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ABSTRACT
This paper presents a performance analysis of the single
antenna interference cancellation (SAIC) and the multiple
antenna interference cancellation (MAIC) techniques in the
presence of non null frequency offsets of both the signal of
interest (SOI) and interference, that are neither corrected nor
compensated, in terms of signal to interference plus noise
ratio (SINR) and bit error rate (BER). General theoretical
expressions of the SINR and BER are given for BPSK SOI
and interference. To obtain engineering insight, the particu-
lar case of the SAIC with no return to zero (NRZ) pulse shape
filters is considered, where simple expressions are given and
analyzed. It is proved in particular that the performance more
deteriorates for non null frequency offset of the interference
than for non null frequency offset of the SOI. Finally illus-
trative examples are presented in order to specify the validity
domain of our approximations and to quantify the obtained
results in the context of the global system for mobile com-
munication (GSM) standard.

1. INTRODUCTION

For more than a decade, there has been an increasing inter-
est in optimal widely linear (WL) processing [1] in radio-
communication contexts involving rectilinear signals, such
as binary phase shift keying (BPSK) signals or quasi rectilin-
ear signals such as continuous phase modulation (CPM) with
modulation index 1/2, or such as offset quadrature amplitude
modulation (OQAM).

In particular, it has been pointing out in [4] that SAIC
may be performed by WL filters in the context of rectilin-
ear SOI and interference. Then it has been shown in [3],
that the Gaussian minimum shift keying (GMSK) modula-
tion whose linearized approximation was introduced in [2],
may be interpreted as a BPSK modulation after a simple al-
gebraic operation of derotation, displaying the great interest
of optimal WL filtering for cochannel interference mitigation
in the GSM network.

Concerning the performance of these SAIC and MAIC
techniques, only a few contributions have appeared in the
literature. Among them, [3] have given some bounds on
the maximum likelihood sequence estimation (MLSE) for
cochannel interference cancellation within the current GSM
standard and [4] have presented some enlightening results
about the behavior, properties and performance of the SAIC
and MAIC techniques for the reception of a BPSK, MSK
or GMSK SOI corrupted by interference of the same kind.
In this latter case, no performance analysis has been given
concerning the loss in performance in terms of SINR and

BER in the presence of residual frequency offsets of the SOI
and interference that are practically unavoidable. Therefore,
it is of paramount importance to specify how these residual
frequency offsets degrade the performance of the SAIC and
MAIC receivers.

The purpose of this paper is to quantify this sensitivity.
The paper is organized as follows. After the introduction of
the observation model and data statistics given in Section 2,
Section 3 reviews the optimal BPSK SAIC and MAIC re-
ceivers. A performance analysis of these receivers in the
presence of residual frequency offsets of the BPSK SOI and
interference is presented in Section 4 with a particular atten-
tion paid to SAIC with NRZ pulse shape filter. Finally, il-
lustrative examples are given in order to specify the validity
domain of our approximations and to quantify the obtained
results in the context of the GSM standard in Section 5. Sec-
tion 6 contains the conclusion.

2. HYPOTHESES AND DATA STATISTICS

Let us consider an array of N narrow-band sensors. Each
sensor is assumed to receive a BPSK SOI corrupted by a
noncircular total noise composed of a BPSK interference and
background noise. Note that in cellular radiocommunication
networks, such an interference may be generated by the net-
work itself (e.g., from signals coming from neighboring cells
using the same carrier frequency). Hence, this interference
have the same waveform and modulation as the SOI. The
complex envelopes of the SOI and the interference are given
respectively by

s(t) = ∑
n

anυ(t−nT ),

and
j(t) = ∑

n
bnυ(t−nT − t j),

where an = ±1 and bn = ±1 are independent sequences of
independent equiprobable symbols, T is the symbol duration,
t j ∈ [0,T ) is the time origin of the interference assuming an
optimal sampling time for the SOI at t = kT,k ∈ Z and υ(t)
is a square root raised cosine Nyquist filter. The vector x(t)
of complex amplitudes of the signals at the output of these
sensors is given by

x(t) = µss(t)ei2π∆ fsths + µ j j(t)ei2π∆ f jth j +n(t), (1)

where hs and h j are the channel impulse response vectors of
the SOI and interference respectively. Note that model (1)
assumes propagation channel with no delay spread, which
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occurs for example, for flat fading channel or ideal propa-
gation. hs = eiφss and h j = eiφ j j, where φs and φ j, s and j
correspond to the phases and the steering vectors (such that
their first components is one) of the SOI and interference, re-
spectively. ∆ fs and ∆ f j, are the frequency offsets of the SOI
and interference respectively. µs and µ j control the power of
the SOI and interference. The background noise n(t) is as-
sumed independent of the SOI and interference, zero-mean
Gaussian circular, temporally and spatially white.

