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ABSTRACT optimum bit allocation strategy was invoked [1]. In the same
In this paper, the Gaussian mixture model (GMM) basedramework of using an unconstrained GMM, another GM-
parametric framework is used to design a product vecPVQ method was developed in [3] where the use of a lat-
tor quantization (PVQ) method that provides rate-distorti tice VQ was explored as a PVQ. The lattice based GMPVQ
(R/D) performance optimality and bitrate scalability. Weeu method of [3] was shown to provide better R/D performance
a GMM consisting of a large number of Gaussian mixtureghan the SQ based GMPVQ method of [2] at higher bit rates,
and invoke a block isotropic structure on the covariance mabut to suffer at lower bitrates. A lattice VQ suffers at lower
trices of the Gaussian mixtures. Using such a structurehitrates due to the problem of lattice scaling in a support re
GMM, we design an optimum and bitrate scalable PvQgion and hence, the use of a lattice VQ does not guarantee
namely an split (SVQ), for each Gaussian mixture. The uséetter R/D performance for any bitrate.
of an SVQ allows for a trade-off between complexity and  To quantize a non-stationary source (for example, speech
R/D performance that spans the two extreme limits provideénd image sources, and their parameters), the use of a GMM
by an optimum scalar quantizer and an unconstrained vecteonsisting of a large number of Gaussian mixtures leads to
quantizer. The efficacy of the new GMM based PVQ (GM-better modeling of the source pdf. Because of the choice
PVQ) method is demonstrated for the application of speecbf a large number of mixtures, it is a standard practice to

spectrum quantization. choose a diagonal covariance matrix for each Gaussian mix-
ture leading to uncorrelated vector components within each
1. INTRODUCTION mixture [4]. Using such a structured GMM consisting of a

arge number of uncorrelated Gaussian mixtures, an optimum

Conventional design of a product vector quantization (PVQ%nd scalable GMPVQ method was developed in [5] where an

e o oA Sptimum SO was designed a5 a PV for ach ucorlated
N 9 y g Gaussian mixture. For quantization of non-stationary epee

a specified bitrate. Generally, a PVQ method does not pro= .
. T : o ; parameters at any bitrate, the structured GMM based GM-
vide R/D optimality and bitrate scalability. To achieve R/D VQ method of [5] was shown to provide better R/D perfor-

optimality, an optimum bit allocation strategy can be use
[1], but with the requirement of better modeling a source ance than the unstructured GMM based GMPVQ method

pdf in a parametric framework. A simple strategy of mod-Of [2] while retaining bitrate scalability. ,
eling a vector source pdf using a unimodal density (such as Several GMPVQ methods have been developed in recent
a Gaussian or Laplacian pdf) may not lead to a better R/jterature [6]-[9], notably the switched quantization imeds.
performance. On the other hand, for the issue of bitrate scaMost of these methods address the issue of R/D optimality,
ability, we desire to design a quantizer that can operateyat a Ut not the bitrate scalability. Developing a bitrate sbida
specified bitrate (from a lowest bitrate to a specified hizhesGMPVQ method is hamstrung due to the prohibitive mem-
bitrate) without the requirement of retraining the quastiar Oy requirement of storing PVQ codebooks designed for all
storing multiple codebooks designed for continuum bisate Gaussian mixtures at continuum bitrates. In case of the GM-
To achieve R/D optimality and bitrate scalability, Sub- PVQ methods of [2] and [3], the use of SQs (as PVQs) al-
ramaniam and Rao [2] proposed a pdf optimized parameiDWS for mvokm_g a simple s_tatls_ncal normallzatl_on (mean
ric framework where a vector source pdf is modeled using &moval and variance normalization) technique withoutcom
multi-modal Gaussian mixture (GM) density. The use of aPromising the optimality of R/D performance and inherently
Gaussian mixture model (GMM) is well known in the liter- Nelps to solve the memory complexity problem. For these
ature for modeling an arbitrary source pdf quite accuratelySQ based GMPVQ methods, storing a set of optimum code-
For designing a GMM based PVQ (GMPVQ) method with books _de5|gned for a zero mean and unit variance (ZI_\/IUV)
R/D optimality, a basic requirement is to design an optimumGaussuan scalar source at continuum bits/scalar sl_Jfflces to
PVQ for each Gaussian mixture of the GMM. In [2], Sub- address the R/D optimality as well as bitrate scalabiliten
structure, consisting of a lower number of correlated Gausscalar source at continuum bits/scalar is minimally intens
sian mixtures. Hence, for each correlated Gaussian mixture For the scalable GMPVQ methods of [2] and [5], the
they used a transform domain scalar quantizer (TrSQ) [1] asase of SQ results in a loss of higher dimensional coding ad-
simple PVQ. For the TrSQ of a correlated Gaussian mixtureyantage, mainly the space-filling loss [10]. To recover the
the relevant mixture specific KLT was used to de-correlatespace-filling loss at any bit rate, we propose to use an op-
the source vector and then the transform domain uncorcelatégimum product VQ, namely an split VQ (SVQ) [11]. In the
components were quantized using an optimum scalar quanew GMPVQ method, an optimum SVQ is designed for each
tizer (SQ) [1]. To design an optimum SQ, a variance base@Gaussian mixture. For an optimal SVQ to quantize an un-

