
SUPPORT VECTOR ONE-CLASS CLASSIFICATION FOR
MULTIPLE-DISTRIBUTION DATA

Abdenour Bounsiar and Michael G. Madden

College of Engineering and Informatics
National University of Ireland, Galway

abdenour.bounsiar@nuigalway.ie and Michael.madden@nuigalway.ie

ABSTRACT
One-class support vector algorithms such as One-Class
Support Vector Machine (OCSVM) and Support Vector
Data Description (SVDD) often perform poorly with multi-
distributed data. Because in the one-class classification con-
text, only the target class is well represented, the classifi-
cation problem is ill-posed and the task is more a class de-
scription or a class density estimation problem. To deal with
multi-distributed data, we propose in this paper the Multi-
Cluster One-Class Support Vector Machine (MCOS) algo-
rithm, which first clusters the data and then applies a one-
class support vector algorithm on each cluster separately.
A test sample is then classified by using the correspond-
ing local description. K-means clustering and a dendogram
based clustering methods are tested and classification results
are presented for synthetic and real world data by using the
MCOS. Experiments show that in many cases, MCOS out-
performs the OCSVM algorithm.

1. INTRODUCTION

Data in nature are generally rarely evenly distributed. In
many real-world classification problems, there are multiple
subclasses within the same class, which form different clus-
ters in the representation space, with different densities and
extents. It could be necessary in such cases to adapt the clas-
sifier to the local sub-parts of the data. The purpose of local
learning is to adapt learning algorithms to the local properties
of the data [4]. For example, kernel based density estimation
algorithms may use a narrow kernel width in dense regions of
the data distribution and use a larger width in sparse regions.

Some of the best known local learning algorithms are the
k-Nearest Neighbors classifier (kNN) [6] and Radial Basis
Function (RBF) Networks [12]. The kNN algorithm classi-
fies a test example by looking locally at the k nearest training
samples to it, and using a majority vote among the neighbors
to determine its class. In this way, the classification of a test
sample with the kNN algorithm depends directly on the local
structure of the data. RBF networks consist of a hidden layer
with a number of neurons that is small relative to the training
set size, with a Gaussian activation function. As the Gaus-
sian kernel vanishes for distant regions of the space, the local
effect of each neuron on the RBF network behavior, depends
on the width of its Gaussian activation function. This width
is adjusted in order to more accurately represent the structure
of the data in the vicinity of the kernel center.

In the context of one-class classification, Support Vec-
tor Data Description (SVDD) [19, 20] and One-Class Sup-
port Vector Machines (OCSVM) [15] are two algorithms that
have been proposed as elegant solutions for data description.
These two algorithms are based on the principle of support

vector machines (SVMs) [17]. However, because in the OCC
context only the target class is well represented, the classifi-
cation task is mainly a class description or a class density es-
timation problem, for which local learning is well suited. The
SVDD and the OCSVM algorithms, with specific parameter
settings, are equivalent to the Parzen estimator [19, 15]. For
multi-distributed data density estimation, it is well known
that kernel width adaptation is preferred to the use of the
same kernel width for all the training samples [14].

In this paper we propose the Multi-Cluster One-Class
Support Vector Machine (MCOS) algorithm, which aims
to overcome the weakness of OCSVM for multi-distributed
data, by first clustering the training target data and then con-
structing a separate OCSVM for each target data cluster. As
opposed to kNN and RBF networks, which apply the local
learning concept at the sample level, the MCOS considers
clusters of samples and tries to improve the discrimination
power of individual OCC algorithms by looking at the local
characteristics of each cluster separately.

The standard OCSVM algorithm is presented in Sec-
tion 2, then the principle of MCOS is explained in Section 3.
The clustering methods being used in this study are presented
in Section 4. An experimental study on synthetic data is
detailed in Section 5 and some experimental results on real
world data are discussed in Section 6. Conclusions are drawn
in Section 7.

2. ONE CLASS SUPPORT VECTOR MACHINES

Researchers in [15] proposed a maximum margin based clas-
sifier which is an adaptation of the Support Vector Machine
algorithm to the case of one-class classification. This classi-
fier separates the training data from the origin by means of
a hyperplane 〈w,z〉−ρ , where w is the normal vector of the
hyperplane and ρ is its bias.

