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ABSTRACT

Audio segmentation has applications in a variety of con-
texts, such as automatic broadcast news transcription, audio
information retrieval, and as a pre-processing step in auto-
matic speech recognition (ASR). The Support vector ma-
chine (SVM), as a binary classifier, is commonly used for su-
pervised audio signal segmentation and classification. In this
study, inspired by the idea of scanning window, we present
and evaluate an unsupervised audio segmentation approach
based on the SVM training error rate. The approach is unsu-
pervised in the sense that it does not require prior knowledge
of audio classes. Experimental results indicate that the seg-
mentation technique outperforms traditional Bayesian infor-
mation criterion (BIC), generalized likelihood ratio (GLR),
and Gaussian mixture models (GMM) methods, particularly
in detecting audio landmarks of short duration.

1. INTRODUCTION

Many audio streams (e.g., broadcast news from either tele-
vision or radio), comprise signals from a wide variety of
sources, most notably including speech and music. Since
the sources are basically different in acoustic nature, a single
method cannot be used to process the entire audio stream.
Audio segmentation has thus become an important pre-
processing step to break audio streams into homogeneous
segments so that each segment can be addressed in a different
manner.

State-of-the-art audio segmentation techniques include
both supervised and unsupervised approaches. Supervised
segmentation methods can be categorized as model-based,
such as GMM or HMM [1], or decoder-based [2]. Model-
based methods perform classification over a small number
of frames in the audio stream, and are able to detect short
duration segments. Nevertheless, these methods require pre-
trained models for each audio class to be used in segmen-
tation. They are thus limited to applications where acoustic
classes are known a priori and a large amount of training data
is available.

Unsupervised segmentation techniques are generally
based on a likelihood ratio test between two hypotheses con-
sisting of change and no change for a given observation se-
quence. Examples of these approaches include model selec-
tion based segmentation, such as Bayesian Information Cri-
terion (BIC) [3, 4], and metric based segmentation, such as
GLR [5]. These techniques, which work based on a scanning
window scheme, have recently become popular because (i)
they are robust and effective for the task, and (ii) they do not
require prior knowledge of audio classes as models are es-
timated directly from the observation sequence. These facts
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enable them to serve a wider range of applications as well.
However, both techniques detect changes over a large win-
dow, usually longer than 2 seconds, and tend to miss many
short-duration segments.

Designed specifically for audio segments of short dura-
tion (i.e., less than 2 seconds), in this paper we present and
evaluate an unsupervised segmentation approach, inspired by
the idea of scanning window used in the above mentioned
unsupervised methods and based on SVM training error rate.
The approach is unsupervised in the sense that it does not
require prior knowledge of audio classes.

This paper is organized as follows: In the following sec-
tion, we provide a brief review of the SVM. The segmenta-
tion algorithm is described in Section 3. Section 4 presents
the experiments performed, followed by a discussion of the
obtained results in Section 5. Finally, we draw conclusions
and discuss future work in Section 6.

2. SUPPORT VECTOR MACHINE

A SVM is a binary classifier that makes its decision by con-
structing an optimal separating hyperplane (OSH) that di-
vides a d-dimensional real space into two half spaces with the
largest margin [6]. Binary classification is the task of classi-
fying the members of a given observation sequence into two
groups on the basis of whether they have the same property
or not. More precisely, let D = {(x;,y;), i =0, ..., m—1}
denote a training dataset in which each example x; € R¢ be-
longs to a SVM binary class labeled as y; € {—1,+1}. A
separating hyperplane (also called discriminant function) sat-
isfying w'x + b = 0, divides the dataset such that all points
with the same class label are on the same side of the hyper-
plane, where x is an input vector, w € R? is an adjustable
weight vector, and b € R is a threshold or bias. Furthermore,
we let w' denote the transpose of w.
The OSH problem can be formed as,

minimize %||w||2
subject to y;(W'x;+b) > 1, i =0, ..., m—1.
The solution to this quadratic problem can be found by
computing the saddle point of the Lagrange function, where
(1) is formulated as,

m—1 1 m—1m—1
La) = ) o — 3 Y Y aogyiyixi'x;, (2
i=0 i=0 j=0
subject to,
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m—1
g% i (3)
C>0>0, i=0,...,m—1,

