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ABSTRACT
In this work we consider the problem of blind identification
of underdetermined mixtures using the generating function
of the observations. This approach has been successfully ap-
plied on real sources but had not been extended to the more
attractive case of complex mixtures of complex sources. This
is the main goal of the present study. By developing the core
equation in the complex case, we arrive at a particular tensor
stowage which involves an original tensor decomposition.
Exploiting this decomposition, an algorithm is proposed to
blindly estimate the mixing matrix. Three versions of this
algorithm based on 2nd, 3rd and 4th-order derivatives of the
generating function are evaluated on complex mixtures of 4-
QAM and 8-PSK sources and compared to the 6-BIOME al-
gorithm by means of simulation results.

1. INTRODUCTION

Blind Identification (BI) methods have been successfully
applied in various scientific areas, including for instance
telecommunications [1], acoustic [2] or biomedical signal
processing [3]. A large family of BI methods relies on the
theory of Independent Component Analysis (ICA) [4] and
thereby involves second or higher-order statistics. BI of
underdetermined mixtures (when the number of sources
exceeds the number of sensors) is an important subcategory
of BI problems which arises in many practical situations,
especially in telecommunications.
Several solutions have been proposed in the literature to
solve this problem (see, e.g. [5, 6, 7, 8, 9]). Notably, some
original methods, which do not exploit cumulants but the
second characteristic function of the observations, have been
proposed in [10, 11, 12, 13] . We are interested here by the
approach proposed in [12], leading to a class of efficient
algorithms such as the ALESCAF algorithm [13]. In that
work, the authors showed that partial derivatives of the
second ChAracteristic Function (CAF) can be stored in a
symmetric tensor. The Canonical Decomposition (CanD)
of this tensor provides a direct estimation of the mixing
matrix up to trivial scaling and permutation indeterminacies.
The ALESCAF algorithm resorts to an Alternating LEast
Squares procedure in order to perform the CanD.
The CAF approach has a nice advantage, which makes it
very attractive for the identification of underdetermined
mixtures. Indeed, for a given number of sensors, the number
of sources is theoretically not limited.
In [13], ALESCAF has been successfully applied on
under-determined mixtures of real sources such as BPSK
or 4-PAM. It can be shown easily that the method holds for

complex mixtures of real sources and that ALESCAF can
be applied to the case of real mixtures of complex sources
within few modifications. However, these are very specific
cases, which are rarely encountered in practice. On the other
hand, as far as we know, this approach has not been extended
to the case of complex mixtures of complex sources although
this scenario1 is far more relevant from a practical point
of view. Most cumulant based algorithms can be directly
applied in both situations whereas it rapidly turns out that
the ALESCAF algorithm is not pertinent in the complex
case. As a consequence, the present work aims at extending
the CAF approach to the complex case, which often occurs
in practice.
In this paper, we firstly transpose the theory of the CAF
approach to the complex case: a new core equation is
obtained. By differentiating this core equation, we obtaina
new tensor decomposition from which an estimation of the
mixing matrix can be obtained. In order to implement this
more general approach a new algorithm is proposed. The
CAF approach is available for most applications involving
BI. Computer results obtained from simulated telecommuni-
cations signals are presented in the last part of the paper as
an application example.

2. THEORY

2.1 Notations

Vectors, matrices and tensors are denoted by lower case bold-
face(a), upper case boldface(A) and upper case calligraphic
(A ) letters respectively.ai is theith coordinate of vectora
andai is theith column of matrixA. The(i, j) entry of ma-
trix A is denotedAi j and the(i, j,k) entry of the third order
tensorA is denotedAi jk. Complex objects are underlined,
their real and imaginary parts are denotedℜ{·} andℑ{·} re-
spectively. E[.] denotes the mean value of a random variable.

2.2 Blind Identification Problem

Consider a noisy mixture ofK statistically independent nar-
rowband sources received by an array ofN sensors. The
vectory(m) containing discrete observations of the received
signal at the sensor outputs is modelled according to the fol-
lowing linear model:

y(m) =Hs(m)+n(m), m = 1· · ·M

1Note that in the following we refer to the real or complex casewhen
both mixture and sources belong toR (”real case”) orC (”complex case”).
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whereH= [h1, . . . ,hK ] ∈ CN×K , s = [s1, . . . ,sK ]
T ∈ CK and

n ∈ CN are the mixing matrix, source and Gaussian noise
random vectors, respectively. It is assumed that for any fixed
sample indexm, s andn are statistically independent. The
problem is to identify the mixing matrixH (up to trivial col-
umn permutation and scaling) from the only knowledge of
the observation vectory(m), using its characteristic func-
tion. Recall that we are interested in the so-called under-
determined case, which means that we haveK > N.
Before to proceed, we describe our working hypotheses:

H1. The mixing matrixH does not contain collinear
columns.

