic-
itly utilize the label set (i.e., the tags) of music recordings.
Due to the well-known semantic gap, it is unclear how the
semantic similarity between the label sets associated to two
music recordings can drive the efficient feature extraction.
Based on the automatic multi-label image annotation frame-
work proposed in [20], the semantic similarities between
two music recordings with overlapped labels are measured
in a sparse representation-based way rather than in one-to-
one way as in [17, 1]. To this end, a novel multilinear sub-
space learning algorithm is developed to efficiently harness
the multi-label information for feature extraction. In particu-
lar, the proposed method incorporates the Multi-label Linear
Embedding (MLE) [20] into the Nonnegative Tensor Factor-
ization (NTF) [11]. It is referred to as Sparse Multi-label
Linear Embedding Nonnegative Tensor Factorization (SM-
LENTF). The SMLENTF is adopted in order to reduce the
dimensionality of the space, where the high-order data (i.e.
auditory temporal modulations representations) lie, by map-
ping the high-order data onto a lower-dimensional semantic
space dominated by the label information. Features extracted
by the SMLENTF form an overcomplete dictionary for the
semantic space of music. If sufficient training music record-
ings are available, it is possible to express any test represen-
tation of auditory temporal modulations as a compact linear
combination of the dictionary atoms, which are semantically
close. This representation is designed to be sparse, because it
involves only a small fraction of the dictionary atoms and can
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be computed efficiently via ℓ1 optimization. Finally, tags are
propagated from the training atoms to a test music recording
with the sparse ℓ1 representation coefficients.

The performance of the proposed automatic music tag-
ging framework is assessed by conducting experiments on
the CAL500 dataset [18, 19]. For comparison purposes, the
MLE [20] is also tested in this task. The reported experi-
mental results indicate the superiority of the proposed SM-
LENTF over the MLE, the human performance, as well as
that of state-of-the-art computer audition systems in music
tagging, on the same dataset.

The paper is organized as follows. In Section 2, basic
multilinear algebra concepts and notations are defined. In
Section 3, the bio-inspired auditory representation based on
a computational auditory model is briefly described. SM-
LENTF is introduced in Section 4. The sparse representa-
tions based multi-label annotation framework is detailed in
Section 5. Experimental results are demonstrated in Section
6 and conclusions are drawn in Section 7.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent of
matrices (i.e., second-order tensors) and vectors (i.e., first-
order tensors) [6]. Throughout the paper, tensors are denoted
by boldface Euler script calligraphic letters (e.g. X, A), ma-
trices are denoted by uppercase boldface letters (e.g. U), vec-
tors are denoted by lowercase boldface letters (e.g. u), and
scalars are denoted by lowercase letters (e.g. u). The ith row
of U is denoted as ui: while its jth column is denoted as u: j.

Let Z and R denote the set of integer and real numbers,
respectively. A high-order real valued tensor X of order N is
defined over the tensor space RI1×I2×...×IN , where In ∈ Z and
n = 1,2, . . . ,N. Each element of X is addressed by N indices,
i.e., xi1i2...iN . Mode-n unfolding of tensor X yields the matrix
X(n) ∈ RIn×(I1 ...In−1In+1...IN ). In the following, the operations
on tensors are expressed in matricized form [6].

An N-order tensor X has rank-1, when it is decom-
posed as the outer product of N vectors u(1),u(2), . . . ,u(N),
i.e. X = u(1) ◦u(2) ◦ . . . ◦u(N). That is, each element of the
tensor is the product of the corresponding vector elements,
xi1i2...iN = u(1)i1

u(2)i2
. . . u(N)

iN for in = 1,2, . . . , In. The rank of an
arbitrary N-order tensor X is the minimal number of rank-1
tensors that yield X when linearly combined. Next, several
products between matrices will be used, such as the Khatri-
Rao product denoted by ⊙, and the Hadamard product de-
noted by ∗, whose definitions can be found in [6] for exam-
ple.

3. AUDITORY TEMPORAL MODULATIONS
REPRESENTATION

A key step for representing music signals in a psycho-
physiologically consistent manner is to resort on how audio
is encoded in the human primary auditory cortex. The pri-
mary auditory cortex is the first stage of the central auditory
system, where higher level mental processes take place, such
as perception and cognition [10]. To this end the represen-
tation of auditory temporal modulations for audio signals is
employed [13]. The auditory representation is a joint acous-
tic and modulation frequency representation [15], that dis-
cards much of the spectro-temporal details and focuses on the

underlying slow temporal modulations of the music signal.
Such a representation has been proven very robust in repre-
senting music signals for music genre classification [12, 13].