where C is a penalty parameter that determines the trade-off
between margin maximization and training error minimiza-
tion. Suppose that a; maximizes (2), then, the parameter w
of the discriminant function has the expansion,
m—1
w=Y ayx;. 4)
i=0
The bias of the OSH can be determined from a; and from
the Karush-Kiihn-Tucker (KKT) conditions as
m—1
b=yj— Y ayxixj, Q)
i=0
with any j such that C > «; > 0, i.e., support vectors. The
corresponding training examples (x;,y;) with non-zero coef-
ficients a; are called support vectors. The decision function
for classifying a new data point x can be written as,

m—1
f(x) = sgn{ ayixi'x+ b}. (6)
i=0

=

The decision function (6) works well when the decision
boundary between the two classes is linear. However, the
training set is not always linearly separable. To achieve bet-
ter generalization performance, the input data can be first
mapped into a high-dimensional feature space where the
decision boundary is linear. As shown in Figure 1, this
mapping, ¢ : X — F, can simplify the classification task.
Then, the OSH is constructed in the feature space F. If
¢(x) denotes a mapping function that maps X into a high-
dimensional feature space, F', the decision function (6) be-

comes,
m

~1
f(x) = sgn{ Y aiyiG(xi,x) +b}7 @)
i=0
where G(x;,X;) = ¢(x;) - ¢(x;) is called the kernel function
and must be a positive-definite function [7]. Examples of
such positive-definite functions are as follows,

Linear kernel — G(x4,Xj) = X;-Xj,

Polynomial kernel ~— G(x;,x;) = (x;-x;+1)",
2
i = x|

7 )

where (-) denotes the dot product, n € N is the degree of the
polynomial kernel, and ¢ € R is the width of the Gaussian
radial basis function (RBF) kernel. In addition to the above
mentioned kernels, there are other kernels which are not ex-
ploited in this study (for more details see [6]).

Gaussian RBF kernel — G(x;,x;) = exp(— 5
c

3. SEGMENTATION ALGORITHM

Using the SVM or generally kernel-based techniques for the
task of audio segmentation is not a novel concept. Lu et al.
[2] adopted a bottom-up binary tree combining three two-
class SVM classifiers for content-based audio segmentation.
Ramona and Richard [8] presented a SVM-based approach

+1

Figure 1: Feature map can simplify the classification task.

combined with a median filter post-processing for the task of
speech/music segmentation. Both of these methods, are sim-
ilar to model based segmentation methods, since they require
a large amount of training data as well as pre-determined
audio classes to train the SVM classifier. In other words,
their methods are supervised. In an unsupervised framework,
Lin et al. [9] introduced a novel speaker change detection
approach based on the SVM called SVM training misclas-
sification rate (STMR). The foundation of our algorithm is
taken from their work. Other unsupervised kernel-based ap-
proaches for audio segmentation have also been proposed in
[10, 11]. Although we also use the SVM, this study presents
an unsupervised method for the task of audio segmentation.

®-]
|+l

Figure 2: 2-D SVM hyperplane for classifying audio features
in two adjacent windows when they come (a) from the same
class, and (b) from different classes.

The basic concept of the segmentation algorithm is illus-
trated in Figure 2. After framing and feature extraction, an
audio stream is represented as a sequence of frames with d-
dimensional features. Next, for training the SVM classifier,
two windows which comprise the same number of frames are
considered. Inspired by the idea of window scanning which
has been widely used in conventional unsupervised segmen-
tation methods such as BIC and GLR, we begin with the as-
sumption that there is a change point located in the audio
stream at the center of the two adjacent windows under con-
sideration. The data of these two windows, separated by this
hypothetical change point, are labeled as (+1) and (—1) for
training the SVM hyperplane. As shown in Figure 2(a), if
these two windows come from the same class, they will not
have significant differences, and the SVM hyperplane will
not be able to effectively discriminate between them. On the
contrary, if the two windows come from different classes,
they will have significant differences so that the SVM hyper-
plane can effectively classify these data into two classes (see
Figure 2(b)).
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Hence, there will be a relatively large training error rate
when the two windows are from the same class while it will
be small for different classes. If this training error rate is
below a threshold value, the hypothesized change point will
be accepted, otherwise it will be rejected. After one hypothe-
sized change point has been tested, the two adjacent windows
are moved one frame to the right, and then the new hypoth-
esized change point will be tested again. This procedure is
repeated until the right hand window reaches the end of the
audio stream. This technique provides independent hyper-
plane training and also training error computation for every
two adjacent windows, thus we can avoid the error broadcast-
ing problem [9] that is an important drawback of methods
such as BIC [3]. The segmentation algorithm is summarized
as follows:

1. Construct feature set X = {x;, i = 0, ..., m— 1} from
the frames of the audio stream (where i is the frame in-
dex).

2. Label frames of the left and right hand windows of the
hypothesized change point r as (—1) and (41) respec-
tively, i.e., {x;, i =0, ..., r—1} € (=1) and {x;, i =

o, m—l}é(—kl),wherer:%.

