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ABSTRACT

Shoe marks found on the crime scene are invaluable for the
identification of the culprit when no other piece of evidence
is available. Thus semi-automatic and automatic systems
have been recently proposed to find the make and model of
the footwear that left the shoe marks. The systems proposed
up to now have two main drawbacks, as they (i) are generally
not based on rotation and translation invariant descriptions,
and (ii) are tested on synthetic shoe marks, i.e. on shoeprints
with added synthetic noise. Here we show the results of a
translation and rotation invariant description based on the
Fourier transform properties: the test is made on both syn-
thetic and real shoe marks and a comparison with algorithms
proposed by others is presented.

1. INTRODUCTION

During the investigation of a crime the forensic experts are
in charge of a thorough and detailed analysis of the evidence,
as this strongly increases the chances to identify the authors
of the crime.

A key element during the investigation is the ability to
search specialized archives in order to identify and qualify
the evidence, such as fingerprints, DNA sequences, faces,
spent cartridges and different chemicals and compounds.
Pattern recognition has been employed successfully in many
of the aforementioned fields, even on classical one like fin-
gerprint recognition [15].

Recently great attention and research effort have been
given to the semi-automatic and automatic retrieval of
footwear from the shoe marks, i.e. from the shoeprints found
on the crime scene. In particular, shoe marks allow the pros-
ecutor to understand the crime dynamics [13] and, with no
suspect or few elements available, the knowledge of the make
and of the model of the shoe that left the shoe mark is a pre-
cious information for police officers to lead investigation.

In this paper we will give a review of the state of the
art on automatic footwear retrieval systems (Sec. 2), then we
will give a brief description of the description used and the
similarity measure employed in this work (Sec. 3), and we
will show the results obtained testing this as well as other
systems on both synthetic and real shoe marks (Sec. 4). Fi-
nally, we will (Sec. 5) draw the conclusions and point out the
future work.

2. STATE OF THE ART

Even using a fully automated retrieval system, is a general
Law requirement that the forensic expert is in charge of his
or her forensic analysis and, after the query to the reference

database, the expert will proceed with the eye-analysis of the
higher ranking results. The first systems to be reported were
human based ones [12, 19, 2], i.e. human experts classified
the shoe soles and shoe marks using a series of patterns cho-
sen in a special vocabulary defined on purpose.

Here we give an overview of the automatic footwear re-
trieval systems that have been proposed since then.

In [11] soles and shoeprints are first photographed and
binarized. Then labeling is performed and the binary pixels
are grouped into shapes. The shapes are classified by their
Fourier transform components and finally a single-hidden-
layer feedforward neural network trained with back propaga-
tion is used as the recognition network. Regrettably the per-
formance of the system is not reported and its development
was abandoned.

Fractals and mean square noise error are employed in [3]
to represent and compare shoeprints, respectively. Fractal
decomposition produces a list of spatial transformations that
regenerate the original image when applied recursively to the
image itself, thus producing small changes when applied to
look alike and causing large differences when applied to dif-
ferent patterns. The mean square noise error is then used as
the similarity measure. The reference database (DB) is com-
posed of 145 gray level shoeprint images. Tests are made
adding Gaussian noise, rotation and translation to the DB.
Reported results give 60% correct match at 9◦ rotation and
a severe drop to 10% after a 10 pixel translation. No results
are given on noise performance.

Simple Fourier transform is implemented in [8]. The
power spectral density (PSD) is calculated and used to char-
acterize the images, in order to have translational invariance,
while rotational invariance is obtained brute-force through
rotation of the query image in the range±30◦. The 2D cor-
relation coefficient between the PSDs is used as the similar-
ity measure. Average Match Score and Cumulative Match-
ing Score are used to optimize the system parameters and to
assess it, respectively. Results show that shoeprints are cor-
rectly matched in the first 5% of the sorted DB patterns with
an 85% score. Here noisy images are not considered.