The sampled observation vector xυ(kT ) def= x(t) ⊗
υ(−t)∗/t=kT (where ⊗ is the convolution operation) ob-
tained after a matched filtering operation to the pulse shape
filter υ(t) and a decimation operation at the symbol rate, is
given by

xυ(kT ) = µsakei2π∆ fskT I0hs + µs ∑
n6=k

anei2π∆ fskT Ik−nhs

+ µ j ∑
n

bnei2π∆ f jkT Jk−n(t j)h j +nυ(kT ), (2)

where

In
def=

∫
υ∗(−τ)υ(nT − τ)e−i2π∆ fsτ dτ

Jn(t j)
def=

∫
υ∗(−τ)υ(nT − τ− t j)e−i2π∆ f jτ dτ. (3)

The extended model is given by x̃υ(kT ) =
[xυ(kT )T ,xυ(kT )H ]T with

x̃υ(kT ) = µsakh̃s(k,k)+ µs ∑
n6=k

anh̃s(k,n)

+ µ j ∑
n

bnh̃ j(k,n)+ ñυ(kT ), (4)

where

h̃s(k,n) def= [ei2π∆ fsnT Ik−nhT
s ,e−i2π∆ fsnT I∗k−nh

H
s ]T ,

h̃ j(k,n) def= [ei2π∆ f j(nT+t j)Jk−n(t j)hT
j ,

e−i2π∆ f j(nT+t j)J∗k−n(t j)hH
j ]T ,

ñυ(kT ) def= [nυ(kT )T ,nυ(kT )H ]T .

The second order statistics of the data considered in this pa-
per are defined by Rx̃(k) def= E[x̃υ(kT )x̃H

υ (kT )] and we as-
sume that E[ñυ(kT )ñυ(kT )H ] = η2I where η2 is the mean
power of the background noise per sensor and I is the
2N×2N identity matrix.

3. SAIC AND MAIC RECEIVERS

3.1 Optimal receiver
Under the assumption of equiprobable SOI symbol se-
quences, without any residual offset and stationary noncir-
cular Gaussian distributed total noise of extended covariance
matrix denoted specifically here by Rñ, the MLSE receiver
which minimizes the output sequence error rate is given [4]
by a WL filtering of xυ(kT ). This one is the so-called WL
spatial matched filter w̃MLSE defined by

w̃MLSE
def= R−1

ñ h̃s, (5)

with h̃s
def= [hT

s ,hH
s ]T , whose output y(kT ) is real-valued, fol-

lowed by a zero threshold detector. This filter is proportional
to the filter w̃MMSE which minimizes the mean square er-
ror (MSE) between the output w̃H x̃υ(kT ) of the WL filter
w̃ = [wT ,wH ]T and ak and is given by

w̃MMSE
def= R−1

x̃ rx̃,a (6)

= [µs/(1+ µ2
s h̃

H
s R−1

ñ h̃s]R−1
ñ h̃s

def= βw̃MLSE,

where Rx̃
def= E[x̃υ(kT )x̃H

υ (kT )], rx̃,a
def= E[x̃υ(kT )ak]. Note

that this WL MMSE gives the same output SINR that the
MLSE receiver (5).

3.2 Implementation
Without any knowledge about hs, but if a training sequence
(ak)k=1,...,K is available after a synchronisation process, we
use the following estimated WL MMSE receiver.