To separate the data from the origin, Schölkopf et al. pro-
posed to solve the following optimization problem [15]:

min
w,ρ,ζ

1
2 ‖w‖2 + 1

νN ∑
i

ζi−ρ

s.t. 〈w,φ (xi)〉 ≥ ρ−ζi,ζi ≥ 0,∀i,
(1)

with the regularization parameter ν ∈ (0,1] and φ is a trans-
formation from the input space to the same space or to an-
other high dimensional space. Setting the partial derivatives
of the associated Lagrangian of the optimization problem (1)
to 0 according to w, ρ and ζi, i = 1...N, one can obtain the
corresponding dual optimization problem:

min
α

1
2 ∑

i, j
αiα jK (xi,x j)

s.t. ∑i αi = 1,
and 0≤ αi ≤ 1

νN ,∀i,

(2)

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 1189

where kernel functions K (xi,x j) =
〈
φ(xi),φ(x j)

〉
are intro-

duced to denote dot products 〈., .〉 of the projected data in
the transformed space [18]. The solution, which is the saddle
point of the optimization problem (1), is given by:

f (z) = sign(〈w,φ (z)〉−ρ) = sign

(
∑

i
αiK (xi,z)−ρ

)
.

Support Vector Data Description is another one-class
support vector algorithm [19, 20]. Instead of separating the
target data from the origin by a maximum margin hyper-
plane, SVDD seeks to enclose the data by a minimum radius
hypersphere. As with OCSVM, SVDD uses kernel functions,
and the solution is found by resolving a quadratic optimiza-
tion problem similar to (2). For radial basis kernel functions
K such as the Gaussian kernel, where K(x,y) = K(||x− y||),
the optimization problems of OCSVM and SVDD are equiv-
alent and the two algorithms produce exactly the same so-
lution [15, 19]. In this study we will restrict ourselves to
the use of the OCSVM algorithm, but the developments pre-
sented here are directly applicable to SVDD also.

3. MULTI-CLUSTER ONE-CLASS SUPPORT
VECTOR MACHINE

In order to overcome the limitation of One Class Support
Vector algorithms to deal with multi-distributed data, we pro-
pose to learn a separate OCSVM for each cluster of the data.
The clusters can be obtained by any clustering method ap-
plied to the training dataset. A test sample is then classi-
fied by using the SVM for which the corresponding cluster
is the closest to the test sample. The closest cluster is found
by comparing the distances from the test sample to the cen-
ters of the training set clusters. The Multi-Cluster One-Class
Support Vector Machine works as the following:
1. Decompose a data set by using any clustering algorithm.
2. Get local data descriptions using any one-class support

vector algorithm such as OCSVM.
3. Cluster a test set according to the centers of the training

set clusters that have been identified in step 1.
4. Classify the clustered test samples by using the corre-

sponding local description (the one of the data cluster of
which the center is the closest to the test sample).

Compared to Mixture Model methods [13], this algorithm
does not assume any specific shape for the individual clus-
ters probability densities, like in the Gaussian Mixture Model
(GMM) algorithm, and a test sample is classified by only us-
ing the closest sub-model.

4. CLUSTERING ALGORITHMS

Many clustering algorithms has been proposed in literature;
for reviews, see [8, 9]. In this study, we propose to exam-
ine the performance of the MCOS algorithm with two dif-
ferent clustering methods: k-means and a dendogram based
clustering algorithm, which are presented in Section 4.1 and
Section 4.2 respectively.

4.1 k-means clustering algorithm
The k-means algorithm is an algorithm to cluster n objects
into k partitions or clusters, with k ≤ n [11, 7]. The k-means

clustering method attempts to find the k centers of data clus-
ters where k is a predefined value. The objective of the k-
means algorithm is to minimize total intra-cluster variance,
or, the squared error function:

V =
k

∑
i=1

∑
x∈Si

‖(x− ci)‖2, (3)

where ci is the center or the mean point of all the objects
x in the cluster Si, i = 1..k. The most popular variant of the
algorithm (heuristic) works as follows:
1. Arbitrarily choose k initial centers {c1,c2, ..,ck}.
2. Set each cluster Si, i = 1..k, to be the set of objects x such

that ‖(x− ci)‖2 < ‖(x− c j 6=i)‖2.
3. Set the new centers ci, i = 1..k to be the mean point of all

objects x of the cluster Si: ci = 1
|Si| ∑x∈Si x.