Fourier transforms modified phase only correlation
(MPOC) was employed in [14], given that the phase infor-
mation is much more important than the FFT amplitude in
preserving the features of image patterns. The reference DB
is made of 100 elements, used to generate synthetic shoe
marks. Four sets of synthetic shoe marks are created by
adding white Gaussian noise or applying motion blur. Syn-
thetic shoe marks are also obtained by pasting the shoeprints
into texture images taken from the Brodatz album [4]. The
test demonstrates a 100% first rank recognition rate, but the
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system is not invariant under translation or rotation.
To address translation, rotation and scale invariance, Hu’s

seven moments were used in [1]. Hu’s moments are em-
ployed on a reference DB containing 500 shoeprints, show-
ing that the first and the second moments are the most dis-
criminating. Synthetic shoe marks are generated adding zero
mean Gaussian noise, and tests are made with a rotation from
-90◦ to +90◦. Results show a severe drop of accuracy, which
is as low as 5.4% for a 20% Gaussian noise variance.

A Maximally Stable Extremal Region (MSER) detector
is used in [17] to identify the features of the shoeprint and the
Scale Invariant Feature Transform (SIFT) algorithm is em-
ployed to describe them. The combination of MSER an SIFT
gives the method a good repeatability under affine transfor-
mations, together with the possibility to deal with partialor
hidden data. The reference DB is made of 374 shoeprints,
each containing a whole left and right print, while the test set
is made of an image of either a complete left or right print.
They report a 94% classification rate if viewing only 5% of
the database, but again no test is performed on noisy images.

Finally an image retrieval algorithm combining the in-
formation of the phase of the Fourier transform of the shoe
mark images with the power spectral density of the Fourier
transform calculated on their Mahalanobis map is employed
in [6, 7]. The reference DB is made of 35 shoeprints and the
system is tested on synthetic as well as on real shoe marks
coming from crime scenes. A comparison with other meth-
ods is made and the results show that the performance of the
system is on par, if not better than the other, with the 100%
of the real shoe marks found in only 24% of the known shoes
DB.

In this paper we make a comparison of the most success-
ful methods described above (i.e. the ones in [8], [14], and
[7]) with a method based on the Fourier transform properties,
on both synthetic and real shoe marks coming from crime
scenes1.

3. FOURIER BASED DESCRIPTION AND
SIMILARITY MEASURE

In this section, we present the needed tools to match images
which are translated and rotated with respect to each other,
using the translation and rotation properties of the Fourier
transforms.

Let f1(x,y) and f2(x,y) be two images differing only by
a displacement(x0,y0), so that:

f2(x,y) = f1(x−x0,y−y0). (1)

Their Fourier transformsF1(ξ ,η) and F2(ξ ,η) are re-
lated by:

F2(ξ ,η) = e− j2π(ξx0+ηy0)F1(ξ ,η) (2)

and the cross-power spectrumQ1,2 of f1(x,y) and f2(x,y) is
given by:

Q1,2(ξ ,η) =
F1(ξ ,η)F∗

2 (ξ ,η)
∣

∣F1(ξ ,η)F∗

2 (ξ ,η)
∣

∣

= ej2π(ξx0+ηy0) (3)

whereF∗

2 (ξ ,η) is the complex conjugate ofF2(ξ ,η).

1We preliminary tested [6] a SIFT matching algorithm [16], similar to
the one employed in [17], with poor results.

Thus, if f1(x,y) and f2(x,y) are related only by a trans-
lation, the inverse Fourier transform ofQ1,2(ξ ,η) is a pulse
which is zero everywhere except nearby the point of max-
imum (x0,y0), which also gives the displacement between
f1(x,y) and f2(x,y).

