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ABSTRACT

A highly efficient decoding algorithm for the REMOS
(REverberation MOdeling for Speech recognition) con-
cept for distant-talking speech recognition as proposed
in [1] is suggested to reduce the computational com-
plexity by about two orders of magnitude and thereby
allowing for first real-time implementations. REMOS
is based on a combined acoustic model consisting of
a conventional hidden Markov model (HMM), model-
ing the clean speech, and a reverberation model. Dur-
ing recognition, the most likely clean-speech and rever-
berant contributions are estimated by solving an inner
optimization problem for logarithmic melspectral (log-
melspec) features. In this paper, two approximation
techniques for the inner optimization problem are de-
rived. Connected digit recognition experiments confirm
that the computational complexity is significantly re-
duced. Ensuring that the global optima of the inner op-
timization problem are found, the decoding algorithm
based on the proposed approximations even increases
the recognition accuracy relative to interior point opti-
mization techniques.

1. INTRODUCTION

Modern state-of-art speech recognition systems already
achieve good performance. The main restriction how-
ever is that the user needs to get close to a microphone
to communicate conveniently with the system. To fur-
ther increase the user comfort, it would therefore be
desirable to install distant-talking microphones at fixed
points, e.g., at the automatic speech recognition (ASR)
device itself, so that the users can move freely while
communicating with the system.

Since the distance between speaker and microphone
in such a hands-free scenario usually is in the range of
one to several meters, there are two kinds of distortions
that hamper ASR. Besides the desired signal, the mi-
crophone picks up reverberation of the desired signal
and unwanted additive signals, like background noise
or interfering speakers. While significant progress has
already been reported within the last decade regarding
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the robustness of ASR to additive distortions, ASR for
highly reverberant environments has only recently at-
tracted increasing attention [2].

While the usual model adaptation techniques, which
have been successfully applied in noisy environments,
are not suitable for reverberation significantly exceed-
ing the frame length of the recognizer, [3] suggests
a model adaptation approach designed particularly for
long reverberation. A very promising approach for ob-
taining an ASR system for reverberant environments
is to train a conventional HMM-based recognizer us-
ing reverberant data as suggested in [4] and [5]. How-
ever, both model adaptation techniques and reverberant
training suffer from the conditional indepence assump-
tion underlying any HMM-based system, namely that
the current output vector depends only on the current
state. This assumption prevents conventional HMMs
from appropriately modeling reverberation which in-
creases the correlation between neighboring frames.

In [1], the REMOS conceptis proposed to overcome
the limitation of the conditional independence assump-
tion of HMMs. The approach is based on combining
a network of clean speech HMMs and a reverberation
model (RVM). In the decoding phase, the most likely
contribution of the HMM output and the reverberation
model output to the current reverberant observation is
found by an inner optimization operation for logmel-
spec features. It has been shown in [1] that REMOS
achieves very good recognition rates. However, the so-
lution of the inner optimization problem causes a high
computational load (i.e., real-time factors between 100
and 300). In this paper, we propose approximation
techniques for the inner optimization problem which
drastically reduce the computational complexity of RE-
MOS. Since the decoding algorithm based on the pro-
posed approximations ensures that the global optima of
the inner optimization problem are found, it even in-
creases the recognition accuracy.

This paper is structured as follows: The REMOS
concept is concisely reviewed in Sec. 2. The proposed
approximation is explained in Sec. 3, and connected
digit recognition results are discussed in Sec. 4. Sec. 5
concludes the paper.
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2. REVIEW OF THE REMOS CONCEPT

The REMOS concept [6] extends conventional HMM-
based speech recognition approaches by an RVM. Such
an RVM can be interpreted as a statistical feature-
domain description of all possible room impulse re-
sponses (RIRs) for arbitrary speaker and microphone
positions in the target room. The RVM is represented
in the logmelspec domain by an independent identically
distributed (IID) matrix-valued Gaussian random pro-
cess, where each column of the matrix corresponds to
a certain delay m (in multiples of the frame shift) and
each row of the matrix corresponds to a certain mel
channel /. Therfore, the RVM is completely described
by its mean matrix Ugo.m-1) = [HH(O),---HH(M—l)] €

RE*M and its variance matrix GH(O w1 € RXM \where

L denotes the number of mel channels and 0 : M — 1 all
frame delays from O to M — 1.

