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ABSTRACT

In this paper, we present a discrete fractional evolution-
ary transform (DFrET) for the time-frequency (TF) repre-
sentation of non-stationary, wide band signals. The time–
varying kernel of this transform is used to calculate the evo-
lutionary spectrum. The DFrET kernel are obtained from the
coefficients of a discrete fractional Gabor expansion. The
proposed DFrET provides a tool for high-resolution repre-
sentation of multicomponent signals with linear instanta-
neous frequencies. Performance of the proposed algorithm
is illustrated by means of simulations and compared with ex-
isting TF methods.

1. INTRODUCTION

Although the majority of signals encountered in applications
have time–varying spectral content, estimation of these time-
frequency (TF) spectra displaying acceptable resolution re-
mains a challenging problem. This is mainly due to the
estimation methods having difficulty adapting to the time–
varying frequency of the signal components [1, 2]. Constant–
bandwidth methods such as the short-time Fourier transform
and the traditional Gabor expansion [4, 5] provide estimates
with poor TF resolution [8]. Several approaches have been
proposed to improve the resolution of the estimation: aver-
aging of the estimates obtained using different windows [7],
maximizing energy concentration measures [8, 9], and adapt-
ing the Gabor basis functions to the instantaneous frequency
of the signal components [6, 11, 12, 13].

In [15], we present a Discrete Evolutionary Transform
(DET) that provides a TF representation of the signal and
an evolutionary spectrum simultaneously. It is shown that
the time–varying kernel of this transform may be obtained
through either the multi–window Gabor expansion that uses
non–orthogonal bases, or the Malvar expansion using orthog-
onal bases. Computation of the evolutionary spectrum with
the sinusoidal expansion provides estimates with poor time–
frequency resolution for signals with wide-band components.
We will show that the method can be improved by combining
the advantages of the Fractional Fourier Transform (FrFT)
and the DET. Hence we present a Discrete Fractional Evolu-
tionary Transform (DFrET) and a method to obtain its kernel
by using the recently introduced fractional Gabor expansion
[10]. This will allow us to obtain a high resolution TF spec-
trum as well as a compact representation for signals with lin-
ear chirp components.
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2. DISCRETE EVOLUTIONARY TRANSFORM BY
GABOR EXPANSION

The evolutionary spectral theory for the analysis of non-
stationary random processes [14] has been extended to con-
sider discrete-time, finite-support signals [9, 13, 7]. Hence
for a discrete-time signal x(n),n = 0,1, · · · ,N − 1, its Dis-
crete Evolutionary Transform (DET) is defined in terms of
sinusoids with time–varying amplitudes as:

x(n) =
K−1

∑
k=0

X(n,k)e jωkn (1)

where ωk = 2kπ/K, K is the number of frequency samples
and X(n,k) the time-varying kernel of the DET. The above
equation is analogous to the Wold–Cramer representation
used to model the non–stationary processes as a combina-
tion of sinusoids with time–varying and random amplitudes
[14]. The evolutionary spectrum of x(n) is then given by,

S(n,k) =
1
K
|X(n,k)|2 (2)

[9]. It is shown in [15] that the kernel X(n,k) may be cal-
culated using conventional signal representations such as the
Gabor expansion, that uses non-orthogonal basis, or the Mal-
var expansion that uses orthogonal basis.

Traditional discrete Gabor expansion [4] represents a sig-
nal as a combination of basis functions that are obtained by
translating a single window uniformly in time and frequency.
Hence Gabor basis functions allow a sinusoidal and constant-
bandwidth analysis. However, if the signal to be analyzed
does not satisfy the constant-bandwidth condition, i.e., if
the frequency components change with time, its TF repre-
sentation will not be parsimonious [9]. A multi–window
Gabor expansion is presented in [13], using basis functions
h̃i,m,k(n), that are obtained by scaling and translating in time
and frequency a mother window:

h̃i,m,k(n) = h̃i(n−mL)e jωkn (3)