3. Train an SVM classifier using these labeled frames.

4. Test the SVM classifier with the same data used for train-
ing and calculate the training error rate.

5. If the training error rate is below a threshold, accept r as
a change point, else disregard it.

4. EXPERIMENTS
4.1 Database

The problem of speech/music discrimination [12, 13, 14, 8]
has attracted significant research effort for more than a
decade, motivated primarily because it is essential for auto-
matic transcription of broadcast news as well as audio infor-
mation retrieval [15, 16]. Considering this, we conducted our
experiments on Scheirer and Slaney’s database [13] which
comprises both speech and music segments recorded at ran-
dom times from FM radio!. The total duration is 40 min-
utes consisting of 20 minutes of speech from both male and
female speakers, as well as 20 minutes of music including
samples of classical, jazz, pop, rap, and rock music, with and
without vocals.

Figure 3 shows the distribution of duration of the audio
segments derived manually from the database. About 33% of
the segments are less than 2 seconds in order to enable us to
assess our claim that the segmentation algorithm is capable
of detecting changes in short duration segments. These seg-
ment are concatenated to form audio streams for performing
experiments.

In our experiments, 13-dimensional mel-frequency cep-
stral coefficients (MFCCs) are extracted every 10 ms from
frames of 20 ms duration as audio features. While origi-
nally developed for ASR applications, the MFCCs have been
shown to be quite useful for music modeling, and in particu-
lar for speech/music discrimination [17].

"http://www.ee.columbia.edu/~dpwe/sounds/musp/music-speech-
20051006.tgz
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Figure 3: Distribution of audio segments durations in the
database constructed by concatenating the segments manu-
ally derived from Scheirer and Slaney’s database.

4.2 Evaluation Metrics

In an audio segmentation system, two possible errors can
occur. Type-I errors occur if a true change is not detected
within a certain neighborhood (0.25 second in our case).
Type-1II errors occur if a detected change does not correspond
to a true change (also called false alarm). Type I and II errors
can be measured in terms of precision (PRC) and recall
(RCL) respectively, which are defined as,

no. of correctly found changes
total no. of changes found
no. of correctly found changes
total no. of true changes

PRC =

®)

RCL =

€))

Recall is usually stressed more than precision in evaluating
segmentation algorithms since false alarms can be compen-
sated by subsequent procedures such as clustering or classi-
fication [18]. Here, both metrics are treated equally in this
study.

The F-measure combines PRC and RCL into one mea-
sure as,

2 x PRC x RCL
F-measure = m (10)

The F-measure takes on values between 0 and 1, where a
higher score on this metric indicates better performance. In
our experiments, in a parameter tuning stage, the threshold
values and parameters for each segmentation algorithm are
chosen to maximize the F-measure.

S. RESULTS

In this section, the performance of the proposed approach
for speech/music segmentation is compared against that of
conventional segmentation techniques based on the metrics
introduced in the previous section.

We first evaluate the segmentation algorithm on audio
data using the SVM with different kernel functions as men-
tioned in Section 2. Figure 4 shows an example of this ex-
periment on a 9-second audio stream with 3 change points.
We assume there is only one specific speaker or music genre

1264



true change true change

true change

o o
= [N}
o o

Training error

o

Linear
Polynomial
RBF

o o
o 4
o

ining error

0.05

Tral

o

400
200

BIC

-200

-200
&
© -400
-600

Time [Sec]

Figure 4: The audio stream (a), SVM training error rate trajectories for different kernel functions with n = 2 for the polynomial,
o = 1 for the Gaussian RBF, and C = 1 for all kernels (b), GMM training error rate trajectories for different number of
Gaussians (5,10,20) (c), BIC curve with A = 2.75 (d), and GLR curve (e). Dashed and dash-dotted lines represent thresholds

and true change points, respectively.

in each audio segment (this was considered while concate-
nating the audio segments). Two adjacent windows are cho-
sen to be 100 frames (1 second) and are shifted one frame
to the right in iterations of the algorithm until the right hand
window reaches the end of the audio stream. Also, the pa-
rameter C of the SVM classifier is set to 1 in all iterations of
our experiments. As previously noted, in the parameter tun-
ing stage, these parameters are adjusted to maximize the F-
measure. Experiments in the parameter tuning stage are con-
ducted on ten 9-second audio streams which are randomly
selected from the database. The best parameter settings ob-
tained from this stage are used for the following experiments.