H2. The sourcess1(m), . . . ,sK(m) are mutually indepen-
dent and non-Gaussian

H3. The number of sources is known.
The theoretical justification of the present approach is similar
to that of the real case. It consists in successively differenti-
ating the second generating function2 of the observations at
different points of the observation space. By working with
complex mixtures of complex sources, this leads to a new
core equation following a particular tensor decomposition.
By exploiting the structure of this tensor decomposition, the
mixing matrix is estimated.

2.3 The new core equation

The first step is to obtain the new core equation. This is
achieved by decomposing the second generating function of
the observations as a sum of the individual second generating
functions of the sources. Generating functions of a complex
variable are actually defined by assimilatingC to R

2. Thus
the second generating function of thekth sourceϕk taken at
the pointz of C is defined as a function of two real variables
(real and imaginary parts ofz):

ϕk(ℜ{z},ℑ{z})
def
= logE[exp(ℜ{sk}ℜ{z}+ℑ{sk}ℑ{z})]

In a more compact form we have:

ϕk(ℜ{z},ℑ{z}) = logE[exp(ℜ{z∗sk})] (2.1)

In the same way, the second generating function of the ob-
servationsΦy taken at the pointw of C2N is actually defined
in R

2N by

Φy(ℜ{w},ℑ{w})
def
= logE[exp(ℜ{y}Hℜ{w}+ℑ{y}Hℑ{w})]

thus we have

Φy(ℜ{w},ℑ{w}) = logE[exp(ℜ{wHy})]

Replacingy by its model yields:

Φy(ℜ{w},ℑ{w}) = logE[exp(ℜ{wHHs})]

and from the sources mutual statistical independence hypoth-
esis we can deduce:

Φy(ℜ{w},ℑ{w}) = ∑
k

logE[exp(ℜ{wHhksk})]

2In order to simplify notations and calculations, without any theoretical
impact, we prefer using the generating function instead of the characteristic
function.

wherehk is thekth column of matrixH. Then, (2.1) yields:

Φy(ℜ{w},ℑ{w}) = ∑
k

ϕk
(
ℜ{wTh∗

k},ℑ{w
Th∗

k}
)

Finally, we define two real matricesA andB so thatH =
A+ jB. This leads to the the new core equation that copes
with the complex case:

Φy(ℜ{w},ℑ{w}) = ∑
k

ϕk

(
∑
n

Ankℜ{wn}+

Bnkℑ{wn} , ∑
n

Ankℑ{wn}−Bnkℜ{wn}

)
(2.2)

Note that definingϕk, Φy in R
2N andR2 respectively instead

of CN andC2 allows their differentiation. Hence, the next
step is the differentiation of (2.2).

2.4 Differentiation of Φy(ℜ{w},ℑ{w})

We defineu = ℜ{w}, v = ℑ{w} andw = (u,v). w is an
element ofR2N and (2.2) can be rewritten as:

Φy(w) = ∑
k

ϕk

(
∑
n

Ankun +Bnkvn , ∑
n

Ankvn −Bnkun

)

(2.3)

We also introduce three functionsg1, g2 andg respectively
defined by:

g1(w) = ∑
n

Ankun +Bnkvn ; g2(w) = ∑
n

Ankvn −Bnkun

g : R
2N −→R

2

w 7−→ g(w) = (g1(w),g2(w))

Theϕk functions mapR2 to R and we have:

Φy(w) = ∑
k

ϕk (g(w))

Let us compute the partial derivatives ofΦy(w) with respect
to the real (un,n = 1· · ·N) and imaginary parts (vn,n =
1· · ·N) of w coordinates. The differentiations of (2.3) with
respect toup andvp, p = 1· · ·N yield:

∂Φy(w)

∂up
=

K

∑
k=1

∂ϕk(g)
∂g1

Apk −
∂ϕk(g)

∂g2
Bpk (2.4)

∂Φy(w)

∂vp
=

K

∑
k=1

∂ϕk(g)
∂g1

Bpk +
∂ϕk(g)

∂g2
Apk (2.5)

