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ABSTRACT

We address the blind separation of two autoregressive
(AR) processes from a single mixture thereof, when
their respective driving-noise (“innovation”) sequences
are known to be temporally sparse. Unlike other
single-channel separation schemes, which use dictionary-
learning, our method essentially estimates the sparsify-
ing transformation of each source directly from the ob-
served mixture (by estimating the respective AR param-
eters), and therefore does not require a training stage.
We cast the problem as a constrained, non-convex £1-
norm minimization and propose an iterative solution
scheme, which iterates between linear-programming-
based estimation of the respective driving-sequences
given estimates of the AR parameters, and gradient-
based refinement of the estimated AR parameters given
the estimated driving sequences. Near-perfect separa-
tion is demonstrated using a simulated example.

1. INTRODUCTION

The exploitation of sparsity in many signal processing
tasks, such as Blind Source Separation (BSS), Sparse
Component Analysis (SCA), Compressed Sensing, Error
Correction and Spectrum Estimation, has recently seen
increased interest in the signal processing community.
One of the principal reasons is that the sparsity-model
assumption, either in the form of explicit time-domain
sparsity or in some hidden, underlying sparse represen-
tation, is often well-justified in practice. Furthermore,
when the relevant sparsity-model assumption is indeed
justified, sparsity-based tools are capable of delivering
significant performance improvement over classical tools
which ignore the sparsity.

In this work we address the problem of single-channel
blind separation of the sum of two autoregressive (AR)
sources. Our key to separation is the underlying as-
sumption, that the driving-noise (sometimes called the
“innovation”) sequences of these AR processes are tem-
porally sparse, i.e., mainly consist of sporadic spikes (of
unknown locations and amplitudes). Such a model can
be justified, for example, when the processes are voiced
speech segments, where the “driving noise” resembles
a “spikes train” generated at the vocal chords (e.g.,
[5]). Other possible examples are seismic measurements,
electrocardiograms, or, more generally, processes which
consist of several superimposed, differently-scaled and
shifted replica of damped sinusoids (each representing
the impulse-response of the all-poles system associated
with the AR process generation).

The “blindness” implies that neither the respective
AR-parameters of the two sources, nor the locations
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and amplitudes of the spikes in their respective inno-
vation sequences, are known in advance. The only
available data is the observed sum of the two processes
(and, of course, the assumed sparsity of the innovation
sequences). The goal is to recover the two sources,
and, as a possibly important by-product, to provide
estimates of their AR parameters and innovation se-
quences. Note that classical sparsity-based approaches
to single-channel source separation usually rely on a pre-
determined sparse representation (e.g., the short-time
Fourier transform, or some wavelet transform [4], [8]), or
employ a “training” stage, in which statistical or struc-
tural properties of the sources are learned (in the form
of an over-complete dictionary learning, e.g., [10]). In
this context, our approach can be seen as being based on
specially parameterized sparse decompositions, in which
each source has its own sparsifying transformation (the
inverse of its all-poles generating system), and the un-
known (AR) parameters of these transformation are es-
timated directly from the observed signal, rather than
being fixed in advance or learned in a training stage.

A common approach to sparsity-based estimation
is the formulation of a sparsity-based criterion, whose
minimization with respect to the unknown parameters
and signals would yield the desired estimates. While
the “natural” sparsity measure is the ¢p-norm (count-
ing the number of non-zero elements), the minimiza-
tion thereof often becomes computationally-prohibitive
and extremely sensitive to even the slightest noise. A
well-established, computationally more permissive alter-
native to fg-norm minimization, is the ¢;-norm mini-
mization, which was shown to yield consistent estimates
(equivalent to fp-norm minimization under some mild
conditions) in various contexts - see, e.g., [6, 7, 1, 2].

Therefore, our separation approach in this paper is
based on /;-norm minimization of the implied innova-
tion sequences with respect to the separated sources and
to their AR parameters. However, despite the convex-
ity of the ¢;-norm, the resulting constrained minimiza-
tion problem is generally non-convex. Our proposed
solution is based on an alternating-directions iterative
approach, alternating between ¢; minimization of the
implied innovation sequences given the AR parameters,
and gradient-based refinement of the AR parameters’
estimates given the innovation sequences.

