18th European Signal Processing Conference (EUSIPCO-2010)

Aalborg, Denmark, August 23-27, 2010

A GMM-SUPERVECTOR APPROACH TO LANGUAGE RECOGNITION WITH
ADAPTIVE RELEVANCE FACTOR

Chang Huai You, Haizhou Li, Kong Aik Lee

Human Language Technology Department, Institute for Infocomm Research (I’R), A*STAR
1 Fusionopolis Way, #08 Connexis (South Tower), Singapore 138632
phone: +65 64082763, fax: +65 64677601, emails: {echyou, hli, kalee } @i2r.a-star.edu.sg
http://hlt.i2r.a-star.edu.sg/

ABSTRACT

Gaussian mixture model (GMM) supervector has been
proven effective for language recognition. While a speech
utterance can be represented with a GMM which can be ob-
tained through maximum a posteriori (MAP) criterion, it is
observed that the supervector formed from the GMM en-
counters shifting problem in the supervector space due to
varying duration of the utterance. We propose an adap-
tive relevance factor for the MAP estimation to mitigate the
negative effect of the variability of individual utterances.
Moreover, we develop a language recognition system with
a Bhattacharyya-based kernel where the information from
the mean vectors and covariance matrices are separately as-
signed into corresponding dissimilarities. We show the ef-
fectiveness of the proposed adaptive relevance factor and the
Bhattacharyya-based kernel on the National Institute of Stan-
dards and Technology (NIST) language recognition evalua-
tion (LRE) 2009 task.

1. INTRODUCTION

Language recognition is the process of recognizing the lan-
guage of a spoken utterance. Common techniques used in
language recognition include the acoustic and phonotactic
modeling approaches. In this paper, we are interested in
studying Gaussian mixture model, the most popular acous-
tic modeling approach for its reliable performance.

In GMM approach, a language model is obtained by
maximum a posteriori (MAP) estimation from a universal
background model (UBM) [1]. The UBM is usually trained
through expectation-maximization (EM) algorithm from a
background dataset covering a wide range of languages,
speakers and channels. In this paper, we develop a lan-
guage recognition system based on the Bhattacharyya-based
kernel, which has been shown effective for speaker recogni-
tion [2]. Typical speech analysis generates sequences of fea-
ture vectors with variable length, while support vector ma-
chine (SVM) requires fixed-dimension inputs. The key as-
pect of applying SVM to speech is to provide an SVM kernel,
which compares a sequence of feature vectors with others ef-
ficiently. Empirically we observed that the utterance-based
supervector input to SVM is better than the fixed-length-
segment-based supervector.

With MAP estimation, we adapt the GMM parameters
according to the data available for adaptation. Due to vari-
ability of individual utterances, this approach may lead to the
inconsistency among the training GMM supervectors, and
thus result in the serious mismatch between training and test-
ing supervectors. It is believed that such inconsistency can
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be compensated partly via data-driven adjustment of the rele-
vance factor. In MAP estimation, if a mixture component has
a low probabilistic count on new data, the sufficient statis-
tics will be de-emphasized, otherwise will be emphasized.
As a result, the displacement of GMM supervector from the
UBM supervector varies undesirably due to the variability of
new data available for adaptation, for example, the duration
change of individual utterance. This is because the proba-
bilistic count in MAP depends on the number of the involved
feature vectors. The relevance factor is a way of controlling
how much new data should be observed in a mixture before
the new parameters begin replacing the old parameters.

In the GMM-UBM system, the relevance factor is less
sensitive and therefore can be fixed. This is possibly due to
the nature of generative modeling [3]. However, SVM works
in a discriminative manner. In language recognition, a GMM
supervector is used to represent the language property of an
utterance and serves as an input vector to the SVM. This re-
quires the elimination of the negative effect of the duration
variation in order to manifest the saliency of the language
characteristics. Thus, we propose an adaptive scheme for
the relevance factor that changes according to the amount of
the feature data. Presently, language recognition based on
acoustic model reaches state of the art performance using
discriminative training techniques. In this paper, we mod-
ify the existing Bhattacharyya kernel to clearly separate the
information assignment of the mean vectors and covariance
matrices in different terms of the kernel. We evaluate the
proposed scheme on the language detection task of the NIST
LRE 2009 [4].