Now, supposef2(x,y) is a translated and rotated version
of f1(x,y), such that:

f2(x,y) = f1(cosθ0x+sinθ0y−x0,−sinθ0x+cosθ0y−y0).
(4)

Given the Fourier transform rotation property we have
thatF1(ξ ,η) andF2(ξ ,η) are related by:

F2(ξ ,η) =e− j2π(ξx0+ηy0)

F1(cosθ0ξ +sinθ0η ,−sinθ0ξ +cosθ0η) (5)

If we look at the magnitudesP1(ξ ,η) and P2(ξ ,η) of
F1(ξ ,η) and F2(ξ ,η), respectively, the following relation
holds:

P2(ξ ,η) = P1(cosθ0ξ +sinθ0η ,−sinθ0ξ +cosθ0η) (6)

i.e. the magnitude of the second image is the rotated replica
of the magnitude of the second one.

If the coordinates of the obtained magnitudes are trans-
formed into polar coordinates(ξ ,η) → (ρ ,θ ), with ρ =
√

ξ 2 + η2 andθ = arctan(η/ξ ) we have:

P2(ρ ,θ ) = P1(ρ ,θ −θ0) (7)

and the rotation turns to be a translationθ0 in theθ coordi-
nate.

Following again the procedure described in the case of
pure translation, we can calculate the cross-power spec-
trum Q̃1,2(ξ ′,η ′) between the Fourier transform ofP1(ρ ,θ )
andP2(ρ ,θ ). Its inverse Fourier transform will be a pulse
like function with its maximum located at the displacement
(0,θ0).

In an ideal case the height of the peak would be near
one and would be departing from this value for different im-
ages. Therefore, in this work we consider the peak height of
the inverse Fourier transform of̃Q1,2(ξ ′,η ′) as the similarity
measure for image matching: if two images are similar, their
inverse Fourier transform will have a distinct sharp peak, if
they are not similar, the peak will drop significantly.

The steps described above give a translation and rotation
invariant description and a similarity measure. The proce-
dure could be made more general including scale invariance,
performing a Fourier-Mellin transform [5]. However, the ref-
erence DB specifications are known and during the crime
scene analysis all evidence is fully documented within a met-
rical context, thus scale should not be an issue.

All the tests described below were made following the
above mentioned procedure using standard MATLAB [21]
commands, without any fine tuning.

3.1 Spectral Weighting Functions

We performed some tests on the system performance mul-
tiplying the Fourier magnitudesP1(ξ ,η) andP2(ξ ,η) with
two different filters, i.e. a high-pass emphasis filterH(ξ ,η)
and a band-pass functionWβ (ξ ,η).
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The high-pass filter [20] nulls the contribution of the fre-
quencies aroundρ = 0 that get oversampled due to the Carte-
sian to polar coordinate transformation. The filter is given
by:

X(ξ ,η) = cos(πξ )cos(πη) (8)
H(ξ ,η) = (1−X(ξ ,η))(2−X(ξ ,η)) (9)

with ξ andη between -0.5 and 0.5 (in unit frequency).
The band-pass weighting function [14] has the same

shape as the spectrum of a Laplacian of Gaussian (LoG)
function and is used to eliminate both high and low frequency
components. The filter is given by:

Wβ (ξ ,η) =
ξ 2 + η2

α
exp

(

−
ξ 2 + η2

2β 2

)

(10)

whereβ controls the function extension andα = 4πβ 4 is
used for normalization.

During our test we tried them separately and together,
with different values ofβ , ranging from 50 to 150.

4. SETUP OF THE TEST

We have built a reference DB (RDB) made of known
shoeprints, realized starting from the images available atthe
ENFSI [10] WGM website [9] and then adapted as explained
in Sec. 4.1

Two different sets of shoe marks are used in our test to
query theRDB:
• a synthetic shoe marks set (SyntS), realized as detailed in

Sec. 4.2;

• a real shoe marks set (RealS), realized starting from the
images available at the ENFSI WGM website [9] and
then adapted as explained in Sec. 4.1.

4.1 Reference DB and real shoe marks set

The images were first converted to gray scale and then re-
sized to 512×512 pixel size, to obtain a reference DB made
of full shoeprints, Fig. 2.A).

