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ABSTRACT
The Particle Probability Hypothesis Density Filter (PFPHD)
provides a numeric solution for the probability hypothesis
density (PHD) filter, which propagates the first-order mo-
ment of the multi-target posterior instead of the posteriordis-
tribution itself because evaluating the multiple-target poste-
rior distribution is currently computationally intractable. The
PFPHD considers the target states as a single global target
state and then avoids data association steps. Various imple-
mentations using particle filter had shown the efficiency of
this method in real time applications. However, most of them
use the state transition prior as the proposal distributionto
draw particles from. Because the state transition does not
take into account the most recent observation, we present, in
this paper, a new approach that mixes the PFPHD filter with
the Extended Kalman filter (EKF) named EK-PFPHD filter.
The first part provides the general probabilistic frameworkto
handle non linear non gaussian systems when the second part
generates better proposal distributions by considering the up-
dated observation. Simulation shows that the proposed filter
outperforms the PFPHD filter.

1. INTRODUCTION

Tracking an unknown and time varying number of targets
is a difficult issue. Mahler proposed finite set statistics
(FISST) [1, 2], as the systematic treatment of multi-target
tracking problems and presented probability hypothesis den-
sity (PHD) [3] as an approximation of the random finite set
of targets and their states based on a sequence of measure-
ment sets. However, the implementation of the PHD fil-
ter suffers from the intractable computation of multiple in-
tegrals involved by the PHD propagation equations. In ad-
dition, multi-peak extraction remains a challenge. Conse-
quently, different techniques for the implementation of the
PHD using Sequential Monte Carlo techniques have been
proposed [4, 5, 6, 7]. However, most of them use the state
transition prior as the proposal distribution to draw particles
from. Because the state transition does not take into account
the most recent observation, the particles drawn from it may
have very low likelihood. In this paper, we present a novel
method named EK-PFPHD filter, The algorithm consists of
a PFPHD filter that uses an extended Kalman filter (EKF) to
generate the importance proposal distribution; the EKF al-
lows the PFPHD filter to incorporate the latest observations
into a prior updating routine and thus, generates proposal dis-
tributions that match better the true posterior. The structure
of this paper is as follows. Section 2 presents the PHD Fil-
ter. Section 3 presents the non linear model; in section 4, we
present the new EK-PFPHD filter. Simulation results are pre-

sented in Section 5. Finally, concluding remarks are given in
section 6.

2. THE PROBABILITY HYPOTHESIS DENSITY
FILTER

In single target tracking problems, the Kalman filter propa-
gates the first-order moment of the posterior distribution.It
gives the best estimation for linear gaussian dynamic models.
In the multi-target tracking problems, the PHD filter provides
a similar solution. In fact, it propagates the first-order mo-
ment of the multiple target posterior distribution, known as
the PHD. An estimation of the number of targets is given by
the integral of the PHD over the state space when the tar-
get states can be estimated by determining the peaks of this
distribution. The Probability Hypothesis Density filter isa
multi-target filter that avoids any data association computa-
tions derived from the RFS (Random Finite Set) framework
[3]. The PHD filter propagates the posterior intensity of the
targets RFS in time, based on the following assumptions [8]:
A.1 Targets evolve in time and generate measurements inde-

pendently of one another.
A.2 The clutter RFS is Poisson and is independent of the

measurements.
A.3 The predicted multi-target RFS is Poisson.

Assumptions A.1 and A.2 are quite common in many
multi-target tracking algorithms. The additional assump-
tion A.3 is a reasonable approximation when interactions be-
tween targets are negligible [8]. The PHD propagation is a
recursion consisting of a prediction step and an update step.
Let Dk and Dk|k−1 denote the predicted intensity and pos-
terior intensity at time k, respectively. Then, the PHD pre-
diction is given by [8] (using FISST [3] or classical tools
probabilities [9])

Dk|k−1(x) =

∫

φk|k−1(x,ζ )Dk−1(ζ )dζ + γk(x) (1)

Dk(x) = [1−PD,k]Dk|k−1(x)