4. Repeat steps 2 and 3 until the centers ci, i = 1..k no longer
change.
The clustering result of this algorithm, also known as

Lloyd algorithm [10], is very dependent on the starting cen-
ters points which can be determined randomly or by using
certain initialization heuristics [2, 5]. Although it offers no
accuracy guaranties, the simplicity and the speed of this al-
gorithm are very appealing in practice which make of it one
of the most used clustering algorithms.

4.2 Dendogram based clustering algorithm
The second clustering algorithm being used in this study is a
dendogram based one. This clustering method explores the
distance hierarchy inside a set of data points {x1,x2, ..,xn}.
At each iteration, the two closest points are grouped and re-
placed by their mean point until only k points remain, where
k is the desired number of clusters. If the calculation of a
new mean point involves a previous mean point (non-initial
data point) then the number of data points represented by this
previous mean point is taken into consideration to create the
new mean point. This algorithm works as follows:
1. At the beginning of the algorithm, set m = n,ci = xi and

wi = 1,∀i = 1..n.
2. At each iteration, we have a set of points
{(c1,w1),(c2,w2), ..,(cm,wm)}, with k ≤ m≤ n.

3. Replace the closest two points ci and c j by their weighted
mean c = wici+w jc j

wi+w j
and set w = wi +w j.

4. Repeat steps 2 and 3 until to obtain the desired number
of clusters (m = k).
In contrast to k-means, this algorithm always produces

the same solution and does not optimize any performance
measure such as the one given by Equation (3).

5. EXPERIMENTS WITH SYNTHETIC DATA

In order to illustrate the efficiency of MCOS, in this section
we present results of experiments that were carried out on
a synthetic dataset and a relabeled real world Glass dataset.
Throughout this work, as was stated at the end of Section 2,
the OCSVM algorithm is used as the underlying OCC algo-
rithm for the experiments with MCOS. Furthermore we as-
sume the availability of statistically unrepresentative labeled
outlier samples (in which case OCSVM is preferred to SVM)
which are used during training for model optimization.

1190

−1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

4

(a)

2 4 6 8 10
13

14

15

16

17

18

19

2

21

Number of clusters

T
ot

al
 E

rr
or

 R
at

e
(%

)

(b)

2 4 6 8 10
8

10

12

14

16

18

20

Number of clusters

T
ot

al
 E

rr
or

 R
at

e
(%

)

(c)

2 4 6 8 10
08

10

12

14

16

18

20

Number of clusters

T
ot

al
 E

rr
or

 R
at

e
(%

)

(d)

Figure 1: Total error rates (in %) obtained by the MCOS
on the synthetic data represented in (a) for different number
of clusters produced by the k-means clustering algorithm on
a dataset of: (b) 100 samples, (c) 200 samples and (d) 400
samples.

In the synthetic dataset, the target class is composed
of two 2-D equiprobable Gaussians with different means
and variances (PDF1 Ã N (µ = (1,0),Σ = 0.25I), PDF2 Ã
N (µ = (6,0),Σ = I)), and the outlier class is composed of
another Gaussian (N (µ = (3,0),Σ = I)) between the two
first ones, where I is the identity matrix. In order to simu-
late a realistic situation, the target samples represent 4/5 of
the data and 1/5 of the data are outlier samples. Figure 1.a
shows an example of this data with 200 samples.