̂̃w(K) def= R̂−1
x̃ (K)r̂x̃,a(K), (7)

with R̂x̃(K) def= 1
K ∑K

k=1 x̃υ(kT )x̃H
υ (kT ) and r̂x̃,a(K) def=

1
K ∑K

k=1 x̃υ(kT )ak.
Then a sequence (ak)k=K+1,...,K+L of information sym-

bols is transmitted1 for which the output y(kT ) of the es-
timated WL MMSE filter is given from (4) for k = K +
1, . . . ,K +L by

y(kT ) = ̂̃w(K)H x̃υ(kT ), k = K +1, . . . ,K +L, (8)

= µsak
̂̃w(K)H h̃s(k,k)+ µs ∑

n6=k
an

̂̃w(K)H h̃s(k,n)

+ µ j ∑
n

bn
̂̃w(K)H h̃ j(k,n)+ ̂̃w(K)H ñυ(kT ). (9)

4. PERFORMANCE ANALYSIS

4.1 Assumptions
The performance analysis of such a scheme is challeng-
ing because y(kT ) given by (9) is a random variable (RV)
depending on the RVs (ak,bk,nυ(kT ))k=1,...,K of the train-
ing period through the estimate ̂̃w(K) and on the RVs
(ak,bk,nυ(kT ))k=K+1,...,K+L of the information period. To
simplify the performance analysis, we assume that for K
”sufficiently large”, the loss of SINR with respect to those
obtained with

w̃(K) def= R−1
x̃ (K)rx̃,a(K) (10)

is ”very weak”, where

Rx̃(K) def=
1
K

K

∑
k=1

Rx̃(k) and rx̃,a(K) def=
1
K

K

∑
k=1

rx̃,a(k)

with rx̃,a(k)
def= E[x̃υ(kT )ak]. Note that in the absence of fre-

quency offset for which xυ(kT ) is stationary, this assump-
tion is valid for relatively small values of K. More precisely,

1In practice in each burst, the training sequence is preceded and followed
by this information sequence with e.g., K = 26 and L = 58 in the GSM
standard.
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it is proved in [5, Chap. 6.1.2] that to obtain a loss of SINR
lower than 3dB, K = 2N samples are needed for not too small
output SINR. We will consider throughout our performance
analysis that ̂̃w(K) can be replaced by w̃(K) given by (10),
without affecting the SINR at the output y(kT ).

4.2 Theoretical SINR, SNR and INR

With ̂̃w(K) given by (10) in (8) and with the independence
of ak, bk and ñυ(kT ), for k = K + 1, . . . ,K + L, the SINR,
the interference to noise ratio (INR) and the signal to noise
ratio (SNR) at the output of the estimated WL MMSE filter
are given by

SINR(kT ) = µ2
s [w̃H(K)h̃s(k,k)]2/µ2

s ∑
n 6=k

[w̃H(K)h̃s(k,n)]2

+ µ2
j ∑

n
[w̃H(K)h̃ j(k,n)]2 +η2||w̃(K)||2, (11)

INR(kT ) = µ2
s ∑

n 6=k
[w̃H(K)h̃s(k,n)]2

+ µ2
j ∑

n
[w̃H(K)h̃ j(k,n)]2/η2||w̃(K)||2, (12)

SNR(kT ) = µ2
s [w̃H(K)h̃s(k,k)]2/η2||w̃(K)||2. (13)

4.3 Theoretical BER
But the relevant criterion to evaluate the loss in performance
is the output BER. Using (9)

y(kT ) = akαk + ∑
n6=k

anαn,k +∑
n

bnβn,k +nk, (14)

with αk
def= µsw̃H(K)h̃s(k,k), αn,k

def= µsw̃H(K)h̃s(k,n),

βn,k
def= µ jw̃H(K)h̃ j(k,n) and nk

def= w̃H(K)ñυ(kT ) which
is a real valued zero-mean Gaussian RV of variance
η2||w̃(K)||2 and conditioning on specific values of the se-
quence (an)n6=k, (bn), the BER at time kT is clearly given

by BER(kT ) = Q
(

αk−∑n6=k anαn,k−∑n bnβn,k

η1/2
2 ||w̃(K)||

)
, where Q(v) def=

∫ +∞
v

1√
2π e−u2/2du. This gives from the total probability for-

mula and from the assumption of equiprobable sequences
(an)n6=k, (bn) contained in (14), the following BER

BER(kT ) =
1

2I+J

2I+J

∑
s=1

Q

(
αk−∑i6=k as

i αi,k−∑ j bs
jβ j,k

η1/2
2 ||w̃(K)||

)

(15)
where (. . . ,as

k−1,a
s
k+1, . . . ,b

s
k−1,b

s
k,b

s
k+1, . . .) denotes

the 2I+J different (I + J)-uplets2 of binary symbols
(ai)i∈I ,(bi) j∈J with (ai)i∈I are the SOI inter symbol inter-
ference and (bi) j∈J are the interference symbols associated
with the SOI symbol ak.