In the remainder of the paper, we introduce the conven-
tional MAP estimation for language recognition in section
2. Then, we describe the proposed adaptive relevance factor
and the Bhattacharyya-based language recognition in section
3. The performance evaluation is reported in section 4. We
summarize the paper in section 5.

2. MAP FOR LANGUAGE RECOGNITION

Usually, with EM algorithm, the UBM is trained using a large
dataset to form a language-independent model [3]. The se-
lection of dataset has to consider different languages, chan-
nels and speakers. The UBM can be denoted as
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while the language-dependent GMM, A, has the same form
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where m;, ¥;, @;, (i =1, ...,M) are respectively the mean vec-
tor, the covariance matrix, and the weight of the ith Gaussian
component.

For the MAP adaptation of A, prior knowledge is given
by the prior distribution over A, P(A). With the MAP cri-
terion, A is selected such that it maximizes the a posteriori
probability,

A= argmlaxP(MX) = argmax [P(XIM)P(A)]  (3)

where X = [x], X2, -+, Xi] is the feature vectors used to
train the GMM, A; x is a J-dimensional feature vector; and
K is the number of feature vectors. The parameters of the ith
Gaussian are adapted as follows [3],
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where ngn) and C(utt) are respectively the first and second
order sufficient statlstlcs ie.,
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and f(-) denotes Gaussian density function; 05 ( ) (p €
{m,2}, j =1,...,J) are the data-dependent adaptatlon coef-
ficients, which are given by
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The relevance factor rfp )is a parameter in the normal-
Wishart density as which the Gaussian parameters are mod-
eled. However, in conventional MAP, the relevance factor is
given as a fixed value, and the probabilistic count 7; is given
by
£ of(xm”x")
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3. GMM SUPERVECTOR WITH ADAPTIVE
RELEVANCE FACTOR

3.1 An Adaptive Relevance Factor for MAP

Assume each language can be modeled by a language-
independent mean supervector, and the distribution of the
mean supervector is Gaussian, then it can be expressed in
the following form:

m* =m!" 4 Diz;(A) (10)

where z(A) is a hidden variable vector distributed according
to normal distribution and it contains the language-dependent
information; D; is a diagonal matrix that can be trained and
it is language-independent. From the above assumption, the

relevance factor for mean (where p € {m}) can be derived to
be ™ =D2x™ i=1,.. M.

The idea of MAP estimation for GMM was presented in
[1]. The primary purpose of the MAP is to estimate the prob-
ability density function of a certain group of the data given
a prior distribution. It is reasonable that for insufficient data
the reliability is low so the value of ¢ in (8) is small and the
estimated GMM should be close to the UBM. When the data
becomes sufficient, the reliability of the sufficient statistics
is high so the value of « in (8) is large, so that the estimated
GMM should be displaced further from the UBM. This is re-
flected by equations (4), (5) and (8). Thus, when applying
MAP to derive GMM supervector, to assure the reliability of
the estimated model, the GMM supervector should be close
to the UBM supervector when the feature data is insufficient,
and vice versa.

However, in language recognition, usually GMM super-
vector is purposely used to represent the language of the ut-
terance. It is generated from the universal languages which is
represented by the UBM supervector. This requires the dis-
tance from the universal language to the particular language
does not vary with the length of the utterance. In other words,
the GMM supervector is required to stably represent the char-
acteristics of the particular language regardless of length of
the utterance spoken. In short, ideally, each utterance with
the same language is expected to give the same GMM su-
pervector regardless of the duration of the utterance. In this
way, the supervectors can stably represent the language with-
out being affected by the duration of an utterance. Therefore,
we propose an adaptive relevance factor as follows
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where @ is a hidden invariant function, ky is any neighbor
point which can be approximated with the average size of
the utterances. According to (9), when k increases, the prob-
abilistic count 7); increases. Take the expectation of the 1);,
we have
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where E is the expectation operator. If we chose ¢ (k) ~ 6pk
by ignoring the high order polynomial terms we can arrive at