In addition to the clustering method and the number of
clusters, the MCOS depends on the same parameters as the
OCSVM: the kernel function K, the kernel parameter and
the regularization parameter ν . In this study, only the Gaus-
sian kernel of width σ , K(x,y) = exp

(
− ‖x−y‖2

2σ2

)
, is con-

sidered as it has been widely reported in the literature to
be the most suitable for one-class classification compared
to other kernel functions such as Linear, Polynomial or Sig-
moidal [20, 1, 16, 22]. Furthermore, because of the need for
data separation from the origin, only Radial Basis Function
(RBF) kernels such as the Gaussian Kernel can be used with
the OCSVM algorithm [15]. For all the compared methods, a
simple grid search with internal 3 fold cross-validation tech-
nique is used for the selection of the classifiers parameters
by optimization of the validation TER. The values used for
the width parameter σ and the regularization parameter ν
are as follows: σ : {0.01,0.1,1,3,5,8,10,12,15,17,20}; ν :
{0.01,0.02,0.05,0.01,0.2,0.3,0.5}. Integers from 1 to 10
are tested for the number of clusters.

Averaged total error rates (TERs) estimated by using 5
runs of 5 fold cross-validation, are used to measure the per-
formance of the MCOS algorithm. Figure 1 shows plots of
Averaged TERs in function of the number of clusters for
three data sets of 100, 200 and 400 samples respectively. For
the number of clusters going from 1 to 10, plots of TERs are
represented for the MCOS with the k-means algorithm. The
single-cluster case corresponds to the standard OCSVM al-

−1 0 1 2 3 4 5 6 7 8 9
−3

−2

−1

0

1

2

3

x

y

(a)
−1 0 1 2 3 4 5 6 7 8 9

−3

−2

−1

0

1

2

3

x

y

(b)

−1 0 1 2 3 4 5 6 7 8 9
−3

−2

−1

0

1

2

3

x

y

(c)
−1 0 1 2 3 4 5 6 7 8 9

−3

−2

−1

0

1

2

3

x

y

(d)

Figure 2: Example of clusters and decision boundaries ob-
tained by the MCOS algorithm. Target samples are repre-
sented by ‘∗’ marks and outliers by ‘×’ marks. The samples
and the contour of each training cluster are represented by the
same color. Figure (a) represent the case with one cluster, (b)
two clusters, (c) three clusters and (d) four clusters.

gorithm. The theoretical Bayesian error probability is 7.22%.
In the three cases of Figure 1, the OCSVM algorithm

(MCOS algorithm with one training data cluster) always
gives poor performance. This is expected, since the OCSVM
algorithm using the same kernel on all training samples is
not appropriate to represent this data which is composed of
two clusters with different variances. Interestingly, however,
the best performance for the three cases are obtained by the
MCOS algorithm with 3,4 or 6 clusters, even though the tar-
get class was generated using two Gaussians. An explanation
is that, because of the limitations of sampling, a finite dataset
drawn from this distribution may have some irregularities,
making it more appropriate to represent the target data with
more than two clusters. For example, Figure 2 shows an ex-
ample of clusters and decision boundaries obtained by the
MCOS 1, 2, 3 and 4 training clusters are considered. In the
case of 4 clusters (Figure 2.d), we can see that the three clus-
ters, representing the right Gaussian of the target class, define
three different subsets of the training samples that happen to
have different densities. For each cluster, a different repre-
sentation is optimized.

Note from Figure 2(a), that the conventional OCSVM
(equivalent to MCOS with one cluster) produces a poor rep-
resentation of the data with a broad contour for the left clus-
ter and an irregular contour for the right cluster. Here, the
OCSVM uses the same kernel width σ = 0.5 on the two clus-
ters of the training set which have different variances, 0.25
and 1 for left and right clusters respectively. In Figure 2(b),
the representation by MCOS with two clusters is smoother
and better fitted to the data structure with a small contour on
the smaller cluster and a large contour on the larger cluster. In
Figure 2(c), the larger cluster is represented by two contours
and in Figure 2(d), it is represented by three contours. As the
number of contours increases, we obtain a representation that
is more closely tied to the training set as we can see on Fig-
ure 2(d) where the three right contours reproduce the shape
of the largest cluster quite closely. By increasing the num-

1191

2 4 6 8 10
20

24

28

32

36

Number of clusters

To
ta

l E
rro

r R
at

e
(%

)