© EURASIP, 2010 ISSN 2076-1465 771



Optimum PVQ X

b 1 Y/ Choosing the best

SelectL n 2 - iR _ .
_ Do Optimum PVQ ™| candidate among ‘%
nearest neighbor — ] 1| L quantized vectors ——
PVQs fromM PVQY ! | ! 1 | using relevant measure :

- fommmeva | |

Codebook of
{l”?n»X}j‘nl—l

Using nearest neighbor PVQs

Selection of PVQs Quantization Analysis-by-synthesis

Figure 1: Gaussian mixture model based product vector quadian (GMPVQ) method.

correlated Gaussian vector source, a source vector is split Inthe case of an optimum GMPVQ, an optimum PVQ is
into subvectors and then quantized independently follgwin designed for each Gaussian mixture of the GMM. Therefore,
a subvector-based optimum bit allocation strategy [11}e Tha GMPVQ method comprises a setMfPVQs. A general
R/D performance and complexity trade-off of an optimumblock diagram of a GMPVQ is shown in Fig. 1. To quantize
SVQ spans the two extreme limits provided by an optimuman input vector, the algorithmic steps are as follows:

SQ and an unconstrained VQ. In general, for quantizing a
vector source with arbitrary covariance structure, an-opti ~
mum SVQ does not provide bitrate scalability through the
use of a statistical normalization method. To provide bétra
scalability, we use a GMM consisting of a large number of
uncorrelated Gaussian mixtures and further impose a struc-
ture on the covariance matrices of the Gaussian mixtures. We
propose to use Block isotropic covariance matrix for each L . . .
uncorrelated Gaussian mixture. Based on such a structuregt Quantization: Quantize the input vector using the se-
GMM, we show that it is possible to design and use a bitrate  €ctedL NN optimum PVQs. _

scalable SVQ through the application of a statistical ndrma 3- Analysis-by-synthesis: Reconstruct thé quantized vec-
ization method. For speech spectrum quantization, we show tors. Choose the best quantized vector using an applica-
that the new SVQ based GMPVQ method provides better tion specific relevant distance measure.

R/D performance than the SQ based GMPVQ methods of FEqr the GMPVQ method of Subramaniam and Rao [2]

Selection of PVQs: The input vector is compared with
the M mean vectors of all Gaussian mixtures using the
square Euclidean distance (SED) measure and the SED
distance values are rank ordered (sorted); according to
the rank ordering, thie number of nearest neighbor (NN)
optimum PVQs are chosen from the sethdfoptimum
PVQs for quantization.

