
MAXIMUM LIKELIHOOD AND ORTHOGONAL SUBSPACE BASED APPROACH 
FOR IMPROVED IR-UWB CHANNEL ESTIMATION 

Rizwan Akbar, Emanuel Radoi, and Stéphane Azou 

Université Européenne de Bretagne, 
Université de Brest ; CNRS, UMR 3192 Lab-STICC, ISSTB, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest, France 

phone: + 33 298 01 83 35, fax: + 33 298 01 63 95, Email: Rizwan.Akbar@etudiant.univ-brest.fr, 
Emanuel.Radoi@univ-brest.fr, Stephane.Azou@univ-brest.fr 

web: www.univ-brest.fr

ABSTRACT 
Indoor propagation channel appears differently to ultra-
wideband (UWB) systems than it does to narrowband 
systems. UWB signals have very high temporal resolution 
ability and this implies a frequency-selective channel with 
rich multipath in practice. To capture the signal energy 
spread over a multipath environment, a Rake receiver 
consisting of multiple parallel correlators is used. 
Performance of UWB systems employing Rake receivers is 
highly dependent on synchronization and the channel 
estimation. The channel parameters are the attenuations 
and delays incurred by the UWB signal along the 
propagation paths. Maximum-Likelihood (ML) and 
orthogonal subspace (OS) based methods are considered to 
estimate the parameters for IEEE 802.15.3a standard 
indoor multipath channel model. Analyzing the limitations 
and benefits of these methods, a new combined approach is 
proposed to improve channel parameter estimation. 

1. INTRODUCTION 

Ultra-wideband technology is becoming a viable solution 
for short-range high-speed indoor wireless communication. 
UWB systems are currently being developed to help relieve 
the spectrum drought caused by an explosion of 
narrowband systems in the last decade, by offering short-
range broadband services using frequencies already 
allocated to other applications. Impulse based UWB (IR-
UWB) is characterized by the transmission of extremely 
short duration pulses typically on the order of nanosecond 
to form a communication link [1],[2]. 
The band allocated by Federal Communication 
Commission (FCC) for UWB communications is a huge 
7.5 GHz band between 3.1 GHz to 10.6 GHz with a 
transmission power density of – 41.25 dBm/MHz, which 
helps to minimize the interference on the existing 
narrowband systems. The use of an extremely huge 
bandwidth makes it possible to resolve and combine the 
multipath components (MPCs) at receiver whose path 
lengths differ by a few tens of centimeters, e.g. 15 cm for a 
signal bandwidth of 2 GHz. An increase in transmission 
bandwidth will further improve the capability to resolve the 
MPCs. 

Rake receivers are commonly used to fully exploit the 
multipath diversity available in UWB systems. In a Rake 
receiver, each MPC is correlated with a locally generated 
reference signal and then combined in the end to make the 
final decision. So, the proper functioning of Rake receiver 
and eventually the successful operation of UWB system 
depends critically on the availability of full or partial 
channel information i.e. information about attenuations and 
delays incurred by MPCs. 
Channel estimation has been studied extensively in the past, 
mainly for narrowband systems or wideband systems, but 
there is not as much literature available for UWB channel 
estimation. In [3],[4] several frequency-domain methods 
are proposed for UWB channel estimation and rapid 
acquisition. Both data-aided and non data-aided estimation 
is presented in [5], based on ML criterion. TOA estimation 
is focused in [6], also using a ML based approach. OS 
based methods, are also proposed for channel estimation 
[7],[8]. However, most of this literature does not take into 
account the real channel characteristics, some relying on 
the assumption of non-overlapping MPCs which is not at 
all valid for UWB channels and others assuming a very 
small overlapping among MPCs again not valid as the 
delay among MPCs can be even less than 0.1 ns. The 
purpose of this paper is to derive channel parameters of real 
channel model from received waveform. An isolated UWB 
pulse is transmitted through IEEE 802.15.3a standard 
channel model and the corresponding received waveform is 
recorded and analyzed for parameter estimation. 
The rest of the paper is organized as follows. Section 2 
provides a brief description of IEEE 802.15.3a channel 
model. Section 3 describes different algorithms for channel 
estimation along with proposed algorithm. The 
performance of algorithms is assessed in Section 4. Finally, 
some conclusions are drawn in Section 5. 