Figure 3: Performance of the MCOS with k-means clustering
algorithm on the Glass database where class ‘2’ is considered
as the outlier class and the other classes all together are con-
sidered as the target class.

ber of clusters, we will end up by having a contour on each
training point and hence an extreme overfitting of the repre-
sentation to the training set. Note that all the TER curves in
Figure 1 have a generally convex shape. For small numbers
of clusters, the model does not fit the data structure, and for
large values, the model over-fits the training data which re-
sults in bad generalization performance in both cases. The
graphs show that the number of clusters at which overfitting
begins, grows with the size of the training set, which makes
sense: because of the availability of more samples to build
more local representations, bigger training sets can be repre-
sented with more clusters.

In another example, we have considered the Glass
database of the UCI Machine Learning Repository [3]. The
Glass database is composed of six classes {1,2,3,5,6,7}
where in this example the class ‘2’ is considered as the out-
lier class and the other classes all together are considered as
the target class. Figure 3 represents averaged values of TERs
obtained by MCOS with k-means and shows a clear improve-
ment of this algorithm over the performance of OCSVM.
Note that the optimal number of clusters is different, though
close, from the number of sub-classes (sub-distributions) of
the target class which is 5.

6. EXPERIMENTS WITH REAL WORLD DATA

This section presents classification results from experiments
performed on nine databases from the UCI Machine Learn-
ing Repository [3]: Iris, Breast-Cancer, Glass, Haberman,
Pima, Sonar,Balance, Wine and Spam. For each dataset,
each of the classes is considered as the “Target”, at once,
and all the other ones as “Outliers”. 5 runs of 5 fold cross-
validation are performed for total error rate estimation. As
was done in the synthetic dataset experiments, a simple
grid search with internal 3-fold cross-validation procedure
is used for the selection of the classifiers’ parameters, and
the Gaussian kernel function was used in all of the experi-
ments. The following values where used for the kernel width
σ : {0.01,0.1,1,3,5,8,10,12,15,17,20} for the Iris, Wine,
Glass, Sonar and Haberman databases, and the following set
of values {1,3,7,10,20,30,40,50,60,80,100} for the Pima
and Haberman datasets which have a bigger range. The val-
ues {0.01,0.02,0.05,0.2,0.3,0.5} were considered for the
regularization parameter ν . Different values of the number
of clusters are also tested ranging from 1 to to 25.

In order to test the effect of using different clustering

Table 1: Averaged percentage TERs obtained on several real
world datasets. For each dataset class, the best TER ob-
tained by 5×5 fold cross-validation and the optimal num-
ber of clusters are displayed for: MCOSd and MCOSk with
searched number of clusters k, and MCOSd and MCOSk with
k being estimated by using the Gap Statistic algorithm. For
each dataset class, the performances that are better than the
OCSVM one are presented in bold.

OCSVM Optimized k Pre-estimated k
Data(class) MCOSk MCOSd MCOSk MCOSd
Iris(Setosa) 00.66 00.66(1) 00.66(1) 00.66(1) 00.66(1)
Iris(Virgin.) 08.53 07.33(2) 07.79(3) 08.53(1) 08.53(1)
Iris(Versico.) 07.73 07.73(1) 06.53(2) 07.73(1) 07.73(1)
B.Cancer(B.) 03.66 03.57(2) 03.13(3) 03.78(6) 03.94(6)
B.Cancer(M.) 04.97 04.78(2) 04.97(1) 04.97(1) 04.97(1)
Glass(1) 21.57 16.69(2) 16.62(2) 21.57(1) 21.57(1)
Glass(2) 27.95 25.66(9) 26.13(4) 27.95(1) 27.95(1)
Glass(3) 07.65 07.65(1) 07.65(1) 07.65(1) 07.65(1)
Glass(5) 02.71 02.71(1) 02.71(1) 02.71(1) 02.71(1)
Glass(6) 02.98 02.98(1) 02.98(1) 02.98(1) 02.98(1)
Glass(7) 04.01 04.01(1) 03.82(2) 04.01(1) 04.01(1)
Haberman(1) 26.14 24.84(3) 25.69(2) 26.14(1) 26.14(1)
Haberman(2) 27.82 25.62(5) 26.34(7) 27.82(1) 27.82(1)
Pima(0) 30.76 29.73(7) 27.47(11)30.76(1) 30.76(1)
Pima(1) 34.97 29.60(10)28.65(21)34.97(1) 34.97(1)
Sonar(M) 38.36 24.80(16)25.43(12)30.18(5)32.24(5)
Sonar(R) 43.20 34.04(16)40.44(20)42.90(3)38.95(3)
Balance(L) 09.69 09.69(1) 09.69(1) 15.26(4) 14.11(4)
Balance(R) 09.43 09.43(1) 09.43(1) 13.76(4) 13.82(4)
Wine(A) 12.37 11.70(2) 12.03(6) 12.37(1) 12.37(1)
Wine(B) 23.56 20.54(5) 19.16(5) 23.56(1) 23.56(1)
Wine(C) 11.35 09.52(2) 09.52(2) 11.35(1) 11.35(1)
Spam(0) 30.30 26.06(7) 26.01(10) −− −−
Spam(1) 29.80 25.19(7) 26.77(9) −− −−

