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ABSTRACT
This paper presents buried objects localization using a towed
flexible antenna in presence of unknown noise. We take
into account both the reflection and the refraction of wave
at water-sediment interface. A new directional vector, which
contains the bearing and the range of objects, is used instead
of classical plane wave in MUSIC (MUltiple SIgnal Classifi-
cation). We propose to estimate phase distortions by a robust
optimization algorithm which combines DIRECT (DIviding
RECTangles) algorithm and spline interpolation. A fourth-
order cumulant matrix is proposed to reduce correlated Gaus-
sian noise. A novel iterative denoising algorithm is devel-
oped when the noise spectral matrix is one unknown band
matrix. The bilinear focusing operator is used to decorrelate
the received wideband signals. It is shown via experimental
data that this method has a good performance.

1. INTRODUCTION

The array processing is interested in the localization of buried
sources. An important cause of performance loss in source
localization in underwater acoustics is that towed flexible an-
tenna deviates from the assumed rectilinear shape. These
cause phase errors in the received signals. Various previous
studies were proposed to estimate phase errors by finding the
parameters of wavefronts impinging on a distorted antenna
with a relatively low number of sensors [1]. Contrary to this
work, we propose here a novel optimization algorithm which
is adapted to the antenna with a large number of sensors and
a small computational load. The subspace-based array pro-
cessing methods, such as MUSIC, well-developed so far re-
quire a fundamental assumption that the background noise is
uncorrelated from sensor to sensor, or known to within a mul-
tiplicative scalar [2]. In practice this assumption is rarely ful-
filled and the noise may be a combination of multiple noise
sources which is often correlated along the array [3].

In this paper, the proposed approach is based on array
processing methods combined with an acoustic scattering
model. we take into account the water-sediment interface [4]
which means that we attempt to combine both the reflection
and the refraction of wave in the model [5]. A new source
steering vector, which includes the bearings and the ranges
of the objects, is employed in the objective function instead
of the classical plane wave model in MUSIC algorithm. We
propose a version of ”DIRECT” algorithm accelerated by
spline interpolation to cancel phase error. A fourth-order
cumulant matrix [8] is used to handle correlated Gaussian
noise. Then we propose a novel algorithm to estimate the
noise with limit length band covariance matrix[9], [10]. A
fast focusing operator is proposed to estimate coherent sig-
nal subspace [11] .

Figure 1: Geometry configuration of the buried object

The organization of the paper is as follows: problem for-
mulation is presented in Section 2. Section 3 presents re-
trieval and cancellation of phase errors. The algorithms of
reducing noise based on MUSIC are elaborated in Section 4.
We summarize the algorithm in Section 1. Some simulation
results are presented in Section 6. Experimental setup and
conclusion are outlined in Section 7 and 8, respectively.

Throughout the paper, we use to denote: transpose oper-
ation ”T ”, complex conjugate transpose ”+”, complex con-
jugate ”∗”, expectation operator E[.], cumulant Cum(.), Kro-
necker product ⊗, determinant |.| and Frobenius norm ‖.‖F .

2. PROBLEM FORMULATION

2.1 Data model
Consider a situation where a towed flexible array of N sen-
sors receive the signals generated by P (P < N) sources in
presence of an additive noise and sensor phase errors (see
Fig. 1). The complex N-vector of array output is defined by:
r( fn) = A( fn)s( fn) +b( fn), where n = 1, ...,L f , L f is the
number of frequency bins, s( fn) = [s1( fn), . . . ,sP( fn)]T is the
signal vector, b( fn) = [b1( fn), . . . ,bN( fn)]T is the noise vec-
tor. A( fn) is the transfer matrix composed by a( fn,θki,ρki)
for k = 1, . . . ,P, and i = 1, . . . ,N where θki and ρki are the
bearing and the range of the kth object to the ith sensor.
When the sources are in the far field, the wavefronts are as-
sumed to be plane. Thus the DOA (Direction-Of-Arrival) of
the sources are obtained by the peak positions in a so-called
spectrum (MUSIC) defined as:

MUSIC( fn,θ) =
1

a+( fn,θ)Vb( fn)V+
b ( fn)a( fn,θ)

(1)

where a( f ,θ) = [1,e−2 jπ f d sin(θ)
c , . . . ,e−2 jπ f (N−1) d sin(θ)

c ] is the
steering vector of plane wave model, Vb( fn) is the eigen-
vectors of noise subspace. In the presence of P objects,
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MUSIC( fn,θ) algorithm can not solve all the P angles be-
cause the signals are correlated. In the following sections, we
estimate jointly the bearing θ and the range ρ of objects to
extend MUSIC( fn,θ) algorithm when the objects are buried
in the sand with small depth.

2.2 Scattering model

In this section, we will present how to fill the scattering
model vecotr. We assume that a cylindrical shell is buried
in the sediment. The nature of the sediment is known or
can be determined. An incident plane wave with incidence
angle θinc generates reflected plane wave in the water and
refracted plane wave in the sediment. The wave propaga-
tion speed in the water and the sediment are assumed to be
known. Because the object is buried, the pressure in the wa-
ter and the sediment can not be expressed directly in terms of
θk1 and ρk1, but in terms of the unknown θk11, ρk11, θk12, ρk12
and yc. We obtain the expressions of θk11, ρk11, θk12, ρk12
and yc based on θk1 and ρk1 by the law of Snell-Descartes
and Pythagorean theorem (see Fig.1): yc = ρk1 cos(θk1)−
h, θk12 = arcsin( c2

c1
sin(θinc)), ρk12 = ρk1 cos(θk1)−h

cos(θk12) , θk11 =

arctan[ρk1 cos(θk1)−ρk12 cos(θk12)
ρk1 sin(θk1)−ρk12 sin(θk12) ], ρk11 = h

cos(θk11) .
The received signals of the array located in the water

composed by three components: the incident plane wave
generated in the water Pinwater, the reflecting plane wave at
water-sediment interface Pre f water and the transmitted plane
wave diffused by the object Pdi f f cyl . Pcyl( fn,θk1,ρk1) is the
acoustic pressure wave received by the first sensor:

Pcyl( fn,θk1,ρk1) = Pinwater +Pre f water +Pdi f f cyl (2)

where Pinwater = e jk1(−(ρk1sin(θk1))sin(θinc)+hcos(θinc)),
Pre f water = αe jk1((ρk1sin(θk1))sin(θinc)−hcos(θinc)), where
α is the interface reflection coefficient. Pdi f f cyl =

+∞

∑
m=−∞

ξTc(I−Dc)−1ψ t
cyl , where I is the identity matrix, Dc

is a linear operator, Tc being the transition diagonal matrix
, ψ t

cyl is the transmitted wave vector and ξ = [ξ1, . . . ,ξm] is
defined by ξm = β (θinc)e jk2yc cos(θk11) jme− jm(π−θk11), where
β is the transmission coefficient.

The vector a(φk) = [e− jφk1 , . . . ,e− jφkN ]T with φki =
arg[Pcyl( fn,θki,ρki)] is filled with cylindrical scattering
model. Equation (2) gives the first component. The other
Pcyl( fn,θki,ρki) associated with the ith sensor are formed:

ρki =
√

ρ2
ki−1 +d2−2ρki−1d cos(

π
2

+θki−1) (3)

θki =−π
2

+ cos−1(
d2 +ρ2

ki−ρ2
ki−1

2ρki−1d
), i = 2, . . . ,N (4)

In high resolution algorithm, the antenna sharp is as-
sumed to be linear without distortion and the additive noise is
assumed to be white. But in practice, the sharp of the antenna
may be distorted due to the fluctuations in ship maneuvering
and the noise is correlated or unknown. Thus, in the fol-
lowing sections, we propose the algorithms to process phase
errors and unknown spatially correlated noise.