In order to have a sufficient diversity of equations we have
to use higher differentiating orders. In the theoretical part
of this study, we limit ourselves to the second order. The
associated equations at higher orders can be obtained in a
similar manner. Hence, we can differentiate (2.4) and (2.5)
with respect touq andvq, q = 1· · ·N. For instance,

∂ 2Φy(w)

∂up∂uq
=

∂
∂g1

K

∑
k=1

∂ϕk(g)
∂uq

Apk −
∂

∂g2

K

∑
k=1

∂ϕk(g)
∂uq

Bpk

(2.6)
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Substituting (2.4) and (2.5) in (2.6) yields:

∂ 2Φy(w)

∂up∂uq
=

K

∑
k=1

Apk

[
∂ 2ϕk(g)
∂g1∂g1

Aqk −
∂ 2ϕk(g)
∂g1∂g2

Bqk

]

−
K

∑
k=1

Bpk

[
∂ 2ϕk(g)
∂g2∂g1

Aqk −
∂ 2ϕk(g)
∂g2∂g2

Bqk

]

2.5 Tensor stowage and decomposition

In practice, the partial derivatives ofΦy are computed atS
points ofR2N denotedw(s). The objective is again to in-
crease the order of the tensor, aiming at achieving a better

estimation quality. Let us defineGi j
sk =

∂ 2ϕk(g(w
(s)))

∂gi(w(s))∂g j(w(s))
i =

1,2 ; j = 1,2 (one can note thatG12
sk = G21

sk ). This leads to
the three distinct relations:

∂ 2Φy(w
(s))

∂up∂uq
=

K

∑
k=1

ApkAqkG11
sk −

K

∑
k=1

ApkBqkG12
sk −

K

∑
k=1

BpkAqkG12
sk +

K

∑
k=1

BpkBqkG22
sk (2.7)

∂ 2Φy(w
(s))

∂vp∂vq
=

K

∑
k=1

BpkBqkG11
sk +

K

∑
k=1

BpkAqkG12
sk +

K

∑
k=1

ApkBqkG12
sk +

K

∑
k=1

ApkAqkG22
sk (2.8)

∂ 2Φy(w
(s))

∂up∂vq
=

K

∑
k=1

ApkBqkG11
sk +

K

∑
k=1

ApkAqkG12
sk −

K

∑
k=1

BpkBqkG12
sk −

K

∑
k=1

BpkAqkG22
sk (2.9)

Since all values ofp andq are taken into consideration, equa-
tions (2.7)-(2.9) cover all the partial second order derivatives.
In the real case, the second order derivatives ofΦy are stored
in a third order tensor whose CanD gives a direct estimation
of the mixing matrix. This situation is quite different in the
complex case. Indeed, each of the three previous equations
can be seen as a sum of four CanD of third-order tensors
(p,q,s), involving the elements of the mixing matrix in dif-
ferent ways. It appears that the CanD of these tensors or
of any combination of those is insufficient here. Therefore
CanD based algorithms such as ALESCAF are not pertinent
in this case. However it is still possible to use a tensor ap-
proach by jointly exploiting the three forms of derivatives
in order to build a fourth-order tensor(N,N,S,3) with in-
creased diversity, notedT Φ. The last mode ofT Φ contains
the following elements:

T
Φ

pqs1
def
=

∂ 2Φy(w
(s))

∂up∂uq
; T

Φ
pqs2

def
=

∂ 2Φy(w
(s))

∂vp∂vq

T
Φ

pqs3
def
=

∂ 2Φy(w
(s))

∂up∂vq
(2.10)

3. ALGORITHM

3.1 Building T Φ

We explain in this section how to buildT Φ from the realiza-
tions ofy.
The entries ofT Φ are computed one by one just like in the
real case. We callΓy the first generating function ofy defined
by:

Γy(w
(s))

def
= E[exp(u(s)Tℜ{y}+v(s)Tℑ{y})] (3.11)

so thatΦy = logΓy. In practice, the expected value is esti-
mated by the mean value on all the realisations. Note that
this estimator is consistent but it leads to a biased estima-
tion of the partial derivatives ofΦy, if the latter are computed
by finite differences of (3.11). As in [13], it is preferred to
compute formal derivatives, and estimate the obtained ex-
pressions with the help of sample means.
Let us defineD(w(s)) as the partial derivatives ofΓy(w

(s))

with respect to the components ofu(s) andv(s). Examples of
first and second order derivatives are:

Du
p(w

(s))
def
=

∂Γy(w
(s))

∂up
= ℜ{y

p
}Γy(w

(s))

Dvu
pq(w

(s))
def
=

∂ 2Γy(w
(s))