methods, classification results are presented for the two cases
where the k-means clustering algorithm and the Dendogarm
based one, which is presented in Section 4.2, are used. We
refer to the two cases by MCOSk and MCOSd respectively.

For the target classes of each dataset, the average TERs
which were obtained with OCSVM, MCOSk and MCOSd,
are displayed in Table 1. The number of clusters that led to
the best averaged error rate is also stated in parentheses for
the two MCOS methods. In order to show the difficulty to
estimate a priori the number of clusters for MCOS, the same
information, except for the Spam database, are given for the
case where the number of clusters k is estimated by using the
Gap statistic algorithm [21] (referred to as ’Pre-estimated
k’). The Gap statistic algorithm depends on the variance
function given by Equation 3, and considers the gap between
the observed value of this function and another value that is
estimated over a number of datasets drawn from a reference
distribution that could be uniform for example, see [21] for
more details. In Table 1, for clarity, all the cases that improve
upon the OCSVM performance are presented in bold.

Table 1 shows in many cases that the MCOS is able to
improve over the performance of OCSVM such as in the
case of class ‘1’ of Glass (around 18% of error rate with
MCOS compared to 24% with OCSVM), class ‘1’ of Pima
(around 29% of error rate with MCOS compared to 35% with

1192

OCSVM), class ‘M’ of Sonar (around 25% of error rate with
MCOS compared to 38% with OCSVM) and class ‘B’ of
Wine database (around 19% of error rate with MCOS com-
pared to 23% with OCSVM).

Note that the performances of the two MCOS methods
are very close for almost all the cases except for some cases
such as the ‘R’ class of the Sonar database (34.04% of TER
for MCOSk against 40.44% for MCOSd) and class ‘0’ of
Pima database (27.47% of TER for MCOSd against 29.73%
for MCOSk). However, the optimal numbers of clusters used
by the k-means and the dendogram clustering methods are
generally different, and the difference can be substantial, as
in the case of class ‘2’ of Glass (the number of clusters k
equals 9 for k-means against 4 for dendogram) and class ‘1’
of Pima database (k = 10 for k-means against k = 21 for den-
dogram). This indicates that it is difficult to predict a priori
the optimal number of clusters as it depends on the used clus-
tering method. This also means that the optimal number of
clusters is different from the underlying number of subsets of
the target class, as was shown on the two synthetic examples
of Section 5, since it is not unique.

7. CONCLUSIONS

In this paper, we have presented the Multi-Cluster One-Class
Support Vector Machine (MCOS), which aims to overcome
the poor performance of One Class Support Vector Algo-
rithms when applied to multi-distributed data. Algorithms
such as OCSVM and SVDD use the same kernel width on all
support vectors, regardless if they are located in a dense re-
gion of the data distribution or in a sparse one. To overcome
this weakness, the MCOS algorithm first uses a clustering al-
gorithm to divide the training sets into coherent clusters, and
then builds a OCSVM with a separate kernel on each cluster.
The final representation of the data is then obtained by the
combination of all the local representations.