3. BURIED OBJECTS: RETRIEVAL AND
CANCELLATION OF PHASE DISTORTIONS

We consider the phase errors in the received signals. a(φk) =
[e− jφk1 , . . . ,e− jφkN ]T is the new vector, where

φki = arg[Pcyl( fn,θki,ρki)]+∆ϕki (5)

where ∆ϕki is the random additive distortion phase shift value
caused by the array distortion of the antenna or displacement
of the sensor from its initial position (see Fig. 1) . The pro-
cessing of phase distortions is realized in the following steps.

3.1 Phase Shift Retrieval
After estimate grossly initial values of several (the num-
ber is P0 and P0 ≤ P) DOA and the range by beam-
forming method (see step 1) of Alg. 1 in the fol-
lowing section), we calculate phase values vector φ̂ 0

k =[
arg(P̂cyl( fn,θk1,ρk1)), . . . ,arg(P̂cyl( fn,θkN ,ρkN))

]T
(see Eq.

5) for each initial θ̂0k and ρ̂0k with k = 1, . . . ,P0 . Then we
use the orthogonality property between the columns of the
transfer matrix and the noise subspace to form an objective
function to minimize by DIRECT algorithm:

φ̂k = argmin(||V+
b ( fn)a(φk)||F) (6)

DIRECT performs global optimization. When the num-
ber of sensors increases, computational load of DIRECT al-
gorithm grows rapidly. We propose to associate spline in-
terpolation to DIRECT after reducing retrieved unknowns
number. The idea of spline interpolation is to interpolate the
nodes that fit the best set values of φ̂ m

k . It can reduce the num-
ber of retrieved unknowns to obtain the phase values of φ̂ m

k .
The estimation accuracy depends on the interpolation nodes
number. The node points are chosen optimally when series of
vector φ̂ m

k converges. Function minimum ||V+
b ( fn)a(φ̂ m

k )||F
is realized with iteration tends to infinity.

3.2 Cancel Phase Shifts in the Received Signals
The principle of cancel phase shifts in the received signals is
to obtain signals which fit the method based on the orthog-
onality between signal and noise subspaces. According to
Equation (5), the estimated phase distortions vector is given

by: ∆̂φ k =
[
∆̂ϕk1, . . . , ∆̂ϕkN

]T
. We cancel phase distortions

of the received signals for obtaining signals by:

rk,processed = Dk(∆̂φ k) rk (7)

where Dk(∆̂φ k) = diag[e j∆̂ϕk1 , . . . ,e j∆̂ϕkN ]. The received
signals rk,processed are used in high resolution method. For
each iteration m, we use a priori fixed threshold to satisfy

convergence criterion: |θ̂k
m− θ̂k

m−1| < ε which means that
the estimated value does not vary from an iteration to another.

3.3 Proposed algorithm for phase distortion
After we obtain Vb which contains the vectors of the noise
subspace associated with the (N −P) smallest eigenvalues.
Repeat the following process to cancel phase errors:
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1) use DIRECT algorithm associated with spline interpo-
lation to estimate φ̂k: Retrieve the phase shifts between φ̂ 0

k of
phase values corresponding to a plane wavefront by Eq. (2)
and a vector of phase values by Eq. (5),

2) cancel the phase shifts in the received signal realiza-
tions by Eq. (7),

4. BURIED OBJECTS: NOISE REDUCTION

The received signals come from the reflections and the re-
fractions of the objects, thus, these signals are totally corre-
lated and MUSIC method looses its performances.

