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ABSTRACT

Following recent works from Lavancier et. al., we study the
covariance structure of the multivariate fractional Gaussian
noise. We evaluate several parameters of the model that al-
low to control the correlation structure at lag zero between all
the components of the multivariate process. Then, we spec-
ify an algorithm that allows the exact simulation of multivari-
ate fractional Gaussian noises and thus fractional Brownian
motions. Illustrations involve the estimation of the Hurst ex-
ponents of each of the components.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) consists in
observing the functional brain at low frequencies, around 2
Hertz. One time series for each anatomical region of the
brain is recorded and the objective is to study the networks
of propagation of information in the brain. In [2], the au-
thors computed pairwise inter-regional correlations between
wavelets coefficients in order to take into account the prop-
erties of long range dependence of the time series. Indeed,
the fMRI time series are well modeled by a long range de-
pendent Gaussian process [2]. In order to combine the mul-
tivariate and long range dependence properties of the fMRI
time series, there is a need to develop models of multivariate
Gaussian long range dependent processes.

Here, we concentrate on a model recently introduced
in [6, 8] as a generalization of fractional Brownian motion
(fBm) to multivariate fractional Brownian motion (vfBm).
The definition is much wider in [6] whereas [8] concen-
trates on the covariance structure of multivariate processes
that are jointly self-similar. Note that these works have
closed links with the work of Stoev&Taqqu [10]. The pro-
cess we study here is thus the particular Gaussian case. To
develop model of multivariate Gaussian fractal noises needed
to model fMRI signal, we particularly study the increments
of the multivariate fractional Brownian motions. We ex-
hibit interesting features of the covariance structure, such as
long range dependence of marginals or long range interde-
pendence between components. Furthermore, we specify the
parameters in order to get a prescribed correlation structure
between the components. We also develop an exact sim-
ulation algorithm based on the extension of Wood&Chan’s
method [12] to simulate univariate Gaussian signals to mul-
tivariate Gaussian random fields [3]. Some properties of the
algorithm are discussed, especially conditions for exactness
of the simulation. Finally we present several simulations to
illustrate the sample paths of the processes, and to illustrate
the good behavior of the simulation algorithm.

2. THE MULTIVARIATE FBM AND FGN

2.1 Model and properties

The fractional Brownian motion, as defined by Mandel-
brot&Van Ness [9] is a causal linear transform of a Wiener
process, with a kernel that respect self-similarity and which
is parametrized by the self-similarity index H. This trans-
form can be generalized in several ways, including time-
varying index and non causal integration [10], or operator
self-similarity [6]. Here, we concentrate on particular cases
of the latter, and study the multivariate fractional Brownian
motion defined via a causal integration of the mixing of in-
dependent Wiener processes. This comes after the work of
Didier&Pipiras in [6] when we restrict the operators involved
to be diagonal matrices. Let x(t) of dimension p be defined
as

x(t) =
∫

kH(u, t)A+dW (u) (1)

where W is a vector of p independent standardized Wiener
processes or Brownian motions, A+ is a p× p matrix of re-
als. H is a diagonal matrix of parameters H j ∈ (0,1),∀ j =
1, . . . , p, and kH(u, t) is a matrix of kernels that reads (t −
u)H−1/2

+ −(−u)H−1/2
+ . In this notation, (a)+ = max(a,0) and

tH is understood as the exponential of a matrix exp(H log(t)).
As seen in the stochastic integral representation (1) of the
vfBm, x(t) is a multivariate non-stationary Gaussian process
with stationary increments. Moreover, the components of
x(t) are correlated, and the structure of the correlation is in-
herited from the presence of the mixing matrix A+. And the
correlation structure is sufficient to completely determine the
process since it is Gaussian and zero mean (as a linear trans-
form of a zero mean Gaussian process).

2.2 Covariances and cross-covariances

Let r jk(s, t) = E[x j(s)xk(t)] and γ jk(h) = E[∆x j(t)∆xk(t +h)]
respectively denote the cross-covariance of the components
j and k of x, and the cross-covariance of the increments of
the components j and k. For the sake of simplicity, let B jk =
B(H j + .5,Hk + .5) where B(x,y) is the beta function.