Then the multi-window Gabor representation of x(n),

x(n) =
1
I

I−1

∑
i=0

M−1

∑
m=0

K−1

∑
k=0

ai,m,kh̃i(n−mL)e jωkn (4)

Synthesis windows h̃i(n) are obtained from a unit-energy
mother window g(n) by scaling in time hi(n) = 2i/2g(2in),
i = 0,1, · · · , I− 1, and periodically extending by N. Here I
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denotes the number of scales used and L,M,L′,K positive
integers satisfy the condition LM = L′K = N. L and L′ are
the sampling steps in time and frequency, M and K are the
number of samples in time and frequency respectively. The
Gabor coefficients ai,m,k, may be calculated by the analysis
windows γ̃i(n) that are bi-orthogonal to h̃i(n) [4]:

ai,m,k =
N−1

∑
n=0

x(n)γ̃∗i (n−mL)e− jωkn (5)

Now, by considering the representations of x(n) in equations
(1) and (4), the DET kernel X(n,k) is

X(n,k) =
1
I

I−1

∑
i=0

M−1

∑
m=0

ai,m,k h̃i(n−mL)

=
1
I

I−1

∑
i=0

Xi(n,k) (6)

where Xi(n,k) show the kernels calculated for different
scales. They may be combined using arithmetic average or
other averaging techniques [9]. Substituting ai,m,k in (5) into
(6), we get

X(n,k) =
N−1

∑̀
=0

x(`) w(n, `) e− jωk` (7)

where w(n, `) is a time-dependent window function given by

w(n, `) =
1
I

I−1

∑
i=0

M−1

∑
m=0

γ̃∗i (`−mL) h̃i(n−mL). (8)

By considering all possible scales, a high-resolution repre-
sentation for the signal may be obtained by combining the
kernel set {Xi(n,k)} [13]. However, this is not sufficient in
general; because signals with wide-band components may
require non-sinusoidal basis functions for a compact repre-
sentation. In such cases, a fractional time–frequency repre-
sentation will be more appropriate for the spectral signals.

3. DISCRETE FRACTIONAL EVOLUTIONARY
TRANSFORM

In the following, we briefly review the closed-form fractional
Gabor expansion that is especially useful for the representa-
tion of chirp-type signals and then connect it to the proposed
DFrET.

3.1 Discrete Fractional Gabor Expansion
A discrete fractional Gabor expansion for a signal x(n), n =
0,1, · · · ,N−1 (N odd) is defined in [10] as:

x(n) =
M−1

∑
m=0

K−1

∑
k=0

am,k,α h̃m,k,α(n) (9)

where α is the fraction order and the fractional Gabor basis
functions are

h̃m,k,α(n) = h̃(n−mL) Kα(n,k). (10)

Here M and K are the number of samples in time and in α
fractional domain u (combination of time and frequency) re-
spectively; L and L′ are the sampling steps in time and in u

domain, and the previous condition holds: ML = KL′ = N.
Furthermore Kα(n,k) is the fractional kernel and it replaces
the sinusoidal kernel {e jωkn} of the traditional Gabor expan-
sion where the term e jωkn modulates synthesis windows and
shifts them in the frequency domain by L′. Similarly, in the
fractional case, the kernel Kα(n,k) will shift the window in
the u domain by the same step. A kernel which will provide
such a shift can be obtained from the kernel of the closed-
form discrete FrFT [16]:

Kα(n,k) =

√
sinα− j cosα

N
e

j
2 [n2∆t2+(kL′)2∆u2]cotα

× e− j 2πkL′
N n (11)

where ∆t∆u = 2π|sinα|
N . Then the fractional Gabor coeffi-

cients are calculated as,

am,k,α =
(N−1)/2

∑
n=−(N−1)/2

x(n) γ̃∗m,k,α(n) (12)

where the analysis basis functions are periodic versions of

γm,k,α(n) = γ(n−mL) Kα(n,k). (13)

The bi-orthogonality condition of this basis system is derived
in [10] and given by

1
LL′

(N−1)/2

∑
n=−(N−1)/2

h̃(n)γ̃∗(n+mK) e− j 2πk
N n = δmδk (14)

0 ≤ k ≤ L− 1, 0 ≤ m ≤ L′ − 1 and −(N − 1)/2 ≤ n ≤
(N − 1)/2. For a given Gauss synthesis window, the anal-
ysis window can be solved from the above equation sys-
tem and used to calculate the fractional Gabor coefficients.
Above fractional expansion is a generalization of the sinu-
soidal expansion, such that it reduces to the traditional Gabor
for α = π/2.