The 2D representation of auditory temporal modulations
can be obtained by modeling the path of auditory process-
ing as detailed in [13]. The computational model of hu-
man auditory system consists of two basic processing stages.
The first stage models the early auditory system, which
converts the acoustic signal into an auditory representation,
the so-called auditory spectrogram, i.e. a time-frequency
distribution along a tonotopic (logarithmic frequency) axis.
At the second stage, the temporal modulation content of
the auditory spectrogram is estimated by wavelets applied
to each row of the auditory spectrogram. Psychophysio-
logical evidence justifies the choice of discrete rate r ∈
{2,4,8,16,32,64,128,256} (Hz) to represent the temporal
modulation content of sound. The cochlear model employed
in the first stage, has 96 filters covering 4 octaves along the
tonotopic axis (i.e. 24 filters per octave). Accordingly, the
auditory temporal modulation of a music recording is repre-
sented by a real-valued nonnegative second-order tensor (i.e.
a matrix) X ∈ RI1×I2

+ , where I1 = I f = 96 and I2 = Ir = 8.
Hereafter, let x= vec(X) ∈ RI1·I2

+ = R768
+ denote the lexico-

graphically ordered vectorial representation of the auditory
temporal modulations.

4. SPARSE MULTI-LABEL LINEAR EMBEDDING
NONNEGATIVE TENSOR FACTORIZATION

In order to transform the high-dimensional original tensor
space into a lower-dimensional semantic space defined by la-
bel information, multilinear subspace learning algorithms are
required. In conventional multilinear subspace learning algo-
rithms, such as the General Tensor Discrimininant Analysis
[16], the assumption made is that data points annotated by
the same label should be close to each other where data bear-
ing different labels should to be far away in the feature space.
However, this assumption is not valid in a multi-label task as
discussed in [20] and such subspace learning algorithms will
fail to produce a lower-dimensional semantic space based on
multiple labels.

Let {Xq|Qq=1} be a set of Q nonnegative tensors Xq ∈RI1
+

×I2×...×IN of order N. We can represent such a set by a
(N +1)-order tensor A ∈ RI1×I2×...

+
×IN×IN+1 with IN+1 = Q.

Furthermore, let us assume that the multi-labels of the train-
ing tensor A are represented by the matrix C∈RV×Q

+ , where
V indicates the cardinality of the tag vocabulary. Accord-
ingly, c ji = 1 if the ith tensor is labeled with the jth tag in the
vocabulary and 0 otherwise. Since, every tensor object (mu-
sic recording in this paper) can be labeled by multiple labels,
there may exist more than one non-zero elements in a label
vector (i.e. c:i).

To overcome the limitation of conventional multilinear
subspace learning algorithms, the MLE [20] is incorporated
into the NTF. To this end two methods for using multi-label
information in order to drive semantically oriented feature
extraction from tensor objects are adopted. First, the ten-
sor objects with the same label set, that is c:i = c: j, are con-
sidered to be fully semantically related and thus the simi-
larity graph W1 has elements w1

i j = w1
ji = 1 and 0 other-

wise. However, in real-world datasets, data samples with
exactly the same label set are rare, especially in music en-
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sembles. In such a case, the semantic relationship between
data samples can be inferred via the ℓ1 semantic graph as
proposed in [20]. Let us denote by W2 the ℓ1 semantic
graph. W2 contains the coefficients that represent each label
vector c:i as a compact linear combination of the remaining
semantically related label vectors. Formally, let us define
Ĉi = [c:1|c:2| . . . |c:i−1|c:i+1| . . . |c:Q]. If V ≪ Q the linear
combination coefficients a can be obtained by seeking the
sparsest solution to the undetermined system of equations
c:i = Ĉia. That is, by solving the following optimization
problem:

argmin
a

∥a∥0 subject to Ĉia= c:i, (1)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of the
non-zero entries of a vector. Finding the solution to optimiza-
tion problem (1) is NP-hard due to the nature of the under-
lying combinational optimization. In [4], it has been proved
that if the solution is sparse enough, then the solution of (1)
is equivalent to the solution of the optimization problem:

argmin
a

∥a∥1 subject to Ĉi a= c:i, (2)

where ∥.∥1 denotes the ℓ1 norm of a vector. (2) can be solved
in polynomial time by standard linear programming methods
[3].