Let σ j, j = 1, . . . , p be positive numbers, and ρ jk, j =
1, . . . , p,k > j be real numbers in [−1,1]. Let the matrix A
be defined for j,k = 1 . . . , p by

A j j =
σ2

j sin(πH j)
B j j

(2)
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A jk =


σ jσkρ jk sin(π(H j +Hk))

(cos(πH j)+ cos(πHk))B jk
if H j +Hk 6= 1

2σ jσkρ jk

(sin(πH j)+ sin(πHk))B jk
if H j +Hk = 1

(3)

Then, if A is positive-semidefinite, the resulting process
x(t) defined by (1) with A = A+AT

+ is a vector of p correlated
fBm of parameters H j, j = 1 . . . , p, and the correlation matrix
at zero lag of the increments, i.e. γ(0), is given by γ j j(0) =
σ2

j , γ jk(0) = ρ jkσ jσk.

Moreover, we may derive the following computations. In
the sequel, let |h| ≥ 1. For j = 1, . . . , p, the j-th component
x j(t) of x(t) is a fractional Brownian motion. Hence,

r j j(s, t) =
σ2

j

2

{
|s|2H j + |t|2H j −|t− s|2H j

}
,

γ j j(h) =
σ2

j

2

{
|h−1|2H j −2|h|2H j + |h+1|2H j

}
.

Now, for j 6= k, two cases occur.

Case 1: H j +Hk 6= 1,

r jk(s, t) =
σ jσkρ jk

2

{
c jk(s)|s|H j+Hk + ck j(t)|t|H j+Hk

−ck j(t− s)|t− s|H j+Hk

}
,

γ jk(h) =
σ jσkρ jk

2

{
ck j(h−1)|h−1|H j+Hk −2ck j(h)|h|H j+Hk

+ck j(h+1)|h+1|H j+Hk

}
with c jk(t) = c jk1R+(t) + ck j1R−(t) and c jk =
2cos(πH j)/(cos(πH j)+ cos(πHk)).

Case 2: H j +Hk = 1

r jk(s, t) =
σ jσkρ jk

2

{
(|s|+ |t|− |t− s|)

+ f jk (s log |s|− t log |t|− (t− s) log |t− s|)
}

γ jk(h) =
σ jσkρ jk f jk

2

{
(h−1) log |h−1|−2h log |h|

+(h+1) log |h+1|
}

,

with f jk = 2/π tan(πH j). The case H j = Hk = 1/2 is a par-
ticular case leading to γ jk(h) = 0.

For details on the computations of r jk(s, t) we refer the
reader to [8]. The calculation of γ jk(h) follows easily from
the knowledge of r jk(s, t). The preceding results raise several
remarks:
• A j j can be obtained from A jk when j = k and ρ j j = 1.
• The limit of A jk when H j +Hk → 1 is equal to the defini-

tion of A jk when H j +Hk = 1. This can be easily verified
using trigonometric identities to write the first as (forget-
ting σ ’s and ρ’s) sin(π(H j +Hk)/2)

/
cos(π(H j−Hk)/2)

and the second as 1
/(

sin(π(H j + Hk)/2)cos(π(H j −
Hk)/2)

)
. Thus A jk for H j + Hk = 1 could have been de-

fined by continuity.
• If H j = Hk, we observe that c jk(t) = c jk = 1 which leads

to γ jk(h) = γk j(h),∀h. Thus in this particular case, this
cross-covariance function is proportional to the covari-
ance of a fGn of parameter H j.

• As |h| →+∞, we derive the following equivalences. De-
note f ∼ g when lim f (h)/g(h) = 1. For j 6= k and
H j +Hk 6= 1, expanding (1−1/h)H j+Hk allows to obtain

γ jk(h)∼
σ jσkρ jkck j(h)(H j +Hk)(H j +Hk−1)

2
|h|H j+Hk−2

Setting j = k and ρ j j = 1 allows to recover the well-
known asymptotic behavior for the covaraince of a mono-
variate fGn

γ j j(h)∼
σ2

j 2H j(2H j−1)
2

|h|2H j−2

If j 6= k and H j +Hk 6= 1 but H j 6= 1/2 we obtain

γ jk(h)∼
σ jσkρ jk f jksign(h)

2
|h|−1

These equivalences allow to have interesting conclusions.
Firstly, if H j = 1/2 = Hk, the Brownian motions are un-
correlated, except at lag 0. When H j + Hk = 1 but H j 6=
1/2, the fractional Gaussian noises are long range inter-
dependent since their cross-covariance is not summable.
Note that in this case one fGn is long range dependent
and the other is necessarily not.
When H j + Hk 6= 1, the same conclusion may be drawn.
If the two fGn are long range dependent (H j > 1/2 and
Hk > 1/2), then necessarily they are long range interde-
pendent. Interestingly, two fGn can be long range in-
derdependent when only one is long range dependent.

