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ABSTRACT

The main property of the ordered minimum-phase (OMP)
sets is that they can be ordered as minimum-phase sequences.
Several theoretical properties of such sets are already known.
Amongst them, the set of all points having OMP property
is an open non empty set. In this paper we present some
numerical properties of the OMP sets, which may lead to
systematic and fast exploration of permutations, in order to
discover the OMP sets. Both are using lists of permutations:
in the first case we have the most appropriate permutations
list, in the second case we use a tabu-list of permutations.

1. INTRODUCTION

For processing usage, it is very common to describe a set of
samples by mapping it as a sequence of samples [1]. How-
ever, the properties of a sequence are different from the prop-
erties of a set; many additional constraints in the resulting
sequence can add into the properties of initial set [2]. On
the other hand, one can use certain properties of resulting se-
quence to compress the information contained in a set. Thus
the issue of converting a set into a sequence deserves to be
investigated.

In an attempt to reduce the amount the data storage, the
ordered minimum-phase (OMP) sets have been introduced
[3, 4]. Their main property is that they can be ordered as
minimum-phase sequences. Recall that a function is called
minimum-phase function if all zeros are inside the unit open
disk [5]. Based on modulus or phase of the Fourier trans-
form, the reconstruction of a complex sequence can be pos-
sible when we know in advance that its corresponding z-
transform is a minimum-phase function or maximum-phase
function [6].

Several theoretical properties of such sets are already
known [7]. Amongst them, we mention several:

1. The set of all points from R¥*! (or C¥*+!) having OMP
property is an open non empty set.

2. Whenever x(0) +x(1)+---+x(M)
0,M} has not OMP property.

3. Any set of real, positive and distinct numbers has OMP
property.

4. Any set of three real numbers (except when their sum is
zero) has OMP property.

5. Any set of complex numbers {x(0),x(1),x(2)}, which

=0, the set {x(n)|n=
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satisfies

max{[x(0)], [x(1)], |x(2
+median{|x(0)|,

)|} > min{|x(0)], [x(1
(DI, ()]}

) (21}

has OMP property.

6. Any set of four real numbers {x(0),x(1),x(2),x(3)},
which  differ in  modulus and  satisfying
x(0)x(1)x(2)x(3) > 0 and x(0) +x(1) +x(2) +x(3) # 0,
has OMP property.

7. For M = 2 (set of complex numbers) and M = 3 (set of
real numbers), we can find situations that no ordering of
sets will lead to a minimum-phase sequence.

Using Schur transform (Appendix A) and performing all per-
mutations, one can find if a set has OMP property and can
also find the corresponding minimum-phase sequence. How-
ever, this may be computational expensive and fast methods
would be appreciated.

The goal of this paper is to present few systematic proce-
dures for finding the minimum-phase sequence from a given
set. To this end some numerical properties of the OMP sets
are discussed (Section 2), which may lead to systematic and
fast exploration of permutations (Section 3), in order to dis-
cover the OMP sets. Two approaches will be presented, and
both are using lists of permutations: in the first case we shall
implement the most appropriate permutations list, in the sec-
ond case we shall use a tabu-list of permutations.

To proceed we briefly specify the nomenclature.

Definition 1 Ler {x(0),x(1),...,x(M)} be a finite complex
valued set. The set is said to have ordering minimum-phase
(OMP) property if there exists a permutation

such that Y(z) = y(0) 4+ y(1)z7' + ---
minimum-phase function.

The point (x(0),x(1),...
said to have OMP property if the set {x(0),x(1),...
has OMP property.

+yM)z™ is a

X(M)) from RMFL o CMHT s

x(M)}

All polynomials will be considered as powers of 7!
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Figure 1: Relative frequency of OMP sets for real and com-

plex sets, with uniform distribution inside a cube or inside a

sphere

2. NUMERICAL PROPERTIES OF THE OMP SETS
2.1 Relative frequency of OMP sets

Our first goal was to determine the relative frequency of
OMP sets. For this purpose we select the number of ele-
ments of the set from 3 to 8, and for every such selection
we have generated a number of 10000 sets. Then we have
verified whether any generated set has OMP property or not.
We found that OMP property is quite common, however
the relative frequency depends on the way the set is gener-
ated: when data is real or complex, or if it has an uniform
distribution inside a cube or inside a sphere. In the first case
the real or imaginary parts are uniform distributed; in the sec-
ond case the modulus and the phase are uniform distributed.
The outcomes are presented in Figure 1. Except com-
plex cube distribution, in all shown situations the relative
frequency is rather high. We also found that the relative fre-
quency increases if the elements of the set (i.e. the coeffi-
cients of the permuted sequence) are concentrated in certain
area. All these support the interest in systematic procedures
for finding the minimum-phase sequence from a given set.