4.1 Noise reduction based on fourth-order cumulant
A fourth-order cumulant can be generally defined as:

Cum(rk1 ,rk2 ,rl1 ,rl2) = E{rk1 ,rk2 ,r
∗
l1
,r∗l2}−E{rk1r∗l1}E{rk2r∗l2}−E{rk1r∗l2}E{rk2r∗l1}

(8)

where rk1 is the k1 element in the vector r. The cumulant
matrix consisting of the four indices {k1,k2, l1, l2}:

C( fn)
4
=

P

∑
k=1

(
a( fn,θk,ρk)⊗a∗( fn,θk,ρk)

)
uk( fn)

(
a( fn,θk,ρk)⊗a∗( fn,θk,ρk)

)+
(9)

where uk( fn) = Cum
(
sk( fn),s∗k( fn),sk( fn),s∗k( fn)

)
is the

source kurtosis of the kth complex amplitude source. A cu-
mulant matrix denoted by C1( fn) can be calculated for re-
ducing the calculating time. For example, we use the first
row of C( fn) to reshape a (N×N) Hermitian matrix:

C1( fn) = Cum(r1,ri,r∗1,r
∗
j )

i=2,··· ,N;
j=2,··· ,N.

=




c1,1 c1,N+1 . . . c1,N2−N+1
c1,2 c1,N+2 . . . c1,N2−N+2

...
...

...
...

c1,N c1,2N . . . c1,N2




= A( fn) ·Us( fn) ·A+( fn)

(10)

where Us( fn) = diag(Cum(sk,s∗k ,sk,s∗k)) with k = 1, . . . ,P
is diagonal kurtosis matrix and c1,i is the (1, i)th element of
C( fn). Eq. (10) shows that there is no noise term in the
cumulant matrix. The noise influence can be eliminated.

4.2 Band noise covariance matrix estimation
We assume that the noise correlated from sensor to sensor
has a certain length K (K ≤ P). It means that the spatial
correlation attains up to the Kth sensor. We can obtain: the
noise covariance matrix model is a Hermitian [6, 7], positive-
definite band matrix Γb( fn) with half-bandwidth K. The
(i,m)th element of Γb( fn) is ρmi. If |i−m| > K, ρmi = 0
with i,m = 1, . . . ,N. If i = m, ρmi = σ2

i with σ2
i is the ith

sensor noise variance. If |i−m| < K, ρmi = ρ̄mi + jρ̃mi with
j2 = −1, i 6= m, i,m = 1, . . . ,N. The approach is realized in
two steps:

1) Using an iterative algorithm to estimate the noise co-
variance matrix. Initialize noise covariance matrix Γ0

b( fn) =
0. Calculate WP( fn) = Γ( fn)Vs( fn) = Vs( fn)Λs( fn),

where Λs( fn) = diag{λ1( fn), . . . ,λP( fn)}. For the first it-
eration, let ∆1 = WP( fn)V+

s ( fn). Then Calculate the (i, j)th

element of the current noise covariance matrix [Γ1
b( fn)]i j =

[Γ( fn)−∆1]i j, if | i− j |< K and [Γ1
b( fn)]i j = 0, if | i− j |≥K.

2) Eigendecomposition of the matrix [Γ( fn)−Γ1
b( fn)].

The new matrices ∆2 and Γ2
b( fn) are calculated using the

previous steps. Repeat the algorithm until one significa-
tive improvement of the estimated noise covariance matrix
is obtained. The iteration is stopped when ‖Γt+1

b ( fn)−
Γt

b( fn)‖F < ε with t is the number of iteration.

5. ALGORITHM FOR BEARING AND RANGE
ESTIMATION OF BURIED OBJECTS

Because the signals can be arrive to the array from close an-
gles or can be correlated, we use beamforming method to find
initial DOA. Thus, we obtain the number of sources P0 ≤ P.
The proposed algorithm to reduce correlated noise is given:

Algorithm 1 Bearing and range estimation of buried object
by DIRECT and Spline interpolation algorithms
1) use beamformer method to find an grossly initial values
of θk and ρk = X

cos(θk)
, where k = 1, . . . ,P0 with P0 ≤ P,

X = h + yc represents the distance between the receiver and
the bottom of the tank (see Fig. 1),
2) fill transfer matrix at frequency fn using Â( fn) =[
a( fn, θ̂1, ρ̂1), ...,a( fn, θ̂P0 , ρ̂P0)