In this paper, we stick to the following notational
distinction: Every vector v without the explicit sub-
script “mel” is meant to be in the logmelspec domain
whereas the corresponding vector v, denotes the mel-
spec representation of v, i.e.,

v =1n(Vine)-

C__ 9% e~ Gk

Furthermore, operators like , “exp”, “In”, and
division applied to vectors are meant componentwise.
Lower-case functions v(k) are interpreted as realiza-
tions of the corresponding random process V (k) de-
noted by upper-case letters.

In the REMOS framework we assume that the re-
verberant observation X (k) is given in the melspec
domain by

M—1
k) — Z hmel(mak) ®Smel(k_m)a

Xmel (

where Ry (m, k) and sy (k —m) denote the output of
the RVM and the output of the HMM network, respec-
tively, and ® denotes the Hadamard product. For fur-
ther simplification, we decompose

xmel(k) — hmel(oyk) ®smel(k) +amel(k) er,mel(k)a (1)

where

xr,mel(

M—1
k) = Z ‘LLHmel(m) ®Smel(k - m) (2)

m=1
is an approximation of the reverberant component

M—1
Z hmel(mak) ®smel(k - m)>

m=1

and a (k) is a vector of correction factors capturing
the uncertainty of the corresponding approximation er-
ror. a(k) is a realization of the vector-valued Gaus-
sian IID random process A (k), which is completely de-
scribed by its mean vector u4 € RE and its variance vec-
tor o; € RL.

By transforming (1) to the logmelspec domain, we
obtain the following description for the observed rever-
berant feature vector sequence x(k):

exp (x(k)) = exp (h(0,k) +s(k)) +exp (a(k) +x.(k)). (3)

For recognition, an extended version of the Viterbi
algorithm is employed to find the most likely path
through the HMM network in connection with the
RVM. At every step of the extended Viterbi algorithm,
the Viterbi score is weighted by the outcome of the fol-
lowing inner optimization problem:

=j (8(K)) - fr(0) (R(0,
subject to (s.t.) (3),

where fg) and fy() are the output densities of the
RVM, and fs K)[Q(K)=j the output density of the j-th state
of the HMM each one modeled by a vector-valued
Gaussian IID random process. The late reverbera-
tion x,(k) is calculated by using estimates of s(k —m),
m=1,...M—1, cf. (2), known from former Viterbi
steps.

For solution, we decompose the optimization prob-
lem into the subproblems

max

ol Ta0I00)=) (¥a(k)) - faw (a(k)) (4

s.t. exp (x(k)) = exp (x4(k)) +exp (a(k) +x,(k))
and

k)) - faw (a(k))

SRR a(e) S RN

max  fsu)|ok)= k) (5

ohax j(8(k)) - fuao) (R(0,
s.t. x4(k) = s(k) +h(0,k),

where x4 (k) = s(k) +h(0,k) denotes the direct sound
component and fx, ) o=, 1S the corresponding prob-
ability densny function.

As (5) is explicitly solvable, we focus henceforth
on the solution of (4). In [1], (4) has been solved by
IPOPT (Interior Point OPTimizer), a general purpose
software package for large-scale nonlinear optimization
problems [7], causing the main computational load of
the REMOS decoding algorithm.

3. EFFICIENT DECODING BY
APPROXIMATION OF THE INNER
OPTIMIZATION

3.1 Normalization

In this section, we are interested in the mathematical
examination of (4) in order to derive approximations
allowing an efficient solution. To get a deeper under-
standing of the structure of the problem, we drop the
vector indices k and normalize some variables as fol-
lows:

u = Xg—Xx

vV = a+x,—Xx
Hy = Hx,—X
Wy = Ha+X,—x
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Figure 1: Illustration of the optimization problem (6)
for one mel channel i.

Instead of maximizing fy,|o—;(x«) - fa(a), we minimize
the quadratic functional

Jwy) = —In(fx,o-j(u+x)- fa(v—x,+x))
1 .
= (o) ding(1/03,) (o)
1 .
+5 (v — uy)" diag(1/03) (v — v)
L
=Y Ji(ui,v)
i=1
with
- )2 RETEAY
Ji(ui,vi) = (ulzcl;lu‘l) (v 2G%V’l) .
X, A

Finally, we obtain a normalized version of (4) which we
consider for each mel channel i = 1, ..., L separately:
min J,-(ui,v,-) (6)

s.t. exp(u;) +exp(v;) = 1.
An illustration of (6) is depicted in Fig. 1.