E .
(m)) o< (1:) o constant vector (13)
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where 6 is a constant value which can be obtained from the
known database. It means the expectation of the & can be

(m)

stable when we have the relevance factor 7, as follows

A" ~ 6ykD; 25" (14)

This ensures that the distance measure between the GMM
supervector and UBM supervector is not seriously affected
by the length of the adaptation utterance.

!n [5] for speaker recognition study, the similar derivation reaches the
same result by assuming the supervector to be modeled by eigenchannel
factor, eigenvoice factor and the residual speaker-dependent factor.

1994



3.2 Bhattacharyya-Based GMM-SVM Kernel

In our previous work [6, 7], we derived an Bhattacharyya-
based distance between two GMMs as follows
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Obviously, the distance is composed of two terms, i.e.
the mean statistical dissimilarity and the covariance statis-
tical dissimilarity. In order to avoid the unnecessary cross
effect of the parameters, we consider that the mean statisti-
cal dissimilarity only carries the first-order of the adaptation
data information with the mean vectors and the covariance
statistical dissimilarity carries the second-order of new data
information with the covariance matrices. Usually, the first
term can be applied solely; we can assume that the covari-
ance is not adapted and only exploit the mean information in
the equation. By combining the two terms in (15), we arrive
at the following kernel in practice
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4. PERFORMANCE EVALUATION
4.1 Evaluation on NIST LRE 2009

In the evaluation, 56-dimensional shifted delta cepstrum
(SDC) features formed from Mel-frequency cepstrum coeffi-
cient (MFCC) with 7-1-3-7 delta-shift pattern (refer to N-d-
P-k parameters in [10]) plus 7 static cepstral is computed af-
ter voice activity detection (VAD). We investigate the perfor-
mance of the proposed language recognition system through
the NIST LRE 2009 task. There are 23 target languages
used for this evaluation, namely, Amharic, Bosnian, Can-
tonese, Creole (Haitian), Croatian, Dari, American English,
Indian English, Farsi, French, Georgian, Hausa, Hindi, Ko-
rean, Mandarin, Pashto, Portuguese, Russian, Spanish, Turk-
ish, Ukrainian, Urdu, and Vietnamese. Unlike LRE-2007
which has only telephony speech databases, LRE-2009 has
two catagories of data sources named conversational tele-
phone speech (CTS) and Voice of America (VOA) narrow-
band speech. In this experiment, the CTS training database
are collected from CallFriend, OHSU, LREO7 Train, OGI22
and SREO06; and the VOA data are mainly from the VOA3
database provided by NIST and LDC, VOA7 provided by
NIST and VOAS downloaded from the web-site.

LRE 2009 30 seconds closed-set task
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Figure 1: DET plot of the language recognition systems on NIST
LRE 2009 30 seconds closed-set task

4.2 Core Classifiers

In our proposed Bhattacharyya-based system, we use 512
mixture components for GMM. We trained the diagonal ma-

trix D by using EM algorithm with the initial D is DSO) =
(Zgu))’%. Although the adaptation of the relevance factor in

the (14) is only for mean vectors i.e. Fm)