2. PROBLEM FORMULATION

Consider the mixture

x[n] = z1[n] + x2[n] Vn, (1)
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where z1[n] and x3[n] are two AR processes,

Py
wln) = = apexiln — O+ spln] k=1,2 Vn, (2)
=1

Py and P, denote the respective AR-orders (assumed
to be known), {ai};.,, {aze}s?, are the respective
(unknown, real-valued) AR-parameters, and s1[n|, sa[n]
are the respective (unknown, real-valued) innovation (or
“driving-noise”) sequences. The innovation sequences
s1[n] and sz[n] are assumed to be sparse.

Given N samples z[n], n =0,..., N — 1, we wish to
estimate x1[n] and x2[n| (over the same interval, n =
0,...,N —1). As by-products we would also obtain
estimates of the AR parameters and of the innovation
sequences.

In the sequel we shall denote by X(z), Xx(z) and
Sk(2) the Z-transforms of the respective sequences x[n],
zg[n] and sg[n] (kK = 1,2) taken over the observation
interval n = 0,..., N — 1. Likewise, we shall denote by
Ai(z) (k =1,2) the Z-transform of the respective AR~

coefficients, Ag(z) =1+ Zﬁl a2~ *. We assume that
A1 (z) and Az (z) do not have common roots. We further

define A(z) 24 (2)A2(z), and denote the coefficients of
this polynomial as {ag}fzo, with P 2 P+ P

3. THE CLASSICAL APPROACH

For comparison (and also for use as an initial guess)
in the sequel, let us briefly describe the “classical” ap-
proach, which ignores the sparsity assumption and re-
gards the sources as general AR processes. Assuming
that the driving-sequences s1[n] and s3[n] are mutually
uncorrelated, spectrally-white random processes, with
variances o7 and o2, respectively, z[n] is obviously an
autoregressive - moving-average (ARMA) process of or-
ders (P,max{P;, P»}), whose Z-spectrum is given by

02 A5(2)Aa(1/2) + 03 A1(2)A1(1/2) 3)
A(2)A(1/2) '

Sex(z) =

Following estimation of the correlation sequence R, [{]
for |¢| < P + max{Py, P>}, the coefficients of A(z) can
be estimated using the modified Yule-Walker (MYW)
equations (see, e.g., [9]). Next, the estimated correlation
sequence is convolved with the polynomial coefficients of
the estimated A(z)A(1/2), yielding an estimate of the
numerator polynomial (for |¢| < max{P;, P»}), denoted
B(z). Now, in order to associate each of the poles (or
complex-conjugate pole-pairs) of A(z) with either A;(2)
or As(z), we can try all possible partitions: for each can-
didate partition (implying a choice of A;(z) and A3(z)),
we would obtain (by a linear least-squares solution) val-
ues 62 and 63 optimizing the fit of

62A5(2)A5(1)2) + 62A1(2)A1(1/2) = B(z), (4)

(in the sense of minimizing the sum of squared differ-
ences between the polynomial coeflicients). We would
then select the partition which yields the closest fit (with
positive 62 and 63), thereby obtaining the estimates of

Aq(z) and Ag(z), which in turn provide estimates of the
respective AR coefficients.

Once the AR coefficients are estimated, the sources
can be estimated by Wiener filtering of z[n], e.g., in
Z-transform domain,

Xl(z) _ lex(Z)X lem(z)

Sa::v(z) Sa:1a:1 (Z) + Swzwz (Z)

with Sy, ., (2) = 63/ AR(2)Ak(1/2), k = 1,2. Note that
under mild ergodicity conditions the AR coefficients’ es-
timates are consistent, and, therefore, if the innovation
sequences s1[n] and s3[n| are Gaussian, then asymptot-
ically, the Wiener-filtering separation would be optimal
(in the mean square error sense). In our case, however,
the innovation sequences are clearly not stationary white
Gaussian processes, which therefore leaves much room
for improvement by exploitation of their sparsity.