4.4 Particular case of SAIC with NRZ pulse shape filter
To give an interpretation of the loss in performance from the
different theoretical expressions (11), (12), (13) and (15) that

2where I = J − 1 with J is such that JT represents the length of the
”significant” part of

∫
υ(τ)υ∗(τ− t)dτ .

are lacking of engineering insights, we consider the particu-
lar case of SAIC (N = 1) with t j = 0 and with the following
NRZ filter

υ(t) =
{

1/
√

T if− T
2 ≤ t ≤ T

2
0 elsewhere

for which the values of In and J(t j) defined in (3), are given
by

In =
sin(π∆ fsT )

π∆ fsT
δ (n) and Jn

def= Jn(0)=
sin(π∆ f jT )

π∆ f jT
δ (n).

Consequently x̃υ(kT ) given by (4) reduces to

x̃υ(kT ) = µsakh̃s(k,k)+ µ jbkh̃ j(k,k)+ ñυ(kT ), (16)

with no interference inter symbol coming from
the SOI and interference, where h̃s(k,k) =
I0(ei2π∆ fskT eiφs ,e−i2π∆ fskT e−iφs)T and h̃ j(k,k) =
J0(ei2π∆ f jkT eiφ j ,e−i2π∆ f jkT e−iφ j)T . This gives

Rx̃(K) = µ2
s I2

0

(
1 αs(K)e2iφs

α∗
s (K)e−2iφs 1

)

+ µ2
j J2

0

(
1 α j(K)e2iφ j

α∗
j (K)e−2iφ j 1

)
+η2I

rx̃,a(K) = µsI0

(
α ′

s(K)eiφs

α ′∗
s (K)e−iφs

)
,

where αs(K) def= 1
K ∑K

k=1 ei4π∆ fskT , α j(K) def= 1
K ∑K

k=1 ei4π∆ f jkT

and α ′
s(K) def= 1

K ∑K
k=1 ei2π∆ fskT .

Using these expressions of Rx̃(K) and rx̃,a(K) in (10),
the inversion matrix lemma gives after straightforward but
cumbersome algebraic derivations w̃(K) = (w(K),w(K)∗)T

with

w(K) ∝ (1+ εs + ε j)α
′
s(K)eiφs

− [εsαs(K)e2iφs + ε jα j(K)e2iφ j ]α
′∗
s (K)e−iφs , (17)

where ∝ denotes proportional up to a real-valued constant

and εs
def= µ2

s I2
0

η2
and ε j

def=
µ2

j J2
0

η2
.

Consequently the general expressions of (11), (12), (13)
and (15) reduce to

SINR(kT ) =
2εs[ℜ(w∗eiψs,k eiφs)]2

2ε j[ℜ(w∗eiψ j,k eiφ j)]2 + |w(K)|2 , (18)

INR(kT ) =
2ε j[ℜ(w∗eiψ j,k eiφ j)]2

|w(K)|2 , (19)

SNR(kT ) =
2εs[ℜ(w∗eiψs,k eiφs)]2

|w(K)|2 , (20)

with ψs,k
def= 2π∆ fskT and ψ j,k

def= 2π∆ f jkT and [4]

BER(kT ) =
1
2

{
Q(

√
SNR(kT )+

√
INR(kT ))

+ Q(
√

SNR(kT )−
√

INR(kT ))
}

.(21)
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We assume to get engineering insight that the residual
frequency offsets are sufficiently weak3 such that (K +
L)|∆ fs|T ¿ 1 and (K + L)|∆ f j|T ¿ 1 which implies that

εs ≈ µ2
s

η2
and ε j ≈ µ2

j
η2

. Furthermore, we assume that the power
of the interference is large with respect to the power of the
background noise, i.e., ε j À 1. We note [4] that in the ab-

sence of residual offset and for ψ def= φ j − φs = 0, the SAIC
receiver has no rejection capability, i.e., the INR at the out-

put of the optimal SAIC receiver is INR= 2ε j =
2µ2

j
η2

. So
we assume that ψ is such that |ψ| À (K + L)|∆ f j|T and
|ψ| À (K + L)|∆ fs|T . To proceed on, we must specialize
the case where there is residual offset of interference or SOI
only.