3.2 Discrete Fractional Evolutionary Transform
A more general TF representation for a discrete-time signal
x(n),n = 0,1, · · · ,N−1 may be obtained by generalizing the
sinusoidal DET in Section 2. Then a Discrete Fractional Evo-
lutionary Transform (DFrET) is defined to represent a signal
as a combination of linear chirps with time–dependent am-
plitudes:

x(n) =
K−1

∑
k=0

X(n,k,α) Kα(n,k) (15)

where Kα(n,k), is the kernel of the FrFT given in (11)and
X(n,k,α) is the time and fraction order α dependent DFrET
kernel. Thus the evolutionary spectrum of x(n) in the frac-
tional domain is calculated by

S(n,k,α) =
1
K
|X(n,k,α)|2 (16)

X(n,k,α) kernel may be obtained by considering the repre-
sentations of the signal in (15) and (9);

X(n,k,α) =
M−1

∑
m=0

am,k,α h̃(n−mL) (17)
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Finally, substituting for am,k,α from (12) into (17), we get

X(n,k,α) =
M−1

∑
m=0

(N−1)/2

∑
`=−(N−1)/2

x(`)γ̃∗m,k,α(`)h̃(n−mL) (18)

Defining a time-dependent window function w(n, `) as be-
fore by,

w(n, `) =
M−1

∑
m=0

γ̃∗(`−mL)h̃(n−mL) (19)

the DFrET in (18) becomes

X(n,k,α) =
(N−1)/2

∑
`=−(N−1)/2

x(`)w(n, `)K∗
α(`,k) (20)

The proposed DFrET will provide a suitable approach for the
TF representation and spectral estimation of non-stationary
signals especially signals containing linear chirps. In the
following, we demonstrate the performance of the proposed
transform by means of computer simulations. Note that with-
out apriori information about the frequency content of the
signal, determining the value of α is a question. There are
signal-adaptive methods in the literature to obtain the best
possible analysis parameters for a given signal [6, 8]. In our
simulations we use the local energy concentration measure
presented in [8] and used in [10] to obtain the best matched
value of α from a set of values.

4. SIMULATION RESULTS

We consider the combination of two linear chirp signals
shown in Fig. 1. The signal is first represented using
multi-window Gabor expansion based DET with parameters
N = 256,M = 64,K = 256, I = 2. The evolutionary spectrum
calculated by the sinusoidal DET is given in Fig. 2. Then we
obtain a TF representation and hence an evolutionary spec-
tral estimation by searching for fraction orders in 8× 8 TF
regions. We have a set of 30 α values from 0 to π and search
for the optimum one by maximizing the local energy con-
centration measure [10]. Fig. 3 shows the calculated well-
localized evolutionary spectrum using the proposed DFrET
method.

5. CONCLUSIONS

In this paper a discrete fractional evolutionary transform is
introduced by combining the advantages of fractional signal
expansions and evolutionary spectral theory. The kernel of
this transform is calculated by the coefficients of a fractional
Gabor expansion. A high–resolution TF representation and
an evolutionary spectrum are obtained simultaneously. Sim-
ulation results show that the proposed DFrET provide a well
localized TF spectra for signals containing linear chirp com-
ponents.
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Figure 1: Combination of two linear chirps.

Figure 2: Sinusoidal DET based evolutionary spectrum of
the chirps.

Figure 3: The proposed DFrET based evolutionary spectrum.
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