(2) = X(z) ()

4. SEPARATION USING /¢;-NORM
MINIMIZATION

Applying Z-transform to (1), (2) over the interval n =
0,..., N — 1 and neglecting end-effects, we get

51(2) + SQ(Z) _ Sl(z)Ag(z) +SQ(Z)A1(Z)

Al (Z) AQ(Z) A(Z) ’
(6)

X(z) =

and therefore
X(2)A(z) = S1(2)Az(2) 4+ S2(2) A1 (2). (7)

Thus, we can consider finding P;-th and P»-th order
causal, monic FIR filters hq[n], ha[n] (resp.) and se-
quences §1[n|, §2[n], which satisfy the convolution rela-
tion:

z[n] * ha[n] * ha[n] = $1[n] * ha[n] + S2[n] « hi[n], (8)
such that $1[n] and $83[n] are “as sparse as possi-

ble”. More explicitly, using the definition h[n] 2

Sty halflhaln — 4], (8) reads

> hllzin — £ = hallldi[n — €]+ Y h[l)sa[n — ).
=0 =0 =0

(9)
hi[n], he[n] would then serve as estimates of a; , and
az,y (resp.), and §1[n], §2[n] will be the estimated inno-
vation sequences, which may all be substituted in (2) so
as to yield the separated signals.

Thus, using the £1-norm as a measure of sparsity, we
need to solve the following optimization problem:

min _[|81[l1 + [[S2]l1
h;,h>,81,82

{10 =
x[n] * h[n] = 81[n] * ha[n] + 82[n] * hi[n),

(10)
where for shorthand we used hy, 2 [Re[0] --- hi[Pu]]7,

S 2 [51[0] -+ sk[N = 1))T (k = 1,2), and where | - |1
denotes the £1-norm.
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Although this problem is generally non-convex, we
propose a method for finding a (possibly local) min-
imum, which, as we shall demonstrate, can yield es-
timates of the sources and AR parameters which are
considerably more accurate than those attained by the
“classical” approach above.

An outline of the proposed algorithm is given below,
followed by details regarding implementation of the non-
trivial steps.

Algorithm Outline

1. Find an initial guess for the FIR
filters coefficients h;, hs, possibly
taking the estimated AR parameters
a1, and ds, (resp.) obtained by the
"classical" approach above;

2. Given h;, hy (therefore also h), solve

Oy @ si,s; = argmin {[[S1]]1 + [[S2[[1}
S1,S2

s.t. 1 z[n] x h[n] = §1[n] * he[n] + §a2[n] * hq[n]

3. Find the derivatives of f 2 sl + [Is5]l1
with respect to h;, hy;

4. Update hj using the gradient method,
h; =hy —nVn,f, where

of . _of 1"
0hy[0] Ohy.[P]

vhkf £

(k=1,2) and n is a small step-size;
5. Repeat 2-4 until convergence of h;, hs;
6. Generate the sources’ estimates #1[n],

Za[n] (for n=0,...,N —1) as:
Py

#rln] = = helfikln— 0+ siln), k=1,2
=1

(using zero initial conditions).

4.1 Solving the optimization O; in Step 2

Problem O; (in Step 2 above) is a convex minimization
problem, which can be cast as a standard linear program
as follows. First, we express 1 in matrix-vector form:

min ||§]; st HSs=Xh, (11)

where § 2 [§7 §7]7, h = [h[0] --- A[P]]T, and the
matrices H and X are structured as follows: Neglecting
end-effects, H is an N x 2N matrix, H = [Hy H;] with:

— ]
hell] 1

7 R (12)

ha[Pe) hell] 1

(an N x N matrix) for k& = 1,2 (the empty entries are
zeros), and X is an N x (P + 1) matrix,

C o) -
x[1] x[0]
x—| alP (0] (13)
e[P+1] . (1]
L x[N:— 1] z[N —:1 - P] |

It can be shown [3] that a solution to (11) is obtained
from the solution of the following linear program (LP):
min1Tz st z>0, HI —Iz=Xh (14)
where 1 and 0 are 4N x 1 all-ones and all-zeros vectors,
Iis the 2N x 2N identity matrix and > stands for an
elementwise > relation. The solution s* of (11) is related
to the solution z* of (14) via s* = [I — I]z*, with the
minimizing norm given by ||s*||; = ||z*|; = 17z*.

