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ABSTRACT

In this paper, we present a discrete fractional evolution-
ary transform (DFrET) for the time-frequency (TF) repre-
sentation of non-stationary, wide band signals. The time—
varying kernel of this transform is used to calculate the evo-
lutionary spectrum. The DFrET kernel are obtained from the
coefficients of a discrete fractional Gabor expansion. The
proposed DFrET provides a tool for high-resolution repre-
sentation of multicomponent signals with linear instanta-
neous frequencies. Performance of the proposed algorithm
is illustrated by means of simulations and compared with ex-
isting TF methods.

1. INTRODUCTION

Although the majority of signals encountered in applications
have time—varying spectral content, estimation of these time-
frequency (TF) spectra displaying acceptable resolution re-
mains a challenging problem. This is mainly due to the
estimation methods having difficulty adapting to the time—
varying frequency of the signal components [1, 2]. Constant—
bandwidth methods such as the short-time Fourier transform
and the traditional Gabor expansion [4, 5] provide estimates
with poor TF resolution [8]. Several approaches have been
proposed to improve the resolution of the estimation: aver-
aging of the estimates obtained using different windows [7],
maximizing energy concentration measures [8, 9], and adapt-
ing the Gabor basis functions to the instantaneous frequency
of the signal components [6, 11, 12, 13].

In [15], we present a Discrete Evolutionary Transform
(DET) that provides a TF representation of the signal and
an evolutionary spectrum simultaneously. It is shown that
the time—varying kernel of this transform may be obtained
through either the multi—-window Gabor expansion that uses
non—orthogonal bases, or the Malvar expansion using orthog-
onal bases. Computation of the evolutionary spectrum with
the sinusoidal expansion provides estimates with poor time—
frequency resolution for signals with wide-band components.
We will show that the method can be improved by combining
the advantages of the Fractional Fourier Transform (FrFT)
and the DET. Hence we present a Discrete Fractional Evolu-
tionary Transform (DFrET) and a method to obtain its kernel
by using the recently introduced fractional Gabor expansion
[10]. This will allow us to obtain a high resolution TF spec-
trum as well as a compact representation for signals with lin-
ear chirp components.
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2. DISCRETE EVOLUTIONARY TRANSFORM BY
GABOR EXPANSION

The evolutionary spectral theory for the analysis of non-
stationary random processes [14] has been extended to con-
sider discrete-time, finite-support signals [9, 13, 7]. Hence
for a discrete-time signal x(n),n = 0,1,--- N — 1, its Dis-
crete Evolutionary Transform (DET) is defined in terms of
sinusoids with time—varying amplitudes as:

K1
x(n)=Y X (n,k)e/ " (1)
=0

where @y, = 2kn/K, K is the number of frequency samples
and X (n,k) the time-varying kernel of the DET. The above
equation is analogous to the Wold—Cramer representation
used to model the non—stationary processes as a combina-
tion of sinusoids with time—varying and random amplitudes
[14]. The evolutionary spectrum of x(n) is then given by,

1

[9]. It is shown in [15] that the kernel X (n,k) may be cal-
culated using conventional signal representations such as the
Gabor expansion, that uses non-orthogonal basis, or the Mal-
var expansion that uses orthogonal basis.

Traditional discrete Gabor expansion [4] represents a sig-
nal as a combination of basis functions that are obtained by
translating a single window uniformly in time and frequency.
Hence Gabor basis functions allow a sinusoidal and constant-
bandwidth analysis. However, if the signal to be analyzed
does not satisfy the constant-bandwidth condition, i.e., if
the frequency components change with time, its TF repre-
sentation will not be parsimonious [9]. A multi-window
Gabor expansion is presented in [13], using basis functions
hi i (n), that are obtained by scaling and translating in time
and frequency a mother window:

Rimi(n) = hi(n—mL)e/*" 3)
Then the multi-window Gabor representation of x(n),

1 I-1M—-1K-1

x(n) = 7 Z Z Z ai’mﬁkiz,-(n—mL)ejwk" )

i=0 m=0 k=0

Synthesis windows /;(n) are obtained from a unit-energy
mother window g(n) by scaling in time /;(n) = 2/2g(2'n),
i=0,1,---,/—1, and periodically extending by N. Here /
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denotes the number of scales used and L,M,L’ K positive
integers satisfy the condition LM = 'K = N. L and L' are
the sampling steps in time and frequency, M and K are the
number of samples in time and frequency respectively. The
Gabor coefficients a; ,, x, may be calculated by the analysis

windows (n) that are bi-orthogonal to /;(n) [4]:

Aimk = Zx

Now, by considering the representations of x(n) in equations
(1) and (4), the DET kernel X (n,k) is

(n—mL)e /" 5)

lIlMl

722 a,mkh n—mL)

10m

X(n,k)

= LY X k) ©)
i=0

where X;(n,k) show the kernels calculated for different
scales. They may be combined using arithmetic average or
other averaging techniques [9]. Substituting a; ,,  in (5) into
(6), we get

N-1

Z x(€) w(n,?) e IOt @)

(=0

X(n,k) =

where w(n, /) is a time-dependent window function given by

11M1
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hi(n—mL). 8

By considering all possible scales, a high-resolution repre-
sentation for the signal may be obtained by combining the
kernel set {X;(n,k)} [13]. However, this is not sufficient in
general; because signals with wide-band components may
require non-sinusoidal basis functions for a compact repre-
sentation. In such cases, a fractional time—frequency repre-
sentation will be more appropriate for the spectral signals.