[2] and [5] while retaining bitrate scalability. and its later extension [3], a lower number of Gaussian mix-
tures is used to model a GMM. Therefore, the mixtures are
2. GMM BASED PVQ highly overlapping in nature and thus, it is required to use

In this section, we discuss the general structure of a GMPV@!! the mixture specific PVQs to choose the best quantized
method. LetX be thep-dimensional source vector; the pdf Vector through the analysis-by-synthesis (AbS) technique

of X is modeled using a GMM ol Gaussian components This approach of using all the quantizers from a set of avail-
as able quantizers follows a framework of universal quantiza-

" tion (UQ) [13]. As we use a GMM consisting of a large num-
. ber of Gaussian mixtures, strictly following the UQ frame-
fx (x) = Z Om A (x; Hmx, Cmx) @ work of employing all the PVQs Igads to high computational
m=1 complexity. Following the work of [5], [9], we use a sub-
wheream, tmx and Cyx are the prior probability, mean set of quantizers from a set of all quantizers. We use a
vector and covariance matrix of th@'th Gaussian mix- selection stage where an input vector is compared With
ture 4 (x; Umx,Cmx). The approximate equality, used in mean vectors of Gaussian mixtures using the SED measure
eg. (1), is because of modeling a source pdf using the GMMi.e. using nearest neighbor criteria) and a sdt optimum
with finite number ofM mixtures. For the proposed GM- PVQs are chosen from the set Mf optimum PVQs using
PVQ method, we choose a large number of mixtures (i.erank ordering (sorting). For a fixeld, an increase of re-
a largeM) and invoke a structure on the covariance matri-sults in a decrease of quantization distortion. Theorkyica
ces of the Gaussian mixtures. A GMM consisting of a largdeast quantization distortion is achieved if we truly fello
number of mixtures has been used in the literature [12] tahe UQ framework, i.e., if we use = M. In practical cases,
predict the theoretical high rate performance of a full gkar a decreasing trend of quantization distortion saturatéls wi
VQ. Following a standard practice, we use an expectationan increase of.. Therefore, a suitable can be chosen on
maximization (EM) algorithm for evaluating the GMM pa- the basis of a trade-off between computational complexity
rameters. and quantization distortion. For an input vector, the uske of

772



PVQs (practically_ < M) keeps the pomplexity under check vector quantized aifm,i and then the quantized subvector

and permits us to choose a much higher valukldér better X, . is computed through statistical inverse normalization as

source density modeling. Also, the increasdvbéllows for

using Gaussian mixtures with diagonal covariance matrices T 123

The use of uncorrelated Gaussian mixtures helps to invoke Ximi = { Cxmiximi }* Yimi - Hx- ©)

further structure on the covariance matrices. For vector quantizingXm,;, we note that the use of an

isotropic sub-covariance matrix allows to use a codeboek de

3. STRUCTURED GMM BASED PVQ signed for a ZMUV subvectoY ,,; without any loss of quan-

We design a scalable and optimum GMPVQ method wherdization performance. That is, we achieve the same quanti-

a scalable and optimum PVQ is designed for each Gaussidqtion perfo_rmance as that of the case where a codebook is

mixture of the GMM. Invoking a structure on the covariancedirectly designed and used for vector quantizKig, .

matrices of the Gaussian mixtures in the GMM, we design  Now, for them'th Gaussian mixture specific SVQ, let us

a set of scalable and optimum PVQs which are not storag%hoose the dimensions of subvectors as equal as possible.

intensive. To model the source pdf using a GMM, we useSuppose, = {%J and we choose the dimensions of sub-

a large number of Gaussian mixtures and assume that thRctors as

mixtures are uncorrelated.

For the PVQs, we propose to use scalable and opti- o m for1<i<Sp—1,

mum SVQs. Let us consider to design a scalable and op- Omi = { p—rm fori=S, 6)

timum SVQ for them'th Gaussian mixture. For thavth

Gaussian mixture specific SVQ, an input vecXris split  Using such dimensions, we note that theéh Gaussian mix-

into Sy, number of subvectors (& Sy, < p) such thatX =  ture specific SVQ becomes scalable through the use of a set
T . of codebooks designed forg-dimensional ZMUV subvec-

{X;Ll X "'XIn,Sn} and each subvect@m; IS VECIOr {4 and a(p — ryy)-dimensional ZMUV subvector.