4.4.1 Frequency offset of interference only

In this case ∆ fs = 0, and thus αs(K) = α ′
s(K) = 1 and ψs,k =

0. With respect to the SINR, INR and SNR given by the
optimal SAIC without residual offset, we obtain from (18),
(19) and (20)

SINR(kT )≈ SINR
1+2ε j[π{2k−K−1}∆ f jT ]2

, (22)

whereas INR(kT ) ≈ 2ε j[π{2k−K− 1}∆ f jT ]2 with INR ≈
1

2ε j tan2(ψ) ¿ 1 and SNR(kT ) ≈ SNR ≈ 2εs sin2(ψ) for k =
K+1, . . . ,K+L. We see that the SNR is preserved in contrast
to the INR and SINR which strongly degrade in the presence
of residual offset of interference for ε j À 1. This loss in
performance naturally increases with |∆ f j|T and (using 2k−
K = 2(k−K)+K) with the position k−K of the information
symbol, but also strongly with the input INR ε j and the size
K of the training sequence.

4.4.2 Frequency offset of SOI only

In this case ∆ f j = 0, and thus α j(K) = 1 and ψ j,k = 0. The
simplification of the expressions of SINR(kT ), INR(kT ) and
SNR(kT ) is more complex because we must distinguish ψ =
±π/2 from the case where ψ is not in the neighborhood of
±π/2. For φ =±π/2 we have

SINR(kT )≈SINR
(

1− (2π∆ fsT )2((K +1)2 +4k2)
8

)
,

(23)
whereas INR(kT ) ≈ 1

2ε j
(π(K + 1)∆ fsT )2 with INR = 0 and

SNR(kT )≈ SNR
(
1−4(πk∆ fsT )2

)
with SNR= 2εs for k =

K +1, . . . ,K +L.
For ψ not in the neighborhood of ±π/2, we have

SINR(kT )≈ SINR
(

1− 4πk∆ fsT
tan(ψ)

)
, (24)

whereas INR(kT ) ≈ INR
(

1+ 4π(K+1)∆ fsT
sin(2ψ)

)
with INR ≈

1
2ε j tan2(ψ) ¿ 1 and SNR(kT ) ≈ SNR

(
1− 4πk∆ fsT

tan(ψ)

)
with

SNR= 2εs sin2(ψ) for k = K + 1, . . . ,K + L. In a similar

3Note that when (K +L)|∆ fs|T ∼ 1 or (K +L)|∆ f j|T ∼ 1, the SOI or the
interference are seen by the SAIC receiver as second order circular and no
rejection capability is possible.

way for ψ = ±π/2, the loss in performance increases with
|∆ fs|T , with the position k−K of the information symbol
and the size K of the training sequence, but no longer with
ε j. But for ψ not in the neighborhood of ±π/2, depending
of the sign of ∆ fsT/ tan(ψ), the SINR can locally decrease
or increase for (K +L)|∆ fs|T ¿ 1, independently of ε j.

4.4.3 Comparisons

Comparing the loss in performance due to residual offsets of
the interference or the SOI from the aforementioned expres-
sions is not easy. But comparing (22), (23) and (24) using the
assumption that ε j À 1, we see that a loss in SINR greater
than e.g. 3dB is obtained for weaker value of |∆ f j|T than
of |∆ fs|T , and larger is ε j, weaker is this ratio |∆ f j|/|∆ fs|.
Consequently, under the assumption that ε j À 1, the SAIC
is less sensitive to residual offsets of the SOI than of the in-
terference. Note that this property is similar to the sensitivity
to steering errors in spatial beamforming for which the loss
in SINR is much more sensitive to interference steering error
than to SOI steering error. This property will be specified
and confirmed in the next section in other scenarios.

5. ILLUSTRATIONS

Throughout this section we use εs = 10dB and ε j = 20dB
with K = 26 and L = 58 (GSM standard).