Therefore, the ℓ1 semantic graph W2 is constructed as
follows. For each label vector, Ĉi is constructed and then it
is normalized so as to have unit length column vectors. Then,
(2) is solved, by replacing Ĉi with the normalized one, and
the sparse representation vector a is obtained. Next, w2

i j = a j

for 1 ≤ j ≤ i−1; w2
i j = a j−1 for i+1 ≤ j ≤ Q. Clearly, the

diagonal elements of W2 are equal to zero.
Given {Xq|Qq=1}, one can model the semantic relation-

ships between these tensor objects by constructing the multi-
label linear embedding matrix, using W1 and W2 as in
[20]. The multi-label linear embedding matrix is defined
as M = D1 −W1 + β

2 (I−W2)T (I−W2), where D1 is a
diagonal matrix with elements d1

ii = ∑i ̸= j w1
i j and β > 0 is

a parameter for balancing the contribution of each graph in
the multi-label linear embedding [20]. Let Z(n) =U(N+1)⊙
. . .⊙U(n+1)⊙U(n−1)⊙ . . .⊙U(1). One can incorporate the
semantic information of tensor objects into the NTF by con-
structing the following objective function for the SMLENTF
in matricized form:

fSMLENT F
(
U(n)|N+1

n=1
)
= ∥A(n)−U(n)[Z(n)]T∥2

F

+λ tr
{[

U(N+1)]T
MU(N+1)

}
, (3)

where λ > 0 is a parameter, which controls the trade off be-
tween goodness of fit to the data tensor A and the multi-
label linear embedding and ∥.∥F denotes the Frobenius norm.
Consequently, we propose to minimize (3) subject to the
nonnegativity constraint on factor matrices U(n) ∈ RIn×k

+ ,
n = 1,2, . . . ,N+1, where k is the desirable number of rank-1
tensors approximating A when linearly combined.

Let ∇U(n) fSMLENT F = ∂ fSMLENT F
∂U(n) be the partial derivative

of the objective function fSMLENT F(U
(n)|N+1

n=1 ) with respect

to U(n). Now, let us define the nonnegative matrices M+

(with elements m+
i j =mi j if mi j > 0 and 0 otherwise) and M−

(with elements m−
i j =−mi j if mi j < 0 and 0 otherwise). Since

U(n), n = 1,2, . . . ,N +1, M+, and M− are nonnegative, the
partial derivatives of the objective function can be decom-
posed as differences of two nonnegative components denoted
by ∇+

U(n) fSMLENT F and ∇−
U(n) fSMLENT F , respectively. It can

be shown that for n = 1,2, . . . ,N we have

∇U(n) fSMLENT F =U(n)[Z(n)]T
Z(n)︸ ︷︷ ︸

∇+

U(n) fSMLENT F

− A(n)Z
(n)︸ ︷︷ ︸

∇−
U(n) fSMLENT F

, (4)

while for n = N +1 and since M=M+−M− we obtain

∇U(N+1) fSMLENT F =

U(N+1)[Z(N+1)]T
Z(N+1)+λ M+U(N+1)︸ ︷︷ ︸

∇+

U(N+1) fSMLENT F

−
(
A(N+1)Z

(N+1)+λ M−U(N+1))︸ ︷︷ ︸
∇−
U(N+1) fSMLENT F

. (5)

Following the strategy employed in the derivation of Non-
negative Matrix Factorization [8], we obtain an iterative al-
ternating algorithm for SMLENTF as follows. Given N + 1
randomly initialized nonnegative matrices U(n)|N+1

n=1 ∈RIn×k
+ ,

a local minimum of (3) subject to the nonnegativity con-
straints can be found by the multiplicative update rule:

U
(n)
[t+1] =U

(n)
[t] ∗

∇−
U

(n)
[t]

fSMLENT F

∇+

U
(n)
[t]

fSMLENT F
, (6)

where the division in (6) is elementwise and t denotes the it-
eration index. The multiplicative update rule (6) suffers from
two drawbacks: 1) The denominator may be zero; 2) U(n)

[t+1]

does not change when U
(n)
[t] = 0 and ∇U(n)[t] fSMLENT F < 0.