]
using Eq. (2),

3) estimate spectral matrix Γ( fn) = E[r( fn)r+( fn)] =

1
Lr

Lr

∑
l=1

rl( fn)r+
l ( fn), where Lr is the realization number,

4) estimate noise covariance Γb( fn). If it is white noise,

Γb( fn) = σ2( fn)I, where σ2( fn) = 1
N−P

N

∑
i=P+1

λi( fn). Or if

the noise spectral matrix is one unknown band matrix, we
use the algorithm of section 4.2 to obtain Γb( fn),
5) calculate spectral matrix of signals us-
ing Γs( fn) = (Â+( fn)Â( fn))−1Â+( fn)[Γ( fn) −
Γb( fn)]Â( fn)(Â+( fn)Â( fn))−1. Or calculate Us( fn) =
(Â+( fn)Â( fn))−1Â+( fn)C1( fn)Â( fn)(Â+( fn)Â( fn))−1

based on fourth-order cumulant matrix by Eq. (10),
6) compute the average of spectral matrices:

Γ̄s( f0) = 1
L

L

∑
n=1

Γs( fn) or Ūs( f0) = 1
L

L

∑
n=1

Us( fn), where

f0 is the center frequency and L is the frequency number,
7) calculate Γ̂( f0) = Â( f0)Γ̄s( f0)Â+( f0) or Γ̂( f0) =
Â( f0)Ūs( f0)Â+( f0) using Singular Value Decomposition
(SVD) to obtain Vs( f0),
8) calculate the spectral matrix [Γ( fn) − Γb( fn)] or use
C1( fn), and obtain Vs( fn) by SVD,
9) estimate the bilinear focusing operator: Ts( f0, fn) =
Vs( f0)V+

s ( fn), then form the focused spectral matrix

Γ̂( f0) = 1
L

L

∑
n=1

Ts( f0, fn)[Γ( fn) − Γb( fn)]Ts
+( f0, fn) or

Γ̂( f0) = 1
L

L

∑
n=1

Ts( f0, fn)Us( fn)Ts
+( f0, fn).
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Figure 2: Pseudospectra of MUSIC with SNR = 16 dB: (a)
without cancellation of phase distortions; (b) the estimation
of proposed algorithm with 30 iterations and ε = 10−6

Then we use the proposed algorithm for phase distortion
in section 3.3 to obtain rk,processed in Eq. (7). Repeat the
above algorithm 1 and apply MUSIC method to calculate the
spatial spectrum for the bearing and the range estimation:

MUSIC( f0,θk,ρk)=
1

|a+( f0,θk,ρk)Vb( f0)V+
b ( f0)a( f0,θk,ρk)|

(11)

6. SIMULATION RESULTS

6.1 Performance of the proposed algirthms
An antenna of N = 100 equi-spaced sensors with inter-
element spacing d = c/32 f0 is used. We assume the additive
noise is independent from the signals and Γb( fn) = σ2( fn)I.
The pseudospectrum of MUSIC only shows two maxima if
phase cancellation is not done as shown in Fig. 2 (a). There-
fore we assume that the dimension of the signal subspace is
P0 = 2. Then we initialize the recursive procedure with the
obtained DOA θ̂01 = 56.8◦ and θ̂02 = 63.5◦. When our pro-
posed method is applied and phase cancellation is done for
each DOA, as shown in Fig. 2 (b) with 30 iterations, the ob-
tained values are θ̂1 = 45.2◦, θ̂2 = 57.1◦ and θ̂3 = 64.3◦.

6.2 Numerical Complexity
We compute the time elapsed to evaluate the computational
load. The simulation is test in the same system: Intel 2 Quad
CPU, 2.66 GHz, with 4 G memory.