3.2 Hyperbolic Approximation

We now approximate the non-linear constraint (blue
line in Fig. 1) in order to obtain an optimization prob-
lem which can be solved explicitly and efficiently.
Therefore, we observe that the constraint in Fig. 1 tends
very fast to its asymptotes v; = 0 and u; = 0 for u; — —oo
and v; — —oo, respectively, e.g., for u; < —4, the differ-
ence between the constraint and its asymptote is less
than 0.02. The segment for u;,v; > —4 can be very well
approximated by a first-order hyperbola.

Hence, we approximate

exp(u;) +exp(v;) = 1 (7
by
(u,- <-4, v = 0) V (u,- =0,v,< —4)
V(=4 <u; <0, vi=h(w)), 8)

APRIL-h

’ | 02“\

APRIL-h

— .

2,
-8 - - -3.
- - -4

2.
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u; Ui
L:exp(ui) +exp(vi) =1, 3. ui < —4,v; =0,
20 =4 <ui <0, vi=h(u;), 4:u=0,v;<—4

Figure 2: Tllustration of the exact constraint (7) and the
approximated constraint (8). The different lines can
hardly be distinguished in the diagram because of the
high accuracy of the approximation.

where h(y;) is a first-order hyperbola of the form

h(w;) =
(u;) Rl
with )
In2
,_ (n2)
4 —1In2
and
p=4q+q

chosen so that the three branches of (8) form a conti-
nous constraint, i.e., #(0) = —4 and h(—4) =0, and (7)
and (8) have the point (—In2,—1n2) in common. An
illustration of (8) is depicted in Fig. 2. We finally ob-
tain the following approximated optimization problem
for each mel channeli =1, ...,L:

0,' = min J,‘(M,‘,V,‘) (9)
ui,v;
s.t.: (8),
which  we  abbreviate = APRIL-h  (hyperbolic

APRoximation of the Inner optimization problem
in the Logmelspec domain). In order to solve (9), we
decompose it into three subproblems:

A,‘ = l’IIIIl J,‘(M,‘,V,‘) (10)
stou; < —4,v,=0
as well as
Bi = mln J,-(ui,v,-) (11)
sit: —4<u; <0, v = h(w)
and
C,' = min J,-(u,-,v,-) (12)

Ui,vi

st u;=0,v; < —4.

Obviously, we have

0,’ = min{Ai,B,-,Ci}.
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Figure 3: Illustration of the exact constraint (7) and the
piecewise linearly approximated constraint.

One can easily show that the solution of (10) fulfills
(7, v;) = (0,min{pty;, —4}).
Accordingly, the solution of (12) fulfills
(uj,v;') = (min{uy i, —4},0).

The Lagrange system of (11)

0
a—uiJ,-(u,-,h(u,-)) =0

leads to a fourth-order polynomial equation which still
can be explicitly solved [8].

3.3 Piecewise Linear Approximation

The introduced approximated optimization problem (9)
can be solved much more efficiently than the origi-
nal problem (6) with a negligible approximation error.
However, solving a fourth-order polynomial equation
still requires some computational load. To overcome
this, we further reduce the complexity of (9) by approx-
imating the exact constraint by a piecewise linear con-
straint. Fig. 3 shows several linear approximations for
different number of nodes. The nodes were determined
by a least-squares estimator. We abbreviate this type
of approximation APRIL-N, where N is the number of
nodes. For each segment of the piecewise linear ap-
proximation we obtain an optimization problem of the

following type:

min,, ,, Ji(u;,v;) (13)

ster<u; <s,vi=m-u;+t,

where r,s,m and ¢ are parameters determined by the
least squares estimator. Since the problem has been
normalized, these parameters are data-independent and
therefore have to be determined only once. The La-
grange system of (13) leads to a linear equation which
can be solved without any remarkable computational
load.

3.4 APRIL versus IPOPT

To better exploit the advantages of IPOPT for large-
scale problems it is not applied on the decomposed op-
timization problem (6) for each mel channel but on the
overall problem (4) which has up to 2¥ local optima.
Therefore it is highly likely that IPOPT only finds a lo-
cal optimum and not a global one. Since all APRIL
approaches allow a closed form solution for the ap-
proximated problem it is guaranteed that they all find
a global optimum.