4.2 Calculating the Gradient in Step 3

In order to calculate the gradients of ||s*||; (the solu-
tion of (11)) with respect to hy; and hs, we first obtain
the derivatives of a general LP problem with respect to
its constraints, as derived by Pearlmutter et al. in [10],
and then apply the chain-rule with reverse accumula-
tion to obtain the derivatives with respect to the filter
coefficients.
Let us consider the general LP problem:

minw’z st Az<a, Bz=b (15)

z

With w,z € R”, A € R¥*" B ¢ Rm*",

Each row in A and in B (with their matching ele-
ments in a and b) defines a constraint. A constraint
is called “active” if the solution lies on its respective
boundary. Given feasibility, boundedness and unique-
ness, the LP solution satisfies n independent linear equa-
tions, which correspond to the n active constraints [3].
In [10], the authors defined a sparse nx (k+m) matrix P,
which is an all-zeros matrix with a single 1 in each row,
transforming the constraint matrix C 2 [AT BT }T and

. A . .
constraints vector ¢ = [aT pT r into a matrix Ca and
a vector ca, which contain only the active constraints
(it is assumed that the information regarding the indices
of the active constraints is provided by the LP solver).
Therefore, defining

Ca £ PC, ca £ Pc, (16)
the minimizing solution z of (15) can be readily ex-
pressed as the solution to the n x n set of linear active
constraints,

ZZCAich. (17)
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4.2.1 Differentiation of the minimized criterion with
respect to the constraint matrices and vectors

For convenience of notations we shall adopt the notation
from [10] for the derivative of wl'z with respect to an
arbitrary matrix Y:

NN d(w'z)
Y= oYy '’

(18)

where 0f(Y)/0Y denotes a matrix of the same size as
Y, whose (i,7)-th element equals 0f(Y)/0Y; ;.

It is relatively straightforward to show (see [10] for
details) that the derivatives ca and C A of the mini-
mized criterion w’z = Trace(zw™) with respect to the
active constraints vector ca and matrix Ca (resp.) are
given by

o B d(wlz)
AT 8CA

= (WTCA_I)T , CA = —éAZT.

(19)

Since the derivative of the minimized criterion with re-

spect to the non-active constraints is zero, we conclude

that . .

t=PTcsy , C=PTCa. (20)

4.2.2 Differentiation of the minimization criterion with
respect to the filters’ coefficients

We now return to our original problem (14), which, in
terms of the general LP problem (15), has

w=1, A=-I a=0 B=H[I —I], b=Xh. (21)

C and c are therefore given by

€= [H[I_I— I]} o7 [X(L)h} - @

and Ca and ca are obtained from (16) once P is pro-
vided by the LP solver.

Since both Ca and ca are functions of the filter co-
efficients, we apply the chain-rule with reverse accumu-
lation in order to obtain the derivatives of the minimized
{1-norm criterion with respect to the filter coefficients.
Let hi[n] denote the derivative of the minimization cri-
terion with respect to the k-th sources’ n-th filter coef-
ficients (k = 1,2). The derivative can be calculated by
combining the two following terms:

. hé [n], the term resulting from the relation to the
constraint matrix H[I — IJ; and

. hél [n], the term resulting from the relation to the
constraint vector Xh,

so that

>

& G =l R (29)

Defining y 2 Xh, we have, from (22), y = [0 I]¢&, and

H=[0 IC [_II] . (24)

Now, beginning with the derivatives with respect to
h;, we have

3N 2N
N I|8lL 9C;,;
h[ — 2] 2
3N 2N N 2N
=35 Cugin =23 Mg
i=1 j=1 =1 j=
N 2N
= Z ZHi,j((S[J - (N +i-n))
i=n+1 j=1
N
= Z Hz N+i—n
1=n—+1
and
3N
N A|I8[[x Ie;
I _
hl [n] _izz:l 801‘ ahl[n] (26)
3N N
de; . Oy
= Z C; ¢ = Z Yi Y
o] & Oln]
N
=30 (XB), =57 xR,
=1
where we have used
y; "
= (Xh? 2
A ( 2)1» (27)
with
by £ o, L0,hE 0,07 k=12 (28)
——
n Pr—n

k denoting the other filter’s index, which is 2 if k = 1
and 1if k = 2.