3. DISCRETE FRACTIONAL EVOLUTIONARY
TRANSFORM

In the following, we briefly review the closed-form fractional
Gabor expansion that is especially useful for the representa-
tion of chirp-type signals and then connect it to the proposed
DFET.

3.1 Discrete Fractional Gabor Expansion
A discrete fractional Gabor expansion for a signal x(n), n =
0,1,---,N—1 (N odd) is defined in [10] as:

M—-1K-1

Z Z amka kac ) (9)

m=0 k=

where o is the fraction order and the fractional Gabor basis
functions are

B ga(n) = h(n—mL) Ko (n, k). (10)
Here M and K are the number of samples in time and in o
fractional domain u (combination of time and frequency) re-
spectively; L and L’ are the sampling steps in time and in u

domain, and the previous condition holds: ML = KL' = N.
Furthermore Ky (n,k) is the fractional kernel and it replaces
the sinusoidal kernel {e/"} of the traditional Gabor expan-
sion where the term ¢/®" modulates synthesis windows and
shifts them in the frequency domain by L’. Similarly, in the
fractional case, the kernel Ky (n,k) will shift the window in
the u domain by the same step. A kernel which will provide
such a shift can be obtained from the kernel of the closed-
form discrete FrFT [16]:

/SO — ]COSae%[nzAt2+(kL/)2Au2]cota
N

2wkl

x e TN (11)

Ko(nk) =

27| sin o]

where AtAu = Then the fractional Gabor coeffi-

cients are calculated as,

(N-1)/2

amka= Y, X(n) Ty (12)

—(N-1))2
where the analysis basis functions are periodic versions of
Ymka(n) =y(n—mL) Kg(n,k). (13)

The bi-orthogonality condition of this basis system is derived
in [10] and given by

1 w12 7k
— Y @y (m+mK)e IV =8,8 (14)
L
0<k<L-1,0<m<L—1and —(N—1)/2<n<

(N —1)/2. For a given Gauss synthesis window, the anal-
ysis window can be solved from the above equation sys-
tem and used to calculate the fractional Gabor coefficients.
Above fractional expansion is a generalization of the sinu-
soidal expansion, such that it reduces to the traditional Gabor
for ¢ = 1/2.

3.2 Discrete Fractional Evolutionary Transform

A more general TF representation for a discrete-time signal
x(n),n=0,1,--- N — 1 may be obtained by generalizing the
sinusoidal DET in Section 2. Then a Discrete Fractional Evo-
lutionary Transform (DFrET) is defined to represent a signal
as a combination of linear chirps with time—dependent am-
plitudes:

K—1
=Y X(n,k,a) Ko (n,k) (15)
k=0
where Ky (n,k), is the kernel of the FrFT given in (11)and
X(n,k, o) is the time and fraction order o dependent DFTET
kernel. Thus the evolutionary spectrum of x(n) in the frac-
tional domain is calculated by
1
S(n.k, @) = |X(n.k, @) (16)
X (n,k, o) kernel may be obtained by considering the repre-
sentations of the signal in (15) and (9);

M—1 B
=Y ampa h(n—mL) (17)

m=0

X(n,k,a)
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Finally, substituting for ay, i ¢ from (12) into (17), we get

x(O) T soa(Oh(n—mL) (18)

/2

X(n,k,a) MZ: ;

Defining a time-dependent window function w(n,¢) as be-
fore by,

M—1

=Y 7(t—mL)h(n—mL) (19)

m=0

w(n,l)

the DFrET in (18) becomes

X(nk,00) = Z

(=—(N—1)/2

x(O)w(n,O)K;, (k) (20)

The proposed DFrET will provide a suitable approach for the
TF representation and spectral estimation of non-stationary
signals especially signals containing linear chirps. In the
following, we demonstrate the performance of the proposed
transform by means of computer simulations. Note that with-
out apriori information about the frequency content of the
signal, determining the value of « is a question. There are
signal-adaptive methods in the literature to obtain the best
possible analysis parameters for a given signal [6, 8]. In our
simulations we use the local energy concentration measure
presented in [8] and used in [10] to obtain the best matched
value of & from a set of values.