2. UWB CHANNEL MODEL 

The impulse response of a typical multipath channel is 
given by: 
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where α = [α1,α2,…,αL] and τ = [τ1,τ2,…,τL] respectively, are 
the amplitudes and time delays of L propagation paths.  
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In this paper, IEEE 802.15.3a standard channel model [9] is 
used. It is a modified version of Saleh-Velenzuela model, 
where MPCs arrive in clusters. In this case the channel 
impulse response (CIR) is mathematically defined as: 
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where αk,l is the gain coefficient associated with kth ray of lth 
cluster, X represents the log normal shadowing, Tl is the 
delay of lth cluster and τk,l is the delay of kth ray within lth 
cluster relative to the delay of first path of the cluster (Tl). 
The cluster and ray arrivals are modeled as Poisson 
processes with parameters Λ and λ respectively. The 
amplitudes αk,l of MPCs are log-normally distributed and 
defined as: 

      , , ,k l k l l k lpα ξ β=        (3) 
where pk,l ∈ {–1,+1} is an equiprobable random variable 
defined for signal inversion due to reflections, ξl and βk,l are 
the large-scale and small-scale fading coefficients. Four 
different measurement environments were defined, namely 
CM1, CM2, CM3 and CM4. Detailed description of 
parameters of these models can be found in [9].  
The received signal consists of scaled replicas of 
transmitted UWB pulse p(t) after passing through channel 
model, which is given by: 
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where “*” stands for the convolution product, s(t) is the 
ideal received UWB pulse with Tx-Rx antenna distortions 
and η(t) is an additive white Gaussian noise (AWGN).  
The objective is to estimate the unknown channel 
parameters {α, τ} using the received signal y(t). 

3. UWB CHANNEL ESTIMATION METHODS 

The main idea of the algorithm proposed in this paper is to 
combine ML and OS approaches in order to take advantage 
of their attractive features and to overcome some of their 
limitations. So, a brief overview of ML and OS based 
UWB channel estimation methods is given before 
proposing our approach. 
3.1 ML based UWB channel estimation methods 
In the case of Gaussian noise, ML criterion is equivalent to 
the mean squared error minimization. So the ML estimate 
of the channel parameters α and τ are the values which will 
minimize the following mean squared error: 

               
21 ˆ( )S

M
= − α,τα, τ y y        (5) 

where the vectors y and ˆ α,τy  contain the samples of y(t) 
and ,

ˆ( ) ( )s t h t∗ α τ  respectively, with ,
ˆ ( )h tα τ  estimated CIR. 

The ML estimation used as a basis here is one proposed in 
[6], namely Search Subtract and Readjust (SSR) algorithm. 
The idea is simply to calculate the correlation between 
received signal and reference signal via a matched filter 
(MF) and finding the largest peak in each iteration, which 

will correspond to value of τ. The amplitudes α in kth 
iteration are then calculated by [6]: 
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where sk represents the sampled replica of UWB pulse s(t) 
shifted by delay τk. It is clear from above equation that 
amplitudes are jointly estimated at each step. The estimated 
paths are subtracted from y for the next iteration and this 
process continues until all the paths are estimated. 
ML based estimations are relatively simple but may pose 
some limitations in UWB channels. Mainly, they have 
limited resolution ability, making them less attractive for 
UWB channels. Also the estimation degrades significantly 
for MPCs of small amplitude in the noisy case. One key 
advantage is that as the algorithm focuses on similarity 
between received signal and estimated signal, it can provide 
a low mean-squared error even at low SNR. 
3.2 OS based UWB channel estimation methods 
These methods, also known as superresolution techniques, 
are based on the eigenanalysis of the received signal 
autocorrelation matrix. The observation space is splitted 
into two orthogonal subspaces called signal subspace and 
noise subspace. By taking the Fourier transform of y(t) in 
Eq. (4), we get: 
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It is clear from above equation that the parameter 
estimation problem can be seen as a special case of 
harmonic retrieval problem, which is widely studied in 
spectral estimation literature [10]. 
MUSIC and ESPRIT are two familiar methods in this class. 
They theoretically can provide infinite resolution, but in 
practice show some limitations. Firstly, the autocorrelation 
matrix is generally not known, so its estimation is subject to 
errors. Secondly, as it is parametric approach, precise 
information about the number of MPCs to be estimated is 
needed. For this purpose some estimation procedure is used 
such as Akaike Information Criterion (AIC) or Maximum 
Description Length (MDL) [11]. Again this estimation is 
not reliable for low SNR and under-estimation of MPCs 
present in the received signal may cause errors. These 
effects become very prominent at low SNR, causing 
estimation to degrade drastically and making them 
unsuitable for low SNR scenarios. 
3.3 Proposed Algorithm  
The block diagram of the proposed algorithm is shown in 
figure 1, while the description of different steps is given 
below: 
1. Compute the FFT coefficients for the received signal y(t) 
and the UWB pulse s(t) and form the corresponding vectors 
Y and S respectively. Actually, only the coefficients 
corresponding to the frequency band of interest (3.1 to 10.6 
GHz) are used to further calculate the ratio Ys = Y/S, in 
order to avoid the risk of dividing by zero. 
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Figure 1 – Block diagram of the proposed algorithm 