2.2 OMP sets and associated minimum-phase sequences

Another issue is whether an OMP set has only one or many
more permutations such that associated sequence y(n) is
minimum-phase. We have generated 2000 minimum-phase
sequences and for the corresponding OMP set, we have
looked for all permutation which provided minimum-phase
sequences. The histograms of these permutations are pre-
sented in Figure 2. On y axis we have the number of OMP
sets having a certain number x, corresponding on x axis. We
can see that the number of minimum-phase obtained from an
OMP set has the properties:

1. We have sets with only one minimum-phase sequence;

2. The number of OMP sets having a certain number of
minimum-phase sequences has a general tendency of de-
creasing;

3. The maximum number of OMP sets is obtained for a
large number of minimum-phase sequences.
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Figure 2: Histograms of minimum-phase sequences obtained
from an OMP set

To conclude, we may expect that an OMP set has more than
one minimum-phase sequence. However it may happen also
that there will only one minimum-phase sequence for an
OMP set.

2.3 Modulus distribution of OMP sets

One of the properties of minimum-phase systems which may
start our discussion is the energy concentration theorem [8].
From this property, one may suppose that a condition for a
certain sequence x(n) to be a minimum-phase is to have its
energy concentrated around origin such that:
x(O)] > (1) > -+ > x(M)[ > 0. (1

This happens for real positive sequences, but it is not any-
more valid if we skip to real sequences, with both positive
and negative samples, and for complex sequences [3, 4].
However, one can assume that there is a relation between the
moduli of the samples and the probability that the sequence
is minimum-phase or not [9].

To this end we have generated 200000 minimum-phase
sequences of length M + 1 with y(k) # 0, k = 0, M. The roots
of

Y(Z) :)7(0) er(l)z_l +..- +y(M)Z_M

have been selected with uniform random phase (between O
and 27) and random modulus (less than 1). Thus we obtained
200000 sets {x(0),x(1),...,x(M)} such that

{x(0),x(1),...,x(M) } = {(0),y(1),...,y(M)}

and
x(0)[ > [x(1)] > -+ > |x(M)| > 0.

For M = 9 the number of appearances of x(n) as the k-
th sample y(k) in minimum-phase sequences generated is
shown in Table 1. It is clear that the sample with the small-
est modulus is most often as the highest order coefficient in
minimum-phase function. Alternatively, the sample with the
largest modulus may occupy usually the lowest order posi-
tions.

This behavior can be emphasized by mapping the Table 1
as a three-dimensional representation (Figure 3). We have
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Lk O] O] @] 3] x@H][ x5 [ x0)[ D[] x® ] x0O
0 || 239882 | 420543 | 282314 | 55487 1736 37 1 0 0 0
1 || 205548 | 300709 | 328651 | 144509 19355 1161 67 0 0 0
2 || 178646 | 171695 | 237255 | 315489 | 88097 8292 502 23 1 0
3 || 168285 | 74838 | 85426 | 37095 | 262858 | 34914 2632 96 1 0
4 12616 | 22829 | 45458 | 69569 | 55079 | 172081 12624 484 4 0
5 62217 6814 | 15042 | 30709 | 56473 | 732752 | 92271 3647 75 0
6 17358 1976 4543 10605 16604 | 41569 | 861395 | 45166 783 1
7 1880 486 1111 2352 3586 8106 | 27256 | 935267 19861 95
8 24 100 186 312 472 1016 3088 14661 | 974108 6033
9 0 10 14 18 28 72 164 656 5167 | 993871

Table 1: Number of appearances of x(n) (moduli in decreasing order) as the k-th sample y(k) in all 200000 minimum-phase

sequences generated.

also presented the corresponding images for M = 20 (Fig-
ure 4), and in this cases it is much clearer that the sample
with the smallest modulus is most often as the highest order
coefficient in minimum-phase function.