4. SIMULATION RESULTS

We consider the combination of two linear chirp signals
shown in Fig. 1. The signal is first represented using
multi-window Gabor expansion based DET with parameters
N =256,M = 64,K =256, =2. The evolutionary spectrum
calculated by the sinusoidal DET is given in Fig. 2. Then we
obtain a TF representation and hence an evolutionary spec-
tral estimation by searching for fraction orders in 8 x 8§ TF
regions. We have a set of 30 ¢ values from O to 7 and search
for the optimum one by maximizing the local energy con-
centration measure [10]. Fig. 3 shows the calculated well-
localized evolutionary spectrum using the proposed DFrET
method.

5. CONCLUSIONS

In this paper a discrete fractional evolutionary transform is
introduced by combining the advantages of fractional signal
expansions and evolutionary spectral theory. The kernel of
this transform is calculated by the coefficients of a fractional
Gabor expansion. A high-resolution TF representation and
an evolutionary spectrum are obtained simultaneously. Sim-
ulation results show that the proposed DFrET provide a well
localized TF spectra for signals containing linear chirp com-
ponents.

REFERENCES

[1] Cohen, L., Time-Frequency Analysis. Prentice Hall, En-
glewood Cliffs, NJ, 1995.

[2] S. Qian, and D. Chen, Joint Time-Frequency Analysis:
Methods and Applications. Prentice Hall, Upper Saddle
River, NJ, 1996.

[3] Gabor, D., “Theory of Communication,” J. IEE, Vol.
93, pp. 429459, 1946.

[4] Wexler, J., and Raz, S., “Discrete Gabor Expansions,”
Signal Processing, Vol. 21, No. 3, pp. 207-220, Nov.
1990.

[5] Qian, S., and Chen, D., “Discrete Gabor Transform,”’
IEEE Trans. on Signal Proc., Vol. 41, No. 7, pp. 2429-
2439, July 1993.

[6] Baraniuk, R.G., and Jones, D.L., “Shear Madness: New
Orthonormal Bases and Frames Using Chirp Func-
tions,” IEEE Trans. on Signal Proc., Vol. 41, No. 12,
pp- 3543-3549, Dec. 1993.

[7] Akan, A., and Chaparro, L.F., “Evolutionary Spectral
Analysis and the Generalized Gabor Expansion,” Proc.
ICASSP-95, Vol. 3, pp. 1537-1540, May 1995.

[8] Jones, D.L., and Parks, T.W., “A High Resolu-
tion Data—Adaptive Time—Frequency Representation,”
IEEE Trans. on Signal Proc., Vol. 38, No. 12, pp. 2127
2135, Dec. 1990.

[9] Akan, A., and Chaparro, L.F., “Evolutionary Spec-
tral Analysis Using a Warped Gabor Expansion,” IEEE
Proc. ICASSP-96, Atlanta, GA, May 1996.

[10] Akan, A., and Onen, E., “A Discrete Fractional Ga-
bor Expansion for Multi-component Signals,” AEU-Int
J of Electronics and Comm, Vol. 61, No. 5 pp. 279-285,
May 2007.

[11] Mallat, S., and, Zhang, Z., “Matching Pursuit with
Time-Frequency Dictionaries,” IEEE Trans. on Signal
Proc., Vol. 41, No. 12, pp. 3397-3415, Dec. 1993.

[12] Brown, M., Williams, W., and Hero, A., “Non-
Orthogonal Gabor Representation of Biological Sig-
nals,” IEEE Proc. ICASSP-94, Adelaide, Australia,
Apr. 1994.

[13] Akan, A., and Chaparro, L.F., “Multi-window Gabor
Expansion for Evolutionary Spectral Analysis,” Signal
Processing, Vol. 63, pp. 249-262, Dec. 1997.

[14] Priestley, M.B., “Evolutionary Spectra and Non-—
stationary Processes,” J. of Royal Statistical Society, B,
Vol.27, No. 2, pp. 204-237, 1965.

[15] R. Suleesathira, A. Akan, and L.F. Chaparro, “Dis-
crete Evolutionary Transform for Time-Frequency Sig-
nal Analysis,” J. Franklin Institute, Special Issue on
Time-Frequency Signal Analysis and its Applications,
pp. 347-364, Vol. 337, No. 4, Jul. 2000.

[16] S.C. Pei, and J.J. Ding, “Closed-Form Discrete Frac-
tional and Affine Fourier Transform,” IEEE Trans. on
Signal Proc., Vol. 48 pp. 1338-1353, 2000.

1754



Two linear chirps

apnidwy

-1

250

200

150

100

50

Time [n]

Magnitude spectrum

Fractional evolutionary spectrum

pmiuben

25

15
Normalized frequency [rad]

05

Figure 1: Combination of two linear chirps.
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Figure 3: The proposed DFrET based evolutionary spectrum.
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Figure 2: Sinusoidal DET based evolutionary spectrum of

the chirps.
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