A similar derivation for the derivative with respect
to the second process’ filter coefficients ha[n| yields:

N
hilnl= > Hiin . h'[n)=3y"Xhy.  (29)
i=n+1

5. SIMULATION RESULTS

To demonstrate the attainable separation, we applied
the proposed algorithm to a mixture generated as fol-
lows. First, we generated each innovation process si[n]
(k = 1,2) as a product of an independent, identically
distributed (iid) Bernoulli process (taking the values
1,0 with probabilities pg,1 — pg, resp.) with an iid
zero-mean Gaussian process with variance U,%. We used
p1 = p2 = 0.1 and 0? = 03 = 1. The generated se-
quences are shown in Figure 1. Then, these sequences
were used for generating the sources zp[n] (k = 1,2)
by applying the difference equation (2) with AR orders
P, = P, =2, with AR coefficients set such that A;(z)
has its poles at 0.9 - e¥77/6 and Ay(z) has its poles at
0.98 - e*97/3, The resulting signals and their sum x[n]
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Figure 1: The innovation sequences (solid) and their
sparsity-based estimates (dotted) (the two plots are nearly
indistinguishable).
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Figure 2: The generated AR sources and their mixture.

(from which they need to be estimated) are shown in
Figure 2. The observation interval’s length is N = 256.

We first applied the “classical” approach described
in Section 3, and obtained initial estimates of the AR pa-
rameters (as well as estimates of the separated sources).
The AR estimates were used as the initial guess for our
sparsity-based algorithm. As shown in Table 1, the
accuracy in estimating the poles was significantly im-
proved by this algorithm.

Table 1: AR parameters and poles estimation

True MYW est. | £1-norm est.

ay -1.5588 -1.6275 -1.5589
21 [n] as 0.8100 0.8705 0.8101
1 [p1,2] | 0.9000 0.9330 0.9000

Zp12 +z +0.9763% +1.0001¢
ay -0.9800 -0.9868 -0.9799
2a[n] as 0.9604 0.9691 0.9605
[p1,2] | 0.9800 0.9844 0.9801

Zp12 +7 +0.9987% +1.0001%

The errors in the separated signals are shown in Fig-
ure 3, comparing our sparsity-based separation error to
the error attained by the “classical” Wiener separation
(based on the MYW AR parameters estimate). The
time-averaged square error was 0.0879 for the Wiener
separation, and 9.15-10~° for the sparsity-based separa-
tion (for both signals; note that since the sum of outputs
must equal z[n], the estimation error signals are “mirror
images” of each other, so their averaged squared values

Estimation errors: xl[n]

1r

—— sparsity-based ; \
0.5 | = = —Wiener-based | g 4 "l A ,'l lll
h

]

Bp oty At

50 100 150 200 250

Estimation errors: xz[n]

1
} '
} " ' ", [

e L] [F] a1

. . .
50 100 150 200 250

Figure 3: The estimation errors in z[n] and in z2[n] at-
tained by the Wiener-based and sparsity-based approaches.

are the same).

6. CONCLUSION

We demonstrated, as a “proof of concept”, the ability
to obtain good separation results for a single mixture of
AR sources of unknown parameters, based solely on the
assumption that their innovation sequences are sparse.
Such AR processes are generally not sparse in the time-
domain, frequency-domain or in classical time-frequency
or wavelet-decomposition domains. Nevertheless, they
each admit a sparsifying linear transformation (by FIR
filtering), however the parameters (filter coefficients) of
these transformations are unknown in a blind, untrained
scenario. Our approach enables joint estimation of these
parameters together with the /;-norm based separation
process, without a need for a training stage.

Statistical characterization of the performance, as
well as computational and convergence issues and
additive-noise effects, are still under study.
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