3. SYSTEMATIC PROCEDURES FOR FINDING
THE MINIMUM-PHASE SEQUENCE FROM A
GIVEN SET

Finding the minimum-phase sequence from a given set can
be done by using Schur transform (Appendix A) and per-
forming all permutations. With such strategy one can find if
a set has OMP property and can also find the corresponding
minimum-phase sequence. However, this may be computa-
tional expensive and fast methods would be appreciated.

In the following we shall present two approaches for this
issue: the first uses a list of most appropriate permutations,
and the second one implements a tabu-search like algorithm.

3.1 The approach based on the list of the most appropri-
ate permutations

Based on previous experimental results (Section 2.3), we can
indicate which is the most appropriate list of permutations
that one can use to convert a set into a minimum-phase se-
quence. This approach has two parts: first we generate a list
of most appropriate permutations, then we search the OMP
set based on the generated list.

3.1.1 Generation of a list of most appropriate permutations

For any permutation
x(1) x(M) )

x(0)

y(0) (1) y(M)
we can estimate the probability to produce a minimum-phase
sequence. This can be done by using the number of oc-
currences from Table 1 and assigning to each permutation
a score equal with the product of the number of appearances.

As an example, consider the case when |x(0)] > |x(1)| >

--+ > 1x(9)|, and we have the following permutation

x(0) x(1) x(2) x(3) x(4) x(5) x(9)
x(1) x(0) x(3) x(2) x(4) x(5) x(9)
which has only two transpositions. For such permutation, the
score is given by (Table 1):

205548 - 420543 - 85426 - 315489 - 55079-

Figure 3: Number of appearances of x(n) as the k-th sample
y(k) (M =9).

732752 -861395-935267 - 974108 - 993871.

In this way we assign a score to all permutations. Having the
score for all permutations and using this score in decreasing
order, we can order the permutations in a list of most ap-
propriate permutations for converting a set into a minimum-
phase sequence. For instance, we found for M = 9 that
the most appropriate 10 permutations (Table 2) are different
from those provided by transpositions. Note that the natural
order of permutations as given by transpositions is usually
generated by software.

3.1.2 Searching by using the list of most appropriate per-
mutations

The proposed procedure is as follows. When the set is given,
we compute its sequence of moduli. Then we perform one
by one the permutations given by the order from the most
appropriate permutations list, until the first minimum-phase
sequence is detected.

Our experiments have shown that we did not miss any
OMP set by using the most appropriate permutations list pro-
cedure. However, this may happen when the procedure is not
entirely respected:

1. The matrix score (Table 1) is obtained with a small num-
ber of sequences generated;
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Figure 4: Number of appearances of x(n) as the k-th sample
y(k) (M =19).

213 (114|567 [8]9]|10
201 (31451678910
2134115678910
1[3]2[4]5]6]7[8[9]10
372114 |5]6|7[8]9]|10
1(3]2[4]5]6]7[8[9]10
3124151678910
371 (2145678910
2131451678910
2743115678910

Table 2: The best first 10 permutations for M = 9.

2. The search is fulfilled using a reduced list of most appro-
priate permutations.

For instance, we perform simulations when the best permu-

tation list contains only the 50 first permutation (those who

have together 98% of all score). In this case we get only

about half of OMP correct detections.

As comparison, one can also perform permutations from
the natural order permutations list, until the first minimum-
phase sequence is detected. Our simulations show a signif-
icant reduction of computational effort needed by the pro-
posed approach to detect the minimum-phase sequence. The
reduction is in average about ten times for M = 7 and similar
results have been obtained for various M (5 <M < 12) [9].

3.2 Tabu-Search Approach

We start by noting that the Schur transform structure may
lead to a tabu-list [10]. Indeed, when a permutation does
not give a minimum-phase sequence, then for a certain k, we
have ¥, < 0. All permutations having the same first k and last
k samples may be included in the tabu-list and they do not
need to be considered later on as a candidate for providing
a minimum-phase sequence. Thus finding a minimum-phase
sequence from a given set can be implemented in a similar
way as a tabu-search problem.

There is however an important difference between the
tabu-search method implemented for optimization and the
proposed approach to be used for finding the OMP sets. In
the case of optimization there is a fixed finite length tabu-

11234567 [8]9]10
201 (31451678910
11324567 [8]9]10
311 (2145678910
2031145678910
3121451678910
112143567 [8]9]10
211 (41351678910
114123567 [8]9]10
471 12(3[5[6[7[8]9]10

Table 3: The first 10 permutations for M =9 in natural order
given by transpositions.

list which is updated after every iteration. Moreover, some
of previous states belonging to the tabu-list must disappear
when updating the tabu-list.