∂vp∂uq
= ℑ{y

p
}ℜ{y

q
}Γy(w

(s))

Thus, the elements ofT Φ (i.e. second order derivatives) are
given by:

T
Φ

pqs1 =
Duu

pq(w
(s))

Γy(w(s))
−

Du
p(w

(s))Du
q(w

(s))

Γ2
y(w

(s))

T
Φ

pqs2 =
Dvv

pq(w
(s))

Γy(w(s))
−

Dv
p(w

(s))Dv
q(w

(s))

Γ2
y(w

(s))

T
Φ

pqs3 =
Duv

pq(w
(s))

Γy(w(s))
−

Du
p(w

(s))Dv
q(w

(s))

Γ2
y(w

(s))
(3.12)

3.2 Estimation of the mixing matrix

The proposed algorithm is named LEMACAFC-O, where O
is the order of differentiation. Hence, LEMACAFC-2 con-
sists of iteratively fitting the tensor̂T Φ built from the esti-
mated parameters and model equations (2.7)-(2.9) toT Φ us-
ing the Levenberg-Marquardt (LM) method. The LM method
has been used to perform the CanD of multi-way arrays in
[14, 15] for example.
We consider the minimization of the following quadratic cost
function:

fT (p) =
1
2
‖e(p)‖2

F =
1
2
eH(p)e(p)

wheree(p) = vec{T̂ Φ(p)−T Φ} ∈ C3SN2×1 is the residue
andp is the parameter vector defined as:

p=




p
Â

p
B̂

p
Ĝ11

p
Ĝ12

p
Ĝ22


=




vec(ÂT)

vec(B̂T)

vec(Ĝ11T)

vec(Ĝ12T)

vec(Ĝ22T)



∈ C

(2N+S+3)K×1
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Ns Simulation parameters Median values (10−2) and number of acceptable values (%) of fH
Mod. K M SNR LEMC-2 LEMC-2 LEMC-2 LEMC-3 LEMC-4 6-BIOME

Med. Na Med. Na Med. Na Med. Na Med. Na Med. Na
1 4-QAM 4 10000 20 13 16 × × × × 0.21 90 0.26 90 0.43 76
2 4-QAM 4 5000 50 × × × × 4.4 18 0.34 78 0.42 74 0.6 74
3 4-QAM 4 5000 20 24 4 4.5 18 2.9 18 0.45 76 0.5 76 0.58 68
4 4-QAM 5 10000 20 NC 0 × × × × 1.5 40 1.2 40 1.2 46
5 4-QAM 5 5000 30 NC 0 × × × × 1.7 34 1.5 32 1.9 16
6 4-QAM 6 20000 20 × × × × NC 0 2.5 26 1.6 40 1.9 28
7 4-QAM 5 5000 20 NC 0 × × × × 6.8 12 3.2 14 4.2 6
8 8-PSK 4 10000 20 × × × × 1.6 28 0.38 82 0.34 90 NC 0

Table 1:Some comparisons between LEMACAFC algorithms (denoted LEMC here) and 6-BIOME. Ns is the simulation
number. NC means that the corresponding algorithm has neverconverged;× means that it has not been evaluated in this
situation.

and where vec{·} yields a column vector by stacking the
columns of its matrix argument. The LM update is given
as follows:

p(i+1) = p(i)−
[
JH(i)J(i)+λ (i)I

]−1
g(i)

whereJ(i) denotes the Jacobian matrix,g(i) the gradient
vector computed at iterationi and λ (i) is a positive reg-
ularization parameter.p and λ are updated at every it-
eration. There are many ways to proceed with the LM
updates. We retained the scheme described in [16]. Af-
ter convergence, an estimate of the mixture is obtained by
Ĥ= unvec{p

Â
+ jp

B̂
} (up to column permutation and scal-

ing).

4. COMPUTER RESULTS
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Figure 1: Distribution (in %) of the relative estimation error
(fH ) computed from simulation 4 results.

The performance of the proposed approach is evalu-
ated for blind identification of underdetermined complex
mixtures of 4-QAM or 8-PSK sources. Our goal here is to
highlight the performance of LEMACAFC through a limited
number of key simulations.