• Behavior of γ jk(h): without loss of generality, let h ≥ 1
and ρ jk ≥ 0. When H j +Hk 6= 1

γ jk(h) = σ jσkρ jkck j × γ̃ Hj+Hk
2

(h),

where γ̃H(h) is the covariance function of a fGn with
Hurst parameter H and with variance 1. Since, γ̃H(·) is
a negative and increasing (resp. positive and decreasing)
function when H < 1/2 resp. (H > 1/2), we may de-
rive the following statement (by studying the sign of ck j)
illustrated by Fig. 1:

γ jk(h)

{ is negative and increasing when H j < 1/2
is positive and decreasing when H j > 1/2
equals zero when H j = 1/2.

Let us underline that the study of the function (h −
1) log(h−1)−2h log(h)+(h+1) log(h+1) leads to the
same conclusion when H j +Hk = 1.

2.3 Discussion on the non-negatitivity of A

The non-negativity condition of the matrix A defined by (2)
and (3) is the main limitation of this model. In the gen-
eral case, there is no general condition on the vector H =
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Figure 1: Examples of cross-covariance functions for different pa-
rameters H j, Hk. Without loss of generality, the parameters σ j, σk
and ρ jk are fixed to 1.

(H1, . . . ,Hp) and on the matrix γ(0) except if one assumes
that H1 = . . . = Hp = H̃. Indeed, it is easily verified that
A = c(H̃)×γ(0) with c(H̃) = sin(πH̃)/B(H̃ + .5, H̃ + .5) and
so A is positive since γ(0) is a covariance matrix. In this par-
ticular case, there is no limitation: H̃ ∈ (0,1) and ρ ∈ [−1,1].

In the simple case p = 2, the condition depends only on
H1,H2 and ρ = ρ12. A plot is feasible to determine the range
of possible parameters, see Fig. 2. One observes that the
more |H1 −H2| is high (resp. low) the more the maximal
possible correlation ρ is low (resp. high). For instance, for
H1 = .1, H2 = .9, A is positive for |ρ| ≤ 0.11 (approximately)
and for H1 = .45, H2 = .55 this is true for |ρ| ≤ 0.97 (approx-
imately). Note that this sufficient condition when p = 2 is a
necessary one when p > 2.

3. EXACT SIMULATION OF VFBM

3.1 Introduction
The exact simulation of fBm has been a question of great
interest in the nineties. In principal this may be done by gen-
erating a sample path of a fractional Gaussian noise (fGn)
which is more simple due to the stationarity of the incre-
ments. An important step towards efficient simulation was
obtained after the work of Wood&Chan about the simulation
of arbitrary stationary Gaussian sequences with prescribed
covariance function [12]. The technique of Wood&Chan re-
lies upon the embedding of the covariance matrix into a cir-
culant matrix, a square root of which is easily calculated
using the discrete Fourier transform. This leads to a very
efficient algorithm, both in terms of computation time and
storage needs. Wood&Chan methods provide an exact sim-
ulation method provided that the circulant matrix is definite
positive, a property that is not always satisfied. However, for
the fGn, it can be proved that the circulant matrix is definite

Figure 2: Maximal values of the absolute possible correlation pa-
rameter |ρ12| ensuring that the matrix A is positive, in terms of H1
and H2.

positive for all H ∈ (0,1) [5, 7].
In [3], Wood&Chan extended their method and provided

a more general algorithm adapted to multivariate stationary
random Gaussian signals. The main characteristic of this
method is that if a certain non-negativity condition for a
familiy of Hermitian matrices holds then the algorithm is
exact in principal, i.e. the simulated data has the true co-
variance. We present hereafter the main ideas and briefly
describe the algorithm.