In order to overcome these drawbacks, we can modify (6) as
in [9]. A robust multiplicative update rule for SMLENTF is
then

U
(n)
[t+1] =U

(n)
[t] −

Û
(n)
[t]

∇+

U
(n)
[t]

fSMLENT F +δ
∗∇

U
(n)
[t]

fSMLENT F , (7)

where Û
(n)
[t] =U

(n)
[t] if ∇

U
(n)
[t]

fSMLENT F ≥ 0 and σ otherwise.

The parameters σ , δ are predefined small positive numbers,
typically 10−8 [9].

5. MULTI-LABEL ANNOTATION VIA SPARSE
REPRESENTATIONS

In this section, the task of automatic music tagging is ad-
dressed by sparse representations of auditory temporal mod-
ulations projected onto a reduced dimension feature space,
where the semantic relations between them are retained.

For each music recording the 2D auditory temporal mod-
ulations are extracted as briefly described in Section 3 and
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detailed in [13]. Thus, each ensemble of recordings is repre-
sented by a third-order data tensor, which is created by stack-
ing the second-order feature tensors associated to the record-
ings. Consequently, the data tensor A ∈ RI1×I2×I3

+ , where
I1 = I f = 96, I2 = Ir = 8, and I3 = Isamples is obtained. Let
Atraining ∈ RI1×I2×Q

+ , Q < Isamples, be the tensor where the
training auditory temporal modulations are stored. By ap-
plying the SMLENTF onto the Atraining three factor matri-
ces are derived, namely U(1), U(2),U(3), associated to the
frequency, rate, and samples modes of the training tensor
Atraining, respectively. Consequently, the projection matrix
P = U(2) ⊙U(1) ∈ R768×k

+ , with k ≪ min(768,Q), is ob-
tained. The columns of P span a reduced dimension feature
space, where the semantic relations between the vectorized
auditory temporal modulation are retained. Consequently,
by projecting all the training auditory temporal modulations
onto this reduced dimension space an overcomplete dictio-
nary D = PTAT

training(3) ∈ Rk×Q
+ is obtained. Alternatively,

the dictionary can be obtained by D=P†AT
training(3), where

(.)† denotes the Moore-Penrose pseudoinverse
Given a vectorized representation of auditory temporal

modulations x ∈ R768
+ associated to a test music recording,

first it is projected onto the reduced dimension space and a
new feature vector is obtained as x̄ = PTx ∈ Rk

+. Now, x̄
can be represented as a compact linear combination of the se-
mantically related atoms of D. That is the test representation
of auditory temporal modulations is considered semantically
related to a few training representation of auditory temporal
modulations with non-zero approximation coefficients. This
implies that the corresponding music recordings are seman-
tically related, as well. Again, since D is overcomplete, the
sparse coefficient vector b can be obtained by solving the
following optimization problem:

argmin
b

∥b∥1 subject to Db= x̄. (8)

By applying the SMLENTF, the semantic relations between
the label vectors are propagated to the feature space. In mu-
sic tagging, the semantic relations are expected to propagate
from the feature space to the label vector space. Let us de-
note by ā the label vector of the test music recording. Then
ā is obtained by

ā=Cb. (9)

The labels with the largest values in ā yield the final tag vec-
tor of the test music recording.

6. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed frame-
work in automatic music tagging, experiments were con-
ducted on the CAL500 dataset [18, 19]. CAL500 is a cor-
pus of 500 tracks of Western popular music, each of which
has been manually annotated by three human annotators,
at least, using a vocabulary of 174 tags. The tags used
in CAL500 dataset annotation span six semantic categories,
namely instrumentation, vocal characteristics, genres, emo-
tions, acoustic quality of the song, and usage terms (e.g. “I
would like to listen this song while driving, sleeping etc”)
[19]. All the recordings were converted to monaural wave
format at a sampling frequency of 16 kHz and quantized with
16 bits. Moreover, the music signals have been normalized,

so that they have zero mean amplitude with unit variance in
order to remove any factors related to the recording condi-
tions.