Three versions of the algorithm (LEMACAFC-2,
LEMACAFC-3, LEMACAFC-4) have been implemented
and compared in various situations to the well known
6-BIOME (Blind Identification of Overcomplete MixturEs)
algorithm [7], also referred to as “BIRTH” (Blind Identifica-
tion of mixtures of sources using Redundancies in the daTa
Hexacovariance matrix).
Algorithms were evaluated with respect to the estimation
error, according to the following normalized measure:

fH(H,Ĥ) =
vec(H− Ĥ)Hvec(H− Ĥ)

vec(H)Hvec(H)

For each situation a median value (Med.) of fH and a number
of ”acceptable results” (Na) is obtained from 50 Monte-Carlo
runs. We chose to define Na as the percentage of Monte-
Carlo results for which fH < 10−2. These values are re-
ported in Table 1 according to simulation parameters and al-
gorithms. Figure 1 focuses on simultion 4 results, giving all
LEMACAFC-3, LEMACAFC4 and 6-BIOME results in an
histogram form. At each run, the source vectors and the mix-
ing matrix were changed and the derivatives were computed
at 10 different points (S= 10) whose real and imaginary parts
were randomly drawn in the range[−1;1]N . Our iterative al-
gorithms were all initialized with the same random entries
and consistently stopped after 60 iterations. Simulation pa-
rameters are source modulation (Mod.), source number (K),
sample number (M) and Signal to Noise Ratio (SNR). The
number of sensors is fixed to 3 for each simulations.
Three variations of LEMACAFC-2 were actually computed
with an eye to evaluate the impact of an ”unlucky” initial-
ization. The first one uses only one random initialization
while for the second and third ones we compared five and
ten different initializations respectively and we kept theini-
tialization corresponding to the smallest value of fT (p) after
the 60 iterations. Only one random initialization was used
for LEMACAFC-3 and LEMACAFC-4. Simulation 3 results
show that increasing the number of random initialization ap-
preciably improves our two performance criteria.
Our simulations on 4-QAM sources can be rank in several
categories. First of all, LEMACAFC-2 only converge in
the most favourable situations (simulations 1,2,3). Actually,
LEMACAFC-2 seems to be not suitable when the number
of sources exceeds 4. Our simulations are ordered in the as-
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cending order of LEMACAFC-3 median values. Hence it
clearly appears that for simulations 1 to 3 (i.e.: the easiest
cases) LEMACAFC-3 provides slightly better results than
LEMACAFC-4 as opposed to simulations 4 and 5 (middle
cases). Finally LEMACAFC-4 is sensibly better for simula-
tions 6 and 7 (difficult cases), indicating that the latter isstill
interesting in some difficult situations, notably when the un-
derdeterminacy level (i.e.: the ratio between source number
and sensor number) is high.
Taking into account both criteria, LEMACAFC-3 provides
better or comparable results than 6-BIOME in most situa-
tions (simulations 1,2,3,5,7) while LEMACAFC-4 is consis-
tently better than the cumulant based approach at the ex-
eption of simulation 4, for which 6-BIOME provides 46 %
of acceptable values against 40 % for LEMACAFC-3 and
LEMACAFC-4. However the histogram plotted in figure 1
shows that when converging, LEMACAFC provides a bet-
ter estimation of the mixing matrix. For instance, 14 % of
LEMACAFC-4 error values are smaller than 0.0033 against
8 % for LEMACAFC-3 and only 4 % for 6-BIOME. In this
sense, figure 1 is typical because a similar observation could
have been done from every simulation histogram. Further-
more the number of LEMACAFC-3 and LEMACAFC-4 ac-
ceptable values could be increase by trying several random
initialization entries.
Finally simulation 8 shows that in this ”easy” case all
LEMACAFC algorithms provide satisfactory results with 8-
PSK sources as opposed to 6-BIOME.

5. CONCLUSION

We have addressed the problem of blind identification of un-
derdetermined complex mixtures of complex sources using
the second generating function of the observations. We de-
tailed the theoretical background and proposed an algorithm
relying on an original tensor decomposition. Finally, three
versions of this algorithm, based on several differentiation
order, have been evaluated on simulated complex mixtures
of telecommunications complex sources.
It has been shown that second order version provides some
satisfying results in the least difficult cases, especiallyif sev-
eral initialization entries are compared. In these conditions,
it can be an option if one is looking for a fast algorithm.
On the contrary, the fourth order version appears as a pos-
sible solution for the most complicated cases. In this con-
nection, a deeper investigation should clarify the respective
influences of SNR, underdeterminacy level and sample num-
ber. In other cases we recommend the use of LEMACAFC-
3 which is enough to overpass a classical 6 order cumulant
based approach in most situations while being less time con-
suming than LEMACAFC-4.
Moreover, the LEMACAFC algorithm also worked fine in
the case of 8-PSK sources.
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