For each iteration estimation of the phase errors in Fig.
2, computational time is 25 sec.. If we only use DIRECT
algorithm, it needs 300 sec. or more computational times.
So our optimization method leads to an important reduction
of computational load.

The advantage of fourth-order cumulant algorithm lies in
Eq. (10). The reshaped matrix is Hermitian matrix and its
dimension is reduced from N2×N2 to N×N. So the compu-
tational load is hugely decreased. For band noise covariance
matrix method, the search for a criterion of estimate of K is
necessary. We propose to vary the value of K until the sta-
bility of the result by the iteration with a fixed threshold ε .
The choice of K influences the speed and the efficiency of
this algorithm. Indeed, many simulations show that this al-
gorithm estimate the matrix quickly if K ¿ N. If K is close
to N, the algorithm requires a great iteration count. The time
consumed by fourth-order cumulant algorithm is 0.55 sec.,
while it is 1.10 sec. for band covariance matrix algorithm.

Figure 3: Experimental tank

Figure 4: Experimental setup

7. EXPERIMENTAL SETUP

The experiment is carried out in an acoustic tank (see Fig.
7) filled with water and homogenous sand. Four groups of
cylindrical shells with different dimensions are buried be-
tween 0 and 0.05 m under the sand. We carried out four
experiments where the transmitter (on the left in Fig. 7) hor-
izontal axis was fixed at H = 0.45 m with an incident an-
gle θinc = 60 ˚ . The receivers (on the right in Fig. 7), at
h = 0.2 m from the bottom of the tank, moved horizontally
along the XX ′ axis from the initial to the final position with
a step size d = 0.008 m. We took 100 positions (Fig. 4) to
form an array with N = 100. We performed four experiments
Exp. 1, Exp. 2, Exp. 3 and Exp. 4 respectively to the 1st , 2nd ,
3rd and 4th couple. The band frequency is [150,250] kHz and
the mid-band frequency is f0 = 200 kHz.

The experimental environment is not quite noisy (signal
to noise SNR = 20 dB). We use another source which emits
Gaussian noise SNR = 0 dB. The idea is to generate new
data corresponding to a noisy environment. Fig. 5 (a) shows
the output signals with an additive correlated noise and Fig.
5 (b) is the signals after processing of correlated noise.

The white points in Fig.6 correspond to the two cylindri-
cal shells (20.0◦, 0.300m) and (22.0◦, 0.320m). X axis is the
object-1st sensor distance ρ , Y axis is the DOA of object-
1st sensor θ . Figs.6 (a) and (b) show that the proposed al-
gorithms are superior in terms of estimation compared with
MUSIC algorithm without processing of correlated noise in
Fig. 6 (c). Standard deviation of the bearing and the range es-
timation at different SNRs (from -10 dB to 20 dB) are given
in Fig. 7. Several examples are studied, we have obtained
the same results, that is, fourth-order cumulant algorithm is
more accurate than band noise covariance matrix algorithm.

8. CONCLUSION

In this study, we have proposed a novel method to estimate
both the range and the bearing of buried objects. We take into
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Figure 5: (a) Observed signals with correlated noise; (b) ob-
tained signals after processing of correlated noise

(a) (b)

(c)

Figure 6: (a) Localization based on fourth-order cumulant,
(b) localization using band noise covariance matrix and (c)
localization without processing of correlated noise

account both the reflection and refraction of water-sediment
interface. In order to cancel the phase errors, spline inter-
polation is used with DIRECT algorithm for keeping small
computational load. We propose two methods based on MU-
SIC to reduce noise. One is fourth-cumulant matrix for cor-
related Gaussian noise. The other is to process the spatially
unknown noise with band covariance matrix. These methods
performance are investigated through scaled tank test associ-
ated with buried cylindrical shells. The obtained results and
standard deviation with different SNRs are promising.
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