5.1 Validation of the assumptions

Here, ψ def= φ j − φs is fixed to π/3. Figs.1 and 2 show
the theoretical (exact (21) and approximate (22) and (24))
and empirical (Monte Carlo with 10000 runs) SINR as a
function of the position k − K of the information sym-
bol for ∆ fs = 0, ∆ f jT = 5 10−4 and ∆ f j = 0, ∆ fsT =
5 10−4 respectively, for the SAIC receiver with NRZ pulse
shape filter. The SINRs at the middle of the burst (30-
th symbol) are plotted in Figs.3 and 4 as a function of
∆ f jT and ∆ fsT for ∆ fsT = 0 and ∆ f jT = 0, respectively.
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Fig.1 SINR for ∆ f jT = 5.10−4 and ∆ fsT = 0.
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Fig.2 SINR for ∆ fsT = 5.10−4 and ∆ f jT = 0.
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Fig.3 SINR at 30-th symbol for ∆ fsT = 0.
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Fig.4 SINR at 30-th symbol for ∆ f jT = 0.
We see from these figures that all the theoretical SINR

fit the empirical ones. However, we note in Fig.1 that the
empirical SINR perfectly fits the theoretical SINR in contrast
to Fig.2. This shows that the assumptions of Subsection 4.1
is better justified in case of frequency offset of interference
than of SOI. This is likely due to the estimated filter w(K) in
(17) that is more perturbed to frequency offset of SOI than
of interference. Furthermore our simplified expressions (22)
and (24) are roughly valid up to ∆ f jT = 10−3 and ∆ fsT =
5 10−3 respectively.

5.2 Practical applications
We consider now the practical case in which the phases of the
SOI and interference for the SAIC receiver, and the phases
and the directions of arrival for the MAIC receiver are totally
unknown. Figs.5 shows the theoretical BER given by (21)
and the empirical BER (Monte Carlo with 20000 runs) aver-
aged over the phases φs and φ j, and the L information sym-
bols for the SAIC receiver with an NRZ pulse shape filter,
as a function of ∆ f jT for ∆ fsT = 0 and ∆ fsT for ∆ f jT = 0.
This BER is compared to those obtained with a raise cosine
pulse shape filter with a roll-off of 0.22 in Fig.6. Note that
it is derived by 20000 Monte Carlo runs because the deriva-
tion from (21) is too computationally demanding due to the
truncation of υ(t) to 15 samples.
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Fig.5 Averaged BER, NRZ pulse
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Fig.6 Averaged BER, raise cosine pulse

We see from Fig.5 that the averaged theoretical BER fits
the empirical ones and that the raise cosine pulse shape fil-
ter roughly does not modify the loss in performance. Note
that the SAIC is less sensitive to residual offsets of the SOI
than of the interference. More precisely, we note an in-
crease of the BER of ten per cent for ∆ f jT = 1.5 10−4 or for
∆ fsT = 5 10−4, i.e., 40Hz or 135Hz for the GSM standard
(T = 1/270) ms, respectively. We note that for ε j = 10dB

and ε j = 30dB these values become ∆ f jT = 4 10−4 and
∆ f jT = 1.2 10−4, whereas the value of ∆ fsT keeps the same
value as predicted by our approximations (22) and (23).

Finally Figs.7 shows the averaged theoretical BER given
by (21) and the empirical BER (Monte Carlo with 10000
runs) with respect to the phases φs and φ j, the directions
of arrival θs and θ j and the L information symbols for the
MAIC receiver (with N = 2 omnidirectional sensors equis-
paced half a wavelength apart) with an NRZ pulse shape filter
as a function of ∆ f jT for ∆ fsT = 0 and ∆ fsT for ∆ f jT = 0.
We see that MAIC receiver roughly presents the same sensi-
tivity than the SAIC receiver.
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Fig.7 Averaged BER, NRZ pulse for MAIC (N = 2)

6. CONCLUSION
In this paper, we have presented a theoretical performance
analysis of the loss in performance of the SAIC and MAIC
receiver in the presence of residual frequency offsets of
BPSK SOI and interference. We have proved for NRZ pulse
shape filters than the SAIC receiver is less sensitive to resid-
ual offset of the SOI than of the interference for strong in-
terference w.r.t. background noise and some rules of thumb
about the normalized tolerable residual offsets have been
given. In particular for a burst structure similar to those of
the GSM, an increasing of BER of ten per cent is obtained
for ∆ f j = 40Hz or ∆ fs = 135Hz. These properties of sen-
sitivity have been extended by Monte Carlo experiments to
raise cosine pulse shape filters, MAIC receivers and exten-
sive scenarios of phases and directions of arrival.

Extension of this work to MSK and GMSK signals will
be considered in a future contribution to analyze the behavior
of the SAIC and MAIC receivers for cochannel mitigation
with nonnull residual offsets in the GSM network.
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