3.2 Method and algorithm
In the sequel, the letter i is reserved for the complex number√
−1. For a vector z and a matrix Q, z and Q? respectively

denote the conjugate of z and the conjugate transpose of Q.
For two arbitrary matrices A = (A jk) and B, we use A⊗B to
denote the Kronecker product of A and B that is the block
matrix (A jkB).

Let ∆x denote the increments of a vfBm, that is a
vectorial fractional Gaussian noise (vfGn) discretized at
times j = 0, . . . ,n− 1. The covariance matrix G of ∆x,
given by G = E[∆x∆xT ] is a np× np block matrix with
each block G(h) of dimension p × p given by G(h) :=
G`,`+h = E[∆x(`)∆x(`+h)T ] =

(
γ jk(h)

)
j,k=1,...,p. The sim-

ulation problem can be viewed as the generation of a random
vector following a Nnp(0,G). This may be done by comput-
ing G1/2 but the complexity of such a procedure is O(pn3).
To overcome this numerical cost, the idea is to embed G
into the following block circulant matrix C = circ{C( j), j =
0, . . . ,m−1}, where m is a power of 2 greater than 2(n−1)
and where each C( j) is the p× p matrix defined by

C( j) =


G( j) if 0≤ j < m/2
1
2

(
G( j)+G( j)T

)
if j = m/2

G( j−m) if m/2 < j ≤ m−1.
(4)
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Such a definition ensures that C is a symmetric matrix with
nested block circulant structure and that G = {C( j), j =
0, . . . ,n−1} is a submatrix of C. Therefore, the simulation of
a Nnp(0,G) may be done by taking the n “first” components
of a vector Nmp(0,C), which is done by computing C1/2.
The last problem is more simple since one may exploit the
circulant characteristic of C: there exist m Hermitian matri-
ces B( j) of size p× p such that the following decomposition
holds

C = (Q⊗ Ip) diag(B( j), j = 0, . . . ,m−1) (Q?⊗ Ip), (5)

where Q is the m×m unitary matrix defined for j,k = 0,m−1
by Q jk = e−2iπ jk/m. The computation of C1/2 is much less
expensive than the computation of G1/2 since, as in the one-
dimensional case (p = 1), (5) will allow us to make use of the
Fast Fourier Transform (FFT) which considerable reduces
the complexity.

Now, the algorithm proposed by Wood&Chan may be de-
scribed through the following steps. Let m be a power of 2
greater than 2(n−1).
Step 1. For 1≤ u≤ v≤ p calculate for k = 0, . . . ,m−1

Buv(k) =
m−1

∑
j=0

Cuv( j)e−2iπ jk/m

where Cuv( j) if the element (u,v) of the matrix C( j) defined
by (4) and put Bvu(k) = Buv(k)?.

Step 2. For each j = 0, . . . ,m − 1 determine a unitary
matrix R( j) and real numbers ξu( j) (u = 1, . . . , p) such that
B( j) = R( j) diag(ξ1( j), . . . ,ξp( j)) R( j)?.

Step 3. Assume that the eigenvalues ξ1( j), . . . ,ξp( j) are
non-negative (this will be discussed later) and define
B̃( j) = R( j) diag(

√
ξ1( j), . . . ,

√
ξp( j)) R( j)?.

Step 4. For j = 0, . . . ,m/2 generate independent vectors
U( j),V ( j)∼Np(0, I) and define

Z( j) =
1√
2m

×
{ √

2U( j) for j = 0, m
2

U( j)+ iV ( j) for j = 1, . . . , m
2 −1,

let Z(m − j) = Z( j) for j = m
2 + 1, . . . ,m − 1 and put

W ( j) := B̃( j)Z( j).

Step 5. For u = 1, . . . , p calculate for k = 0, . . . ,m−1

∆xu(k) =
m−1

∑
j=0

Wu( j)e−2iπ jk/m

and return
{

∆xu(k),1≤ u≤ p,k = 0, . . . ,n−1
}

.

Step 6. For u = 1, . . . , p take the cumulative sums ∆xu to get
the u− th component xu of a sample path of a vfBm.