As can be seen from Figure 4(b), the SVM classifier
along with the polynomial kernel (n = 2) or the Gaussian
RBF kernel (6 = 1), always correctly classifies frames of the
two adjacent windows into two classes. Consequently, train-
ing error rate trajectories for these two kernels are almost
zero over the time and this phenomenon causes false alarms
to occur for any threshold. On the other hand, the trajectory
for the SVM trained with the linear kernel drops to nearly
zero only around change boundaries with no false alarms oc-
curring elsewhere in the figure. Therefore, the algorithm can
work well with the linear kernel.

To support our claim that the proposed algorithm is supe-
rior in situations of short segment duration (or equivalently
small amount of training data), we replace the SVM classifier
with a GMM classifier and perform the same procedure in the
segmentation algorithm to calculate the training error rate
trajectories. The performance of the GMM with a varying
number of Gaussians is illustrated in Figure 4(c). It is seen

that as the number of Gaussians increases, the false alarm
rate increases. Also, like the SVM with the Gaussian RBF
kernel, the GMM with 20 Gaussians always has a training
error of nearly zero. Furthermore, enormous fluctuations of
GMM trajectories make it difficult to obtain a reliable thresh-
old, so a low-pass filtering is required to eliminate redundant
local minima by smoothing the trajectories.

To assess performance of other unsupervised methods
and compare them with ours, we perform the same experi-
ment on both the BIC and GLR. The results for the BIC with
a penalty parameter A = 2.75 (obtained during the parame-
ter tuning stage) and the GLR are shown in Figures 4(d) and
4(e), respectively. The main issue with these methods is that
their local minima in different change points vary in mag-
nitude which makes the threshold setting more difficult than
for the SVM. In addition, the BIC tends to miss some change
points in the stream. Moreover, the GLR produces some false
alarms, while the proposed algorithm maintains reliable and
error free detection performance. We assume these phenom-
ena are the result of an insufficient amount of data in short
segments which prevent distance calculations from being ac-
curate in both the BIC and GLR methods.

One of the most important reasons why our algorithm
is able to detect short segments is that the SVM classifier
requires only a small amount of training data in comparison
to the BIC and GLR that require much more data to enable
them to detect changes accurately.

Table 1 shows performance evaluation metric scores for
the proposed technique using the SVM along with the lin-
ear kernel as well as the GMM with 5 Gaussians. Also
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given in the table are scores obtained from evaluating the
BIC (A =2.75) and GLR segmentation algorithms. Thresh-
old settings for these four methods are 0, 0.01, 0, and —400,
respectively, which have been obtained from the parameter
tuning stage (also shown in Figure 4 as dashed lines). From
a total of 40 minutes audio data, 1.5 minutes (3.75%) were
used for parameter tuning, while the remaining 38.5 min-
utes (96.25%) have been used as test data for benchmark-
ing the segmentation techniques. It is worth mentioning here
that no smoothing was applied to the trajectories during the
evaluations. In each column of the table, PRC, RCL and F-
scores are reported for short segments (less than 2 seconds)
and longer ones separately. Obtained results indicate that the
proposed technique outperforms other conventional segmen-
tation methods in both short and long duration segments.

Table 1: Results obtained from evaluating the segmentation
techniques on approximately 40 mintues test data.

PR RCL F-
Method C C measure
<2s >2s <25 >2s <25 >2s
SVM 98.7 96.1 974 989 981 975

GMM 853 880 825 821 839 850

BIC 772 844 728 79.0 749 81.6

GLR 7877 838 792 810 79.0 824

6. CONCLUSIONS

This study has presented an unsupervised audio segmenta-
tion algorithm, inspired by the idea of scanning window used
in metric-based approaches, and based on the SVM train-
ing error rate. Based on the experimental results obtained in
terms of PRC, RCL, and F-measure, the algorithm consis-
tently outperformed conventional methods such as the BIC,
GLR and GMM, in accurate detection of change points in
audio streams. In particular, the segmentation algorithm can
identify audio content changes with less audio data, making
it capable of detecting landmarks of short duration (less than
2 seconds). This work can be expanded by considering more
classes than speech and music. In addition, the integration of
this algorithm into a framework which includes a classifica-
tion step can also be considered.
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