 
The Nyquist condition is satisfied here in terms of delays as 
1/Δf ≥ 2τmax, where Δf is the frequency sampling interval 
and τmax is the maximum delay of channel. 
2. Form the p×q data matrix using the Ys vector elements: 
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with N = p + q − 1 and p, q ≥ L. 
Next, estimate the data autocorrelation matrix as follows: 
 1ˆ H H

s s s p s s pq− ⎡ ⎤= +⎣ ⎦R D D J D D J  (9) 

where Jp is the p×p anti-diagonal identity matrix.  
The estimate provided by (9) has been preferred to the 
standard one [12] since it allows improving the Toeplitz 
structure of the data autocorrelation matrix. 
3. Perform the ˆ

sR  matrix eigenanalysis and obtain the 
eigenvector matrix V and the eigenvalue diagonal matrix Λ. 
The eigenvalues are sorted and then used by AIC or MDL 
criterion to estimate the signal subspace dimension, i.e. the 
number of MPCs L. The eigenvectors corresponding to the 
largest L eigenvalues span the signal subspace and form the 
Vs matrix. The others span the noise subspace and form the 
Vn matrix. The noise subspace projection operator is then 
calculated as: 
                                       H

n n n
⊥Π = V V                             (10) 

4. Estimate the MPC delays τSSR=[τ1, τ2, … , τL] using SSR 
algorithm and form the signal vectors: 
                     0 02 2 ( 1)1 k k

Tj j p
k e eπυ τ π υ τ− − −⎡ ⎤= ⎣ ⎦a L         (11) 

Validate only the delays resulting in signal vectors 
orthogonal to the noise subspace, that is:  
                                     0H

k n k
⊥Π ≅a a                              (12) 

In the noiseless case false and true peaks are clearly 
separated. In the noisy case, it is more difficult, but still 
possible to classify most of them, using some suitable 
threshold for the projection values. The paths 
corresponding to projection values above that threshold are 
considered as false paths and thus eliminated.                     
5. Use the vector of validated delays, denoted by tSSR in 
figure 1, to estimate the amplitudes of remaining true paths 
cSSR according to (6). 

6. Compute the signal ySSR(t) as: 
                             ,( ) ( ) ( )SSR

SSRy t s t h t= ∗ c t                         (13) 
Now derive a new observation vector, called difference 
vector,  Ys,d = (Y – YSSR)/S, using only the FFT coefficients 
in the frequency band of interest, as done in step 1. This 
newly formed vector will now be used to estimate the 
remaining paths which were either not estimated at all by 
SSR or badly estimated and eventually dropped in step 4. 
7. Estimate the remaining MPCs from Ys,d using MUSIC 
algorithm: follow steps 2 and 3 to estimate autocorrelation 
matrix and to split observation space into orthogonal signal 
and noise subspaces, then estimate multipath delays by 

projecting the vector 0 02 2 ( 1)( ) 1 k k
Tj j pe eπυ τ π υ ττ − − −⎡ ⎤= ⎣ ⎦a L  

onto the noise subspace. 
8. The final delays can be given as τ = [tSSR, tMUSIC] while 
the corresponding amplitudes cSSR and cMUSIC are adjusted 
using (6) to give final coefficients α. 

4. SIMULATION RESULTS 

In this section, performance of different algorithms is 
analyzed. We have used a specially designed, B-spline 
based UWB pulse with time duration TP = 1.28 ns, which 
fulfills the FCC mask constraints and also optimizes the 
spectral effectiveness [12],[13]. The channel model used is 
CM1 which is a line of sight channel with TX-RX 
(Transmitter-Receiver) distance between 0 to 4 m and is 
characterized by the impulse response given in figure 2. 
The strong multipath effect is quite evident from figure 2 as 
the interval between successive MPCs is much less than TP. 
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Figure 2 – CM1 channel impulse response 
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In figure 3, the performance is compared for different 
algorithms in terms of normalized mean square error, 
denoted as Sn and given by: 
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Figure 3 – Normalized mean square error Sn versus SNR in CM1 

channel for different algorithms 

The estimation is averaged over 500 channels for each 
value of SNR. The superresolution methods ESPRIT and 
MUSIC exhibit almost same performance but they do not 
provide good estimation at low SNRs. The performance for 
SSR method is same at all SNR values verifying its ability 
to combat low SNR. The proposed algorithm achieves 
better performance than others under all SNR values. 
The parameter Sn provides good information about 
matching between received signal and signal reconstructed 
using estimated channel parameters. However, a low Sn 
value does not necessarily mean good channel estimation. 
This phenomenon is depicted in figure 4, where 20 paths of  
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Figure 4 – Estimation of 20 MPCs of CM1 channel with SSR 

method (SNR=20dB and Sn = 0.0344) 