+ ∑
z∈zk

ψk,z(x)Dk|k−1(x)

kk(z)+
∫

ψk,z(χ)Dk|k−1(χ)dχ
(2)

In the prediction equation (1), the transition density

φk|k−1(x,ζ ) = PS,k(ζ ) fk|k−1(x|ζ )+ βk|k−1(x|ζ )
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is determined fromfk|k−1(xk|xk|k−1), the single target tran-
sition density,PS,k(•), the probability of target survival, and
βk|k−1(•), the PHD for spawned target birth from targets at
time k-1. The intensityγk(•) is the PHD for spontaneous
birth of new targets at timek.
In the data, update equation (2)

ψk,z(x) = PD,k(x)g(z|x)

whereg(•) is the single target likelihood function andPD,k(•)
is the probability of detection, and the intensity of clutter
pointskk(z) is given by

kk(z) = λkck(z)

whereλk is the Poisson parameter specifying the expected
number of false alarms andck(•) is the probability distribu-
tion over the measurement space.
The estimated number of targets is given by integration of
the PHD over all surveillance region

Γk|k =

∫

S
Dk(x)dx

Estimation of the targets states can be done by searching for
the peaks of the PHD surface.[Γk|k] largest peaks ofDk(x)
correspond to those targets’ locations (states), where[Γk|k]
denotes the nearest integer toΓk|k.
The PHD propagation (1)-(2) have no closed form expres-
sions even for targets following a linear gaussian dynamic
model [10]. Recursive propagation of the full posterior is
possible using particle filtering techniques [11] .

3. NON LINEAR STATE MODEL

For simplicity, assume that each target follows a non linear
gaussian dynamical model,

xk = Fk−1xk−1 + υk−1 (3)

zk = hk(xk,εk) (4)

where xk = [Px,k,Py,k, ˙Px,k, Ṗy,k]
T is the state of the target,

hk is a known non linear function andυk and εk are zero-
mean gaussian process noise and measurement noise with
covariances Q and R , respectively. The survival and de-
tection probabilities are state independent,PS,k(x) = PS,k and
PD,k(x) = PD,k.

4. EK-PARTICLE IMPLEMENTATION OF THE
PHD

The procedure of implementing the algorithm is based on the
particle implementation of the PHD filter in [10] as follows:
• k = 0

– Initialize Nz particles around each measurement sim-
ilar to [10]. Position components of these particles
are drawn from the initial measurement, and the ve-
locity components are drawn from a uniform distri-
butionU [−umax,umax]. Each particle consists of two
elements: a sample from the state spaceξ (i); and its
corresponding weight,ω(i) and covarianceP(i) for
i = 1,N whereN is the total number of particles pro-
posed. All these particles are given equal weights
ω i = K/N whereK is the initial guess for the initial
number of targets.

• k = k +1
Step 1: Prediction step
Assuming we haveN particles at timek−1, we calculate:
– Ind = 0,
– for i = 1,N,

∗ Compute

ξ̄ (i)
k|k−1 = Fk−1ξ (i)

k−1

H(i)
k =

∂hk(x,0)

∂x
|
x=ξ (i)

k|k−1

U (i)
k =

∂hk(ξ
(i)
k|k−1,εk)

∂εk
|εk=0

P(i)
k|k−1 = Fk−1P(i)

k−1FT
k−1 + Qk−1

S(i)
k = U (i)

k R[U (i)
k ]T + H(i)

k P(i)
k|k−1[H

(i)
k ]T

K(i)
k = P(i)

k|k−1(H
(i)
k )T [S(i)

k ]−1

P(i)
k|k = [I−K(i)

k H(i)
k ]P(i)

k|k−1

∗ for eachY j
k ∈ zk, j = 1, ...,nzk ,d = j + Indnzk

ξ̄k = ξ̄ (i)
k|k−1 + K(i)

k (Y j
k −hk(ξ̄

(i)
k|k−1,0))

ξ d
k|k−1 ∼ N(ξ̄k,P

(i)
k|k)