quantized independently. Let, the dimensiorXof,; be gmi Further invoking a constraint that the number of splits

such thaty;™ gm; = p. It is possible to design an optimum is equal for all the SVQs, i.e¥m,Sn = S we note that all
SVQ for each Gaussian mixture through optimum bit allo-the M SVQs become scalable through the use of a set of
cation among subvectors [11], but difficult to address the iscodebooks designed for radimensional ZMUV subvector

sue of bitrate scalability. For a GMM consisting of a largeand a(p—r)-dimensional ZMUV subvector, where= 1§
number of uncorrelated Gaussian mixtures, we invoke furThe codebooks are designed at varying bits/subvector and
ther constraint on the structure of the GMM to address thélsed as reference codebooks. Using such a design choice of
issue of designing bitrate scalable SVQs. Using the sptit ve equal number_of sp_llts, subvector dimensions and strudture
tor notation, let us express the diagonal covariance mafrix GMM, we design bitrate scalable SVQs and hence, design a

them'th Gaussian mixtur&m, x as: scalable GMPVQ. Note that if we use= p, the optimum
’ SVQs are nothing but optimum SQs providing poorest R/D
Cxy Xy 0 0 performance with minimum complexity and the SVQ based
0  Cx,,Xp, - 0 GMPVQ method becomes the SQ based GMPVQ method
Crx = _ memme _ ., (2) of [5]. On the other hand, fo= 1, the SVQs are noth-
' : : " : ing but unconstrained VQs with best R/D performance at the
0 0 o CxparXmsn expense of highest complexity. Therefore, the use of an op-

timum SVQ provides a trade-off between R/D performance
whereCx,, x,; is the covariance matrix of thigh subvector ~ and complexity which spans the two extreme limits of using
Xmj; eachCx,, x,, is a diagonal matrix of dimensiapn x ~ a@n optimum SQ anq an unqonstra]ned VQ. For a practical
Omi. We invoke a constraint such that a sub-vector covarianceVQ method, a choice of splits decides the trade-off.
matrix is Isotropic, I.e. 3.1 Optimum R/D Performance
Cx,i X = Ol (3) Inthis subsection, we address the R/D performance optimal-
- ’ ity of the SVQ based GMPVQ method. Fobabits/vector
Using such a block isotropic covariance matrix, we note thaGMPVQ coder,b; = log, M bits are used for transmitting
thegmi-dimensional subvectd,; can be quantized using a the winning quantizer (or mixture) identity and thus, the re
codebook designed forg,j-dimensional subvector consist- maining (b — ) bits are used for the corresponding PVQ,
ing of ZMUV Gaussian scalar components. Let us refer to dere the corresponding SVQ. In case of theh Gaussian
subvector consisting of ZMUV Gaussian scalar componentmixture specific optimum SVQ(b — b;) bits are allocated
as a ZMUV subvector. An input subvect®,; is mean re- optimally to the S subvectors as shown in eq. (7) [11],
moved and covariance normalized to produce a ZMUV subwhereb,; denotes the allocated bits to tiith subvector.
vector In eq. (7),K; is a dimensionality dependent constant as

2 r
1/2 K, = 2(%F(5)P? (%)7 For each Gaussian mixture, the
Y= {C)}iﬂxmi} [Xmi — Hxpn; ] (4)  optimum bit allocation is carried out to minimize the mean
C square error (MSE) based on the high rate quantization the-
where px,,; is the corresponding subvector part of Ory as shown in [11]. To find the integer bit allocation from

’ water-filling algorithm or the recently proposed latticesbd

L
[H;cm H>T<m72 "'“>T<m,sm} . The ZMUV subvectorYmi is  algorithm by Farber and Zeger [15] may be applied. We use a
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simple heuristic algorithm [1] to get the integer bit alltoa

for practical implementation. The quantized informatians
the winning quantizer identitg? usingb; = log, M bits and
the indices of SVQ codebooks usifign i} ; bits. At the
decoder, the reconstructed vector is obtained after coveei
scaling and mean compensation.

3.2 Design of codebooks and memory complexity

gquantization problem as the real world application sinee th