This is not the case when tabu-search is applied for find-
ing an OMP set; we still keep permutations on the tabu-list
until we are sure that no one of possible permutations which
may be derived, fits to the permutations on the list.

Alternatively, if a new candidate for the tabu-list is ob-
tained, the length of tabu-list must be increased. It follows
that when the tabu-search is used to find an OMP set, the
tabu-list may be excessively large and the search for tabu per-
mutations may be rather long. This seems a major drawback
of the approach.

We have performed tests with sets having 7, 8,9, 10 or 11
elements and in average the tabu-search approach took less
time than to perform all the permutations. However, some-
times tabu-search is not the fastest method. Indeed, we have
verified the source of latency, and we have discovered that
the tabu-list is growing quickly.

Consequently it takes sometimes less time to compute the
Schur transform for a permutation, than to compare the per-
mutation with all the tabu permutations from the tabu-list. In
addition, the tabu-list must be modified, if it is the case, and
this takes time too, especially when the tabu-list is very large.

Let us consider the case of a set having 8 elements. Using
all permutations we need to compute the Schur transform for
5040 times, thus the Schur transform routine is called for
5040 times. The tabu-list might be about 1000 lines for this
case, and for every new permutation we have to compare this
new one, partially or entirely, with all these 1000 lines.

Unfortunately we can have often sets where the ;. co-
efficients are very large and consequently almost every new
permutation fills a new position in the tabu-list. Thus the
tabu-list must be updated almost at every iteration and in such
situation the tabu-list is growing significantly.

Recent processors may compute the Schur transform
even faster than searching a very long tabu-list. To reduce
the period for comparison of permutations through the tabu-
list, we keep a permutation in the tabu-list until we are sure
that this combination cannot appear later.

In our simulations, for every M from 6 to 10, we have
considered 100 sets having M + 1 elements. Using the tabu-
search approach we have determined the OMP sets. To vali-
date our results we have performed all permutations by trans-
positions, using the same testing sets. To the end, we con-
clude that the results for both methods were the same. Ta-
ble 4 shows the average of computational time in ms, needed
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M OMP non OMP
Transpositions | Tabu-Search | Transpositions | Tabu-Search

6 12.21 9.91 33.30 13.21

7 126.23 43.23 271.7 79.2

8 1019.9 265 24944 500.8

9 10638 2777 29854 5902

10 21056 25385 32886 27818

Table 4: The average of computational time (ms) to find if a set is an OMP set or not, using permutation by transpositions or

by tabu-search method

to find if a set is an OMP set or not, using permutation by
transpositions or by tabu-search method. In almost all situ-
ations, tabu-search is faster. However, the reduction is not
substantial as in the case of list of appropriate permutations.

4. CONCLUSIONS

In this paper we have discussed several numerical proper-
ties of the OMP sets. We have found rather high relative
frequencies of OMP sets, and an OMP set may have one
or many more associated minimum-phase sequences. More-
over, we have established that the minimum-phase sequences
are likely to have their moduli in decreasing order.

We have concentrated on fast systematic methods for
finding an OMP set. First the approach based on the list of
most appropriate permutations has been presented and this
gives attractive results. It may also provide wrong decisions
on OMP property, if the list is reduced or based on roughly
estimations. The second method involves tabu-search ap-
proach, which does not fail, but it is not so fast. Mainly,
this is a result of long time needed for comparisons on the
tabu-list.

A. SCHUR TRANSFORM

Following [11], for a polynomial of degree n in z~! of the
form:
P(z)=ap+az '+ +az ",

the reciprocal polynomial of P is defined by:
P*(2) =@ +ay 12 "+ +doz "

Definition 2 The Schur transform of the polynomial P of de-
gree n is the polynomial TP of degree n — 1 defined by

n—1

TP(z) =aoP(z) — anP*(2) = Y (@oar — andn—i)z . (2)
k=0

The iterated Schur transforms TP, T3P, ..., T"P are de-
fined by:

TP =T(T*'P), k=2,3,....n (3)

We set y, = T*P(e), fork=1,2,...,n.

Theorem 1 (Schur-Cohn Algorithm) [11] Let P be a poly-
nomial of degree n in 7', P # 0. Then all zeros of P lie
inside the open unit disk |z| < 1 if and only if Y. > 0, for all
k=1,2,....n
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