ω(d)
k|k−1 =

ω(i)
k−1

nzk

PS,kN(z;Y j
k −hk(ξ d

k|k−1,0),S(i)
k )

P(d)
k|k = P(i)

k|k

S(d)
k = S(i)

k

Ind = Ind +1

So we will haveN
′
= N|zk| particles with their associated

weights and covariances.
Step 2: Additional Particle Proposal

– for each Y j
k ∈ zk, j = 1, ...,nzk , generateMz new

particlesξ (d)
k|k−1 form a gaussian distribution around

each measurementY j
k (the position components are

drawn from the current measurement and the veloc-
ity components are drawn from a uniform distribu-
tion U [−umax,umax]). The total number, of particles
proposed for the ”investigation” of newborn targets,
is Nnew = Mz|zk|. These ones are affected with equal

weightsω(d)
k|k−1 = γk(S)Nnew for d = 1+ N

′
, ...,N

′
+

Nnew whereγk(S) is the PHD of target birth for the
whole surveillance region. The particles are charac-

terized by a covariance matrixP(d)
k|k−1

– Compute
for d = 1+ N

′
, ...,N

′
+ Nnew

H(d)
k =

∂hk(x,0)

∂x
|
x=ξ (d)

k|k−1
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U (d)
k =

∂hk(ξ
(d)
k|k−1,εk)

∂εk
|εk=0

S(d)
k = U (d)

k R[U (d)
k ]T + H(d)

k P(d)
k|k−1[H

(d)
k ]T

K(d)
k = P(d)

k|k−1(H
(d)
k )T [S(d)

k ]−1

P(d)
k|k = [I −K(d)

k H(d)
k ]P(d)

k|k−1

Step 3: Update step

– For eachY j
k ∈ zk, j = 1, ...,nzk , compute

C(Y j
k ) =

N
′
+Nnew

∑
d=1

PD,kg(Y j
k |ξ

(d)
k|k−1)ω

(d)
k|k−1

where

g(Y j
k |x

(m)) = N(z;Y j
k −hk(x

(m),0),S(m)
k ))

ω(d)
k = [1−PD,k + ∑

Y j
k ∈zk

PD,kg(Y j
k |ξ

(d)
k|k−1)

λkKk(Y
j

k )+C(Y j
k )

]ω(d)
k|k−1

Step 4: Peak Extraction
– To estimate target states, the updated PHD is ap-

proximated by a gaussian Mixture by using the
expectation-maximization (EM) algorithm [12]. The
EM algorithm fits M gaussian pdfs (probability den-
sity functions) to the PHD surface and gives cor-
responding weights to each of these to indicate the
quality of fitting. Then, the mean and the covariances
of the[Γk|k] heaviest gaussian pdfs in the mixture are
denoted as peaks at timek. The EM algorithm steps,

modified to incorporate the weightsω(d)
k of the PHD,

are given next [10].

δdm ≡ km
1

√

|2πΩm|
e−( 1

2 (ξ (d)
k −µm)T Ω−1

m (ξ (d)
k −µm)) (5)

δdm =
δdmω(d)

k

∑M
l=1 δdl

,µm =
∑N

′
+Nnew

d=1 ξ (d)
k δdm

∑N′
+Nnew

d=1 δdm

(6)

Km =
∑N

′
+Nnew

d=1 δdm

∑N′
+Nnew

d=1 ∑M
m=1 δdm

(7)

Ωm =
∑N

′
+Nnew

d=1 δdm(ξ (d)
k − µm)(ξ (d)

k − µm)T

∑N′
+Nnew

d=1 δdm

(8)

In order to have a common covariance for all gaus-
sian pdfs (the ”homoscedastic” version of the EM al-
gorithm), we use