To allow the comparison with previous works [8, 14, 7],
three zones of interest of 100×100 pixel size were cropped
from each shoeprint and used for the test, Fig. 1. Cropping
was performed also for the crime scenes shoe marks in order
to increase their number for testing purposes.

Following this procedure and starting from the images
available at the ENFSI WGM website, we built: a reference
DB made of 25 known shoeprints, a reference DB made of 75
known shoeprints crops, and a set of real shoe marks made
of 35 items (corresponding to 16 known shoeprints).

Then, we have queried each element of theRealSagainst
those in the cropped shoeprintsRDB, and against those in
the full shoeprintsRDB, using the Fourier based invariant
description employed in this work and using the methods de-
scribed in [8], in [14] and in [7]. Finally results were com-
pared in the form of top-one, top-five, top-ten and top-twenty
ranks.

4.2 Synthetic shoe marks set

We want to compare the method used in this paper with the
ones employed in other works, but the field still lacks a stan-
dard database for comparisons; moreover, all other existing
works only consider synthetic shoe marks.

Figure 1: Examples of shoe marks (top), and matching
shoeprints (bottom).

Thus, starting from theRDB, described in Sec. 4.1, two
subsets of synthetic shoe marks were created [14]:

• Subset 1: 300 shoe marks obtained by adding to each
shoeprint in theRDB a white gaussian noise with zero
mean and varianceσ2 = 1, 5, 10 and 15 %;

• Subset 2: 375 shoe marks obtained by blurring each
shoeprint in theRDBwith a motion blur ofd = 2, 5, 10,
15 and 20 pixel.

Some samples of Subset 1 are shown in Fig. 2 for gaus-
sian noise.

A) B)

C) D)

Figure 2: Reference DB sample and synthetic shoe marks
obtained by adding increasing white Gaussian noise to it: A)
original image, B)σ2 = 1%, C)σ2 = 5%, D)σ2 = 10%.

Again, we have queried each element of theSyntSagainst
those in the cropped shoeprintsRDB, and against those in
the full shoeprintsRDB, using the Fourier based invariant
described in this paper and employing the methods described
in [8], in [14] and in [7]. We then compared the results in the
form of top-one, top-five, top-ten and top-twenty ranks.

1667



Algorithm
SyntS PSD MPOC Mahalanobis This Work (Crops)

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20
1% 99 100 100 100 100 100 100 100 95 99 100 100 100 100 100 100
5% 82 89 93 98 100 100 100 100 78 93 99 99 92 94 95 95
10% 71 75 82 86 100 100 100 100 74 86 92 98 84 86 87 88
15% 67 72 74 76 100 100 100 100 – – – – 71 73 76 80
2 pxl 98 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5 pxl 95 100 100 100 100 100 100 100 87 98 99 100 100 100 100 100
10 pxl 60 69 75 79 100 100 100 100 39 74 79 93 100 100 100 100
15 pxl 68 82 85 89 96 100 100 100 – – – – 95 100 100 100
20 pxl 34 42 60 74 100 100 100 100 8 38 52 72 98 100 100 100

Table 1: Results for synthetic shoe marks queried on the
cropped shoeprintsRDB for the different methods. Shown
is the percentage of shoe marks that are correctly matched at
the first place and in top-five, top-ten and top-twenty rank.

This Work
SyntS Crops Shoes

1 5 10 20 1 5 10 20
1% 100 100 100 100 100 100 100 100
5% 92 94 95 95 93 94 97 99
10% 84 86 87 88 79 82 87 93
15% 71 73 76 80 58 65 70 92
2 pxl 100 100 100 100 100 100 100 100
5 pxl 100 100 100 100 97 97 99 99
10 pxl 100 100 100 100 75 79 88 97
15 pxl 95 100 100 100 68 72 82 93
20 pxl 98 100 100 100 53 62 74 88

Table 2: Results for synthetic shoe marks queried on the
cropped shoeprintsRDB(left) and on the full shoeprintsRDB
(right) for the proposed invariant method. Shown is the per-
centage of shoe marks that are correctly matched at the first
place and in top-five, top-ten and top-twenty rank.