Our experiments on synthetic and real world data sets
show that in many cases, by adapting the representation to
the local characteristics of the data, the MCOS can offer
clear improvement over the OCSVM performance. However,
for some problems, MCOS cannot improve on OCSVM, but
since it includes OCSVM as a special case, it is never worse
than OCSVM.

For future work, we will consider the problem of prior
estimation of the optimum number of clusters for a given
classification problem. In our experiments we have adopted
a search method and show that in many cases this approach
leads to considerable improvement compared to the the Gap
Statistic approach, from data discovery domain, that consists
of pre-estimating the number of clusters. Since the aim here
is data classification, more adapted clustering methods, that
take into account both the distributions of target and outlier
classes, need to be searched.

REFERENCES
[1] H. Alashwal, S. Deris, and R. Othman. One-class sup-

port vector machines for protein-protein interactions
prediction. International Journal of Biomedical Sci-
ences, 1(2):120–127, 2006.

[2] D. Arthur and S. Vassilvitskii. k-means++: the advan-
tages of careful seeding. In SODA ’07: Proceedings
of the 18th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1027–1035, Philadelphia, USA, 2007.

[3] A. Asuncion and D. Newman. UCI machine learn-
ing repository. 2007. University of California, Irvine,
School of Information and Computer Sciences.

[4] L. Bottou and V. Vapnik. Local learning algorithms.
Neural Computation, 4:888–900, 1992.

[5] P. S. Bradley and U. M. Fayyad. Refining initial points
for k-means clustering. In Proceedings of the Fifth
International Conference on Machine Learning, pages
91–99. Morgan kaufmann, 1998.

[6] T. Cover and P. Hart. Nearset neighbor pattern clas-
sification. IEEE Transactions in Information Theory,
13:21–27, 1967.

[7] J. Hartigan and M. Wong. A K-means clustering algo-
rithm. Applied Statistics, 28:100–108, 1979.

[8] A. K. Jain and R. C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., U. S. R., NJ, USA, 1988.

[9] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: an Introduction to Cluster Analysis. John Wiley
& Sons Ltd, Chinchester, New York, 1990.

[10] S. P. Lloyd. Least squares quantization in pcm. IEEE
Trans. Information Theory, 28:129–137, 1982.

[11] J. B. Macqueen. Some methods of classification and
analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, pages 281–297, 1967.

[12] J. Moody and C. J. Darken. Fast learning in networks
of locally-tuned processing units. Neural Computation,
1(2), 1989.

[13] R. A. Redner and H. F. Walker. Mixture densities, max-
imum likelihood and the em algorithm. SIAM Review,
26(2):195–239, 1984.

[14] S. R. Sain. Adaptive Kernel Density Estimation. PhD
thesis, Rice University, Texas, 1994.

[15] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola,
and R. Williamson. Estimating the support of a
high-dimentional distribution. Neural Computation,
13:1443–1471, 2001.

[16] K.-K. Seo. An application of one-class support vector
machines in content-based image retrieval. Expert Sys-
tems with Applications, 33(2):491–498, August 2007.

[17] J. Shawe-Taylor and N. Cristianini. Support Vector Ma-
chines and other kernel-based learning methods. Cam-
bridge University Press, 2000.

[18] J. Shawe-Taylor and N. Cristianini. Kernel Methods for
Pattern Analysis. Camb. Univ. Press, 2004.

[19] D. Tax and R. Duin. Support vector domain description.
Pattern Recognition Letters, 20:1191–1199, 1999.

[20] D. Tax and R. Duin. Support vector data description.
Machine Learning, 54:45–66, 2004.

[21] R. Tibshirani, G. Walther, and T. Hastie. Estimating
the number of clusters in a data set via the gap statistic.
Journal of Royal Statistical Society B, 63(2):411–423,
2001.

[22] H. Xu and D.-S. Huang. One class support vector ma-
chines for distinguishing photographs and graphics. In
IEEE International Conference on Networking, Sensing
and Control, 2008, pages 602–607, 2008.

1193