3.3 Discussion
3.3.1 Computation cost

Let us concentrate on the computation cost of the most ex-
pensive steps, that is steps 1, 2 and 5. Step 1 requires p(p+1)

2

applications of the FFT of signals of length m, Step 2 needs
m diagonalizations of p× p Hermitian matrices and Step 5
requires p applications of the FFT of signals of length m.
Therefore, the total cost, κ(m, p) equals

κ(m, p) = O

(
p(p+1)

2
m logm

)
+O(mp3)+O(pm logm).

3.3.2 Semidefinite-positivity condition

The crucial point of the previous algorithm lies in the non-
negativity of the eigenvalues ξ1( j), . . . ,ξp( j) for any j =
0, . . . ,m−1. In the one-dimensional case (when p = 1) Steps
2 and 3 disappear, and in Step 1, B11(k) corresponds to the
k−th eigenvalue of the circulant matrix C11 with first line de-
fined by C11( j) = γ11( j) for 0 ≤ j ≤ m/2 and γ(m− j) for
j = m/2 + 1, . . . ,m− 1. For the fractional Gaussian noise,
it has been proved by Craigmile for H < 1/2 [5], and by
Dietrich&Newsam for H > 1/2 [7] that such a matrix is
semidefinite-positive for any m (and so for the first power
of 2 greater than 2(n− 1). In the more general case p > 1,
the problem is much more complex: the quantities Buv(k) are
not necessarily real, and the establishment of a condition of
positivity for the matrix Buv(k) does not seem obvious. When
the condition in Step 3 does not hold, Wood&Chan suggest
to either increase the value of m and restart Steps 1,2 or to
truncate the negative eigenvalues to zero which leads to an
approximate procedure. These problems will be deserved in
a separate paper. Let us assert that for the simulation exam-
ples presented in the next section, we have observed that this
condition is satisfied for m equal to the first power of 2.

4. SOME EXAMPLES

4.1 Bivariate fractional Brownian motion

Fig. 3 proposes some examples in the case p = 2. Except for
the parameters H = (0.2,0.8) for ρ = 0.9 all the parameters
satisfy the semidefinite-positivity condition on the matrix A
defining the model and on the matrices B( j) defined in Step
2 of the Wood&Chan’s algorithm. We are then interested
in retrieving the parameters based on a sample path. To es-
timate the Hurst exponents, we applied to each component
of the vfBm an estimator built for the fBm, based on discrete
variations [4]. To estimate the correlation parameter, we sim-
ply use the empirical correlation of the vfGn. Clearly, these
estimators are naive and we hope to construct more adapted
estimators by taking into account the behaviour of the cross-
covariance for example. This interesting topic will be studied
in a separate paper. The aim here is to have quickly an idea
on the performance of the simulation method. The results are
summarized in Fig. 4.

4.2 High dimensional fBm

We consider now a more complex vfBm with p = 20 compo-
nents, H j = 0.7 + 0.1× ( j− 1)/19, ρ j,k = 0.8 and σ j = 1
for j,k = 1, . . . ,20. A sample path is proposed in Fig 5.
We have also performed a simulation based on m = 200
realizations. Denote by TH and Tρ the following statistics
TH := ∑

20
j=1(Ĥ j−H j) and Tρ := ∑

20
j=2(ρ̂1 j−ρ1 j). We obtain

the results T H = 5.02× 10−3 (resp. T ρ = −0.023) with a
standard deviation of 0.046 (resp. 0.072).
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Figure 3: Sample paths of length n = 1000 of a bivariate fractional
Brownian motion with σ1 = σ2 = 1 for different Hurst parameters
and for ρ = 0.2 (left) ρ = 0.9 (right).

Figure 4: Boxplots of empirical biases of Hurst parameters and
correlation coefficient based on m = 200 realizations of a vfBm of
length n = 1000. The details of the parameters are the following:
-A- H = (0.2,0.3), ρ = 0.2 -B- H = (0.2,0.3), ρ = 0.9 -C- H =
(0.7,0.8), ρ = 0.2 -D- H = (0.7,0.8), ρ = 0.9 -E- H = (0.2,0.8),
ρ = 0.2

Figure 5: A sample path of a vfGn with p = 20 components of
length n = 500 with H j = 0.7 + 0.1× ( j− 1)/19, ρ j,k = 0.8 and
σ j = 1 for j,k = 1, . . . ,20.
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