5. RESULTS AND DISCUSSION

We first tested the performance of the system when query-
ing the croppedRDBwith theSyntS, and make a comparison
with the following methods2: MPOC [14], PSD [8] and Ma-
halanobis [7]. Results are shown in Table 1.

As can be seen from the table, the invariant description
employed performs better than the PSD and Mahalanobis
methods, but doesn’t reach the 100% score of the MPOC
case, although the latter is not translation and rotation invari-
ant.

We then tested the system when querying the full
shoeprintsRDBwith theSyntS. The results are shown in Ta-
ble 2.

As can be seen querying the full shoeprints causes a
degradation of the results, especially when applying motion
blur. In Fig. 3 the results in the case of ad = 10 pxl synthetic
motion blur are shown in the form of cumulative matching
characteristics curves [18]: the horizontal axis of the graph
is the percentage of the reference DB reviewed and the verti-
cal axis is the probability of a match.

We then tested the method employed in this work query-
ing the full shoeprintsRDBwith the shoe marks coming from
the crime scenes. During this test we tried several combina-

2Both MPOC and PSD were implemented by us on purpose.
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Figure 3: Results for synthetic shoe marks in the case ofd =
10 pxl motion blur, queried on the croppedRDB(- -) and on
the full shoeprintsRDB(—).

tions of the high-pass emphasize filter and the weight func-
tion, with β values ranging from 50 to 150. The cumulative
match score results are shown in Fig. 4, which shows the
best results are obtained when using both the high-pass em-
phasize filterH(ξ ,η) and the weight functionWβ=150(ξ ,η).
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Figure 4: Results for real shoe marks as a function of the
combinations of the high-pass emphasize filter (HP) and the
weight function (LoG(β )).

Once chosen the best combination, we evaluated the em-
ployed system in comparison with the other MPOC, PSD and
Mahalanobis methods, Fig. 5.

As can be seen, the translational and rotational invariance
has a high price to be paid: analyzing the first 5% of the query
results the probability to find the correct shoeprint is 50% for
both MPOC and Mahalanobis methods, while it lowers to ap-
proximately 17% using the Fourier based method employed
in this work.

6. CONCLUSIONS

In this paper we studied a system for the automatic retrieval
of footwear that left the shoe marks found at the crime scene.
The system exploits the translation and rotation properties
of the Fourier transform to realize a translation and rotation
invariant description suitable for image matching.
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Figure 5: Results on real shoe marks for different systems.

Several different database where created: a reference DB
of cropped shoeprints, a reference DB of full shoeprints, a
synthetic shoe marks DB created adding gaussian noise or
applying motion blur to the reference DB items, and a DB
with real shoe marks coming from real crime scenes.

The synthetic DB has been tested both on a reference DB
of cropped shoeprints, to allow a comparison to the perfor-
mance of other published systems, and on the full shoeprints,
to take advantage of the translation and rotation invariance.

We fine tuned the system with a combination of weight-
ing functions, and then made a comparison of the method
employed in this work and other methods available in litera-
ture, namely the MPOC, PSD and Mahalanobis methods.

Results show that the system performance degrades with
the noisy real shoe marks, and its translational and rotational
invariance has a price to be paid: analyzing the first 5% of
the query results the probability to find the correct shoeprint
is 50% for both MPOC and Mahalanobis methods, while it
lowers to approximately 17% using the Fourier based method
employed in this work.

Despite the results, the translation and rotation invari-
ance of the system would make it more suitable in real
cases, where the uncertainty of the aforementioned parame-
ters would make both the MPOC and the Mahalanobis based
systems less effective, if not useless. We are currently set-
ting up a new test where both rotation and translation will be
addressed on an improved database with more than 300 shoe
sole images.

Future work will then be devoted to the study of a suitable
pre-processing of the shoe mark images in order to increase
the system performance, and other translation and rotation
invariant descriptions will be analyzed and included for test-
ing purposes as well.
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