Following the experimental set-up used in [1, 5, 19], 10-
fold cross-validation was employed during the experimen-
tal evaluation process. Thus each training set consists of
450 audio files. Accordingly, the training tensor ACAL500 ∈
R96×8×450
+ was constructed by stacking the auditory tempo-

ral modulations representations. The projection matrix P is
derived from the training tensor ACAL500 by employing ei-
ther the SMLENTF or the MLE [20]. The length of the tag
vector produced by our system is 10, that is each test music
recording was annotated with 10 tags. Throughout the ex-
periments, the value of λ in SMLENTF was empirically set
to 0.5, while the value of β in the matrix M process was set
to 0.5 for both the SMLENTF and the MLE. Furthermore,
both the SMLENTF and the MLE produce a semantic space
of reduced dimensions, i.e. k = 150.

Following [19], two metrics, the mean per-word preci-
sion and the mean per-word recall are employed in order to
assess the annotation performance of the proposed automatic
music tagging system. Per-word recall is defined as the frac-
tion of songs actually labeled with word w that the system
annotates with label w. Per-word precision is defined as the
fraction of songs that the system annotates with label w that
are actually labeled with word w. As in [5], if no test music
recordings are labeled with the word w, then the per-word
precision is undefined, and accordingly these words are omit-
ted during the evaluation procedure.

In Table 1 quantitative results on automatic music tag-
ging are presented. For comparison purposes, the best per-
formance of state-of-the-art computer audition systems eval-
uated on the same dataset is included. In particular, CBA
refers to the probabilistic model proposed in [5]. MixHier is
Turnbull et al. system based on a Gaussian mixture model
[19], while Autotag refers to Bertin-Mahieux et al. system
proposed in [1]. Random refers to a baseline system that an-
notates songs randomly based on tags’ empirical frequencies.
Even though the range of precision and recall is [0,1], the
aforementioned metrics may be upper-bounded by a value
less than 1 if the number of tags appearing in the ground
truth annotation is either greater or lesser than the number
of tags that are returned by the automatic music annotation
system. Consequently, UpperBnd indicates the best possi-
ble performance under each metric. Random and UpperBnd
were computed by Turnbull et al. [19], and give a sense of
the actual range for each metric. Finally, Human indicates
the performance of humans in assigning tags to the record-
ings of the CAL500 dataset. All the reported performance
metrics are means and standard errors (i.e. the sample stan-
dard deviation divided by the sample size) computed from
10-fold cross-validation on the CAL500 dataset. By inspect-
ing Table 1, SMLENTF clearly exhibits the best performance
with respect to the per-word precision and per-word recall
among the state-of-the-art computer audition systems that is
compared to. Furthermore, MLE outperforms the CBA, the
MixHier, and the Autotag systems with respect to per-word
precision, while in terms of per-word precision its perfor-
mance is comparable to that achieved by the CBA and the
MixHier. In addition both the SMLENTF and the MLE per-
form better than the humans with respect to per-word pre-
cision and per-word recall in the task under study. These
results make our framework the top performance computer
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Table 1: Mean Annotation Results on CAL500 Dataset.
System Precision Recall
Human [19] 0.296 (0.008) 0.145 (0.003)
UpperBnd [19] 0.712 (0.007) 0.375 (0.006)
Random [19] 0.144 (0.004) 0.064 (0.002)
SMLENTF 0.387 (0.004) 0.173 (0.0015)
MLE [20] 0.345 (0.004) 0.162 (0.002)
CBA [5] 0.286 (0.005) 0.162 (0.004)
MixHier [19] 0.265 (0.007) 0.158 (0.006)
Autotag [1] 0.281 0.131

audition system that outperforms humans in the music tag-
ging motivating applications to real-world automatic music
tagging tasks. The success of the proposed system can be at-
tributed to the fact that the semantic similarities between two
music signals with overlapped labels that are measured in
a sparse representation-based way rather than in one-to-one
way as in [17, 1] by applying multi-label linear embedding
into and sparse representations both in the features extraction
and classification process.

7. CONCLUSIONS

In this paper, an appealing automatic music tagging frame-
work has been proposed. This framework resorts to auditory
temporal modulations for music representation, while multi-
label linear embedding and sparse representation-based clas-
sification has been employed for multi-label music annota-
tion. A multilinear subspace learning technique (i.e. SM-
LENTF) has been developed, which incorporates the seman-
tic information of tensor objects (i.e., the auditory temporal
modulations) with respect to the music tags into the NTF.
The results reported in the paper outperform humans’ perfor-
mance as well as any other result obtained by the state-of-
the-art computer audition systems in music tagging applied
to the CAL500 dataset.
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