4. EXPERIMENTS

Experiments with a connected-digit recognition task
are carried out to analyze the performance of REMOS
with the proposed optimization schemes.

4.1 Experimental Setup

The experimental setup is identical to [9]. Therefore,
only the most important settings are summarized here.
The REMOS-based recognizer is implemented by ex-
tending the decoding routines of HTK [10]. In the RE-
MOS version of [1], the optimization problem (4) is
solved by an interior-point line-search filter method im-
plemented in IPOPT [7], an open-source software pack-
age for large-scale nonlinear optimization. Static log-
melspec features with 24 mel channels calculated from
speech data sampled at 20 kHz are used. 16-state word-
level HMMs with single-Gaussian densities serve as
clean-speech models. To get the reverberant test data,
the clean-speech TI digits data are convolved with dif-
ferent RIRs measured at different loudspeaker and mi-
crophone positions in three rooms with the character-
istics given in Table 1. A strict separation of training
and test data is maintained in all experiments both for
speech and RIRs. Each test utterance is convolved with
an RIR selected randomly from a number of measured
RIRs in order to simulate changes of the RIR during the
test. The experiments are run on an Intel Q9550 with
2.83 GHz.

4.2 Experimental Results

Table 2 and table 3 compare the word accuracy and
the real-time fators of REMOS to that of conventional
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Room A | Room B Room C
Type lab studio lecture room
Tso 300 ms 700 ms 900 ms
d 2.0m 4.1m 4.0m

Table 1: Summary of room characteristics: Tgp is the
reverberation time, d is the distance between speaker
and microphone.

Room A | Room B | Room C
clean HMM 70.4 33.9 30.7
rev. HMM 89.1 82.3 69.9
REMOS 88.5 88.1 84.7
REMOS+APRIL-h 89.1 88.4 87.1
REMOS+APRIL-7 88.9 88.4 87.2
REMOS+APRIL-5 88.8 88.1 87.2
REMOS+APRIL-2 88.7 87.5 85.8
REMOS+APRIL-1 87.0 86.6 81.7

Table 2: Comparison of word accuracies in %.

recognizers with HMMs trained on clean speech and
HMMs trained on reverberant speech. One can ob-
serve that the computational complexity of REMOS us-
ing the novel APRIL approaches is reduced by a factor
of about 100 compared to the REMOS implementation
of [1] using IPOPT which solves the exact optimiza-
tion problem (4). This can be explained by the fact
that APRIL directly calculates the closed-form solution
of the approximated problem whereas IPOPT applies a
generic iterative method to the exact problem which en-
tails a certain convergence time. The recognition rates
of REMOS+APRIL-h, APRIL-5 and APRIL-7 are even
higher than those of the original REMOS version. This
confirms that finding a global optimum for the inner op-
timization problem leads to improved recognition rates.
The improved recognition rates for the global optimum
also confirm the validity of the reverberation model and
of the formulation of the optimization problem. Com-
pared to the computional load of the memory access
for calculating x,, cf. (2), the complexity of APRIL-1,
APRIL-2 and APRIL-5 is negligible.

S. SUMMARY AND CONCLUSIONS

The REMOS concept for robust distant-talking speech
recognition according to [1] has been modified to dras-
tically reduce computational demands, so that real-
time implementations are within reach. Approximation
techniques for the inner optimization problem, which
has to be solved in each iteration of the Viterbi algo-
rithm, allow an efficient solution and implementation.
Connected digit recognition experiments confirm that
the computational complexity is significantly reduced
with a remarkable increase of the recognition accuracy.
Future work will include extending the concept to the
MFCC domain, to Gaussian mixture densities, and dy-
namic features as well as optimizing the storage policy
for further reducing the RTF.

Room A | Room B | Room C
clean HMM < 0.1 < 0.1 < 0.1
rev. HMM < 0.1 < 0.1 < 0.1
REMOS 265 178 196
REMOS+APRIL-h 1.7 2.5 2.9
REMOS+APRIL-7 1.0 1.7 2.4
REMOS+APRIL-5 0.9 1.6 2.1
REMOS+APRIL-2 0.9 1.6 2.1
REMOS+APRIL-1 0.9 1.6 2.1

Table 3: Comparison of real-time factors (RTF).
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