Ωm =
∑N

′
+Nnew

d=1 ∑M
m=1 δdm(ξ (d)

k − µm)(ξ (d)
k − µm)T

∑N′
+Nnew

d=1 ∑M
m=1 δdm

whereKm denotes the weight,µm denotes the mean
value andΩm denotes the covariance of themth

gaussian of the mixture, form = 1, ...,M. The EM
algorithm starts with initial values ofKm, µm and
Ωm, and repeats steps (5) to (8) until it converges.
The algorithm fitsM = |zk|+ [Γk|k] gaussian pdfs at
each scan. The initial mean values are chosen as the
measurement locationszk and at the peaks at previous
scan(k−1). We use the homoscedastic version until
the algorithm converges, because homoscedastic
gaussian mixture is generally quite stable. However,
we then make 3 more runs to get diverse covariances.
That is, we initialize with a homoscedastic gaussian
mixture. Then we invoke a heteroscedastic gaussian
mixture algorithm, such that the covariances can be
different [10].

Step 5: Resampling

– Particles{ω(d)
k ,ξ (d)

k ,P(d)
k|k }

N
′
+Nnew

d=1 are resampled ac-
cording to a Monte Carlo technique, so that each par-
ticle is resampled proportionally to its weight, while
preserving the total weight asΓk|k, which is computed
by,

Γk|k =
N
′
+Nnew

∑
j=1

ω( j)
k

After resampling, particles{ω(i)
k ,ξ (i)

k ,P(i)
k|k}

Np
i=1 are af-

fected with equal weight.
– SetN = Np

5. SIMULATION

In order to illustrate the performances of the EK-PFPHD fil-
ter, we consider a scenario in which an unknown and time
varying number of targets are observed in cluttered environ-
ment. For the initialization stepNz is set to 50 andMz is
set to 10 which is very weak to allow a possible real time
applications and compare the performances of the proposed
filter with the standard PFPHD filter in a critical situation.
Each target, with its statexk = [Px,k,Py,k, ˙Px,k, Ṗy,k]

T , follows
the state model given in (3) and (4) where

Fk−1 =

[

I2 ∆I2
02 I2

]

Q =









σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
vx

0
0 0 0 σ2

vy









hk(xk,εk) =





√

P2
x,k + P2

y,k

arctan(
Px,k
Py,k

)



+ εk

whereIn and 0n denote, respectively, thenxnidentity and ze-
ros matrices,∆ = 1 s is the sampling period,σx = σy = 1m
and σvx = σvy = 2(m/s) are the standard deviations of the
process noise. The additive noiseεk is with covariance ma-
trix
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R =

[

σ2
r 0

0 σ2
θ

]

whereσr = 150m andσθ = 1◦.
Moreover, each target has survival probabilityPS,k = 0.99
and is detected with probabilityPD,k = 0.98. Finally, the tar-
gets can appear with PHD of birthγk(x) = 10−7[/surveillance
region].
The detected measurements are immersed in clutter that can
be modeled as a Poisson RFSKk with intensity

Kk(z) = λcVu(z)

whereU(•) is the uniform density over the surveillance re-
gion, V is the volume of the surveillance region, andλc =
12.5x10−6m−2 is the average number of clutter returns per
unit volume.
figure 1 shows the true targets trajectories and their EK-
PFPHD filter estimates; figure 2 and figure 3 plot the RMSE
(in m) of the estimated trajectories against time obtained with
50 Monte-Carlo iterations. Targets 1 and 2 are born at the
same time but at two different locations. They travel along
straight lines (their tracks cross atk = 150 s).
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Figure 1: Estimated Trajectories
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Figure 2: RMSE on Target 1
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Figure 3: RMSE on Target 2

From figure 1, it can be seen that both EK-PFPHD and
PFPHD filters are able to track the two targets even after
crossing. However, it can be seen from figure 2 and fig-
ure 3 that the proposed filter is better than the PFPHD fil-
ter and thus fits better situations where real time executionis
required.

6. CONCLUSION

In this paper, we are interested to the multiple target tracking
problem. We proposed a new EK- PFPHD filter that man-
aged to improve the proposal distribution according to the
updated measurement. The later algorithm is able to track
multiple targets in high clutter density using a weak num-
ber of particles, it has the ability to estimate the number of
targets, track their trajectories over time, deal with missed
detections and operate with the issue of crossing targets.
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