7, we extend the same

(Z)_ym)
1 l °
The value of 6 is set to 8.2 x 10~* via experiment 2. In this
evaluation, we developed the proposed Bhattacharyya-based
system named as Bhatt. There are three sets of the imple-
mentation: Bhatt-fix is with the relevance factor being set to
16; Bhatt-pro is with the relevance factor being adapted by
(14). In addition, for the performance comparison, we im-
plement the following language recognition systems on the
LRE 2009 task with the same training databases and fea-
ture processing. 1) GLDS-SVM: The GLDS-SVM system
is based on the work reported in [8]. The feature vectors
extracted from an utterance are expanded to a higher dimen-
sional space by calculating all the monomials. All monomi-
als up to order 3 are used, resulting in a feature space ex-
pansion from 56 to 32509 in dimension. 2) GMM-UBM: In
the GMM-UBM system [3], firstly, 2048-mixture UBM was
trained by using the universal background databases contain-
ing all of the target languages. The 2048-GMM of the target
language is trained by using the training database. We used
the Top-N (N is set to 20) method to reduce the computa-
tional complexity of the Gaussian probabilities. 3) GUMI-
pro: A GMM-UBM mean interval (GUMI) GMM-SVM sys-
tem [2] is developed with the adaptation of the relevance fac-
tor accroding to (11).

Outputs of individual classifiers are calibrated with sep-
arate linear backend followed by linear logistic regression
(LLR). The calibrated scores are then combined via a final
stage of LLR. Note that the development and evaluation data

adaptation to variance matrix estimation in (5), i.e. 7

2We obtained the 6y value by investigating the average length of the
feature data and the best value of the fixed relevance factor.
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LRE 2009 10 seconds closed-set task
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Figure 2: DET plot of the language recognition systems on NIST
LRE 2009 10 seconds closed-set task

are grouped into 3-, 10- and 30-second utterances. We only
conduct the experiments on 30- second utterances. Although
the group of data are labelled under 30-second categories, the
actual duration of utterances varies. The training is done on
the 30-second development data using the FoCal Multiclass
toolkit [11]. Log-likelihood ratio score from all classifiers
are stacked together and a linear backend is trained. This is
then followed by an LLR stage. The scores are converted
into log-likelihood ratio for final decision with a threshold
set at zero. A development set was designed for the train-
ing of backend, calibration. This development set consists of
8000 trials, and is built upon LREO7 augmented with addi-
tional trials taken from VOA3. The development set is split
into two halves, one for training and the other one for cross-
validation.

In this paper, we give the results of the closed-set task
with nominal duration of 30 seconds and 10 seconds. Figs.
1 and 2 give the detection error trade-off (DET) plot of the
LRE 2009 systems; while Tables 1 and 2 list the equal error
rate (EER) and minimum detection cost function (min DCF)
values corresponding to the Fig. 1 and Fig. 2 respectively.
It can be seen that the system Bhatt-pro is apparently better
than Bhatt-fix, it suggests that the adaptation is a right at-
tempt. It is also noticed that the Bhatt-pro is better than the
previous version of GUMI-pro, it means that the proposed
Bhatt system is of something valuable over the conventional
GUMI method.

5. SUMMARY

In this paper, we introduced an adaptive scheme for the rel-
evance factor to mitigate the negative effects to the language
characteristics from the individual utterance, especially the
effect caused by the duration variability. We developed a
Bhattacharyya-based GMM system for language recogni-
tion. In particular, there are two distance components named
the mean and covariance statistical dissimilarities. We mod-
ified the mean statistical dissimilarity to carry the informa-
tion from only the mean vectors so that each dissimilarity

Table 1: The comparison of the language recognition systems in
terms of EER and minimum cost for LRE 2009 30s closed-set task

LRE 2009, 30s, EER min. Cost x 100
closed-set

GMM-UBM 9.76 % 9.32
GLDS-SVM 6.88 % 6.81

Bhatt-fix 5.16 % 5.05

GUMI-pro 4.47 % 4.43

Bhatt-pro 4.21 % 4.14

Table 2: The comparison of the language recognition systems in
terms of EER and minimum cost for LRE 2009 10s closed-set task

LRE 2009, 10s, EER min. Cost x 100
closed-set

GMM-UBM 12.55 % 12.38
GLDS-SVM 11.79 % 11.77

Bhatt-fix 11.02 % 10.65
GUMI-pro 9.21 % 9.14
Bhatt-pro 9.04 % 8.98

depends on a solely informative resource. This may bring
more distinct informative sources for classification when we
exploited both mean and covariance information. We demon-
strated the effectiveness of the proposed system by using the
LRE 2009 task.
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