CM1 channel are estimated for SNR = 20 dB with SSR 
method. It is clear from figure 4 that about half peaks are 
badly estimated, but yet Sn error is 0.0344 which is 
excellent. Due to this reason, performance is also assessed 
in terms of the correlation coefficient between the ideal 
CIR and the estimated one, denoted by Sac and defined as:  
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h h
τ α

h h
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where ˆ ( )h α, τ  is the estimated discrete time CIR and < > 
stands for the scalar product. 
Sac value for figure 4 is 0.5955, thus verifying bad 
estimation. Hence, it is more reasonable to think that a 
good estimation is one which is good both in terms of Sn 
and Sac. 
The estimation in figure 3 is reproduced in terms of Sac in 
figure 5.  
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Figure 5 – Correlation coefficient Sac versus SNR in CM1 channel 

for different algorithms 

This figure clearly shows the suboptimal estimation of SSR 
method. ESPRIT and MUSIC are good in terms of Sac 
while the proposed algorithm shows an improvement in 
estimation with increasing SNR, outperforming all methods 
above 50 dB. 
Analyzing results of Sn and Sac, it is quite obvious that at 
high SNR, proposed algorithm outperforms all others and at 
low SNR it still provides the best compromise between Sn 
and Sac. 
Finally, Cramer-Rao lower bound (CRLB) is introduced to 
assess the performance for an academic context with 4 
MPCs. The delays of MPCs are defined as τ=[1ns, 1.45ns, 
1.5ns, 2ns] while all MPCs have equal amplitudes. As 
explained in section 3.2 that delay estimation is a special 
case of harmonic retrieval problem, CRLB for noisy 
exponentials is taken as a reference given by [14]: 
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where [M-1]ii
 is the [i,i] element of the inverse of the 2L×2L 

Fisher information matrix M, with i = 1,3, …, 2L–1. Figure 
6 represents comparison of studied methods with CRLB for 
3rd MPC i.e. MPC with delay 1.5ns, as it is most severely 
affected by other MPCs. Clearly, SSR is suboptimal as it 
can not differentiate two peaks as close as 0.05ns. ESPRIT 
turns out a better estimator in this case while our method 
also showing a performance very close to ESPRIT. 
However, it has been observed that OS based methods are 
also sensitive to the number of multipaths to be estimated. 
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So, the performance of those methods is not same for 100 
MPCs and for 4 MPCs. This fact is already visible from 
figure 3 where MPCs may reach up to 100 and in that case 
the performance of OS does not remain as optimal as 
suggested in figure 6 for 4 MPCs, where our algorithm still 
remains acceptable in both cases. 
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Figure 6 – CRLB and variance of different methods vs SNR 

5. CONCLUSION AND FUTURE WORK 

Channel estimation is a key point for any communication 
system and even more for a IR-UWB because of the dense 
multipath associated environment. ML estimators, which 
are implemented through MF, have been generally used so 
far, since they show robustness to noise. However, they 
have limited resolution and are not able to resolve very 
close multipaths. This may become a critical point if the 
amplitudes of the unresolved multipath is higher enough to 
be taken into account by the S-Rake receiver for example. 
Time domain superresolution methods could be an 
interesting solution from this point of view, but they are too 
sensitive to noise. The method proposed in this paper 
combines the advantages of the two approaches and 
removes their drawbacks. An ML estimator is used in the 
first stage, thus taking advantage of its robustness to noise. 
The provided solution is then validated using noise 
subspace projection operator and only the peaks satisfying 
the orthogonality constraint are conserved. A 
superresolution method is finally used to resolve the 
remaining peaks given the partial solution obtained 
previously. The proposed algorithm is compared to several 
reference methods and its performance is assessed in the 
framework of a real UWB channel model. It is shown that 
the new method can cope with noisy UWB channels and 
provides best performance in both low and high SNR 
scenarios. Its main limitation is the increased processing 
complexity due essentially to the eigenanalysis required by 
the superresolution stage. Finding solutions to reduce this 
additional complexity is the first objective of our future 
work. The second one is to imagine new Rake receiver 
structures being able to better exploit the additional 
information in terms of resolution, provided by the 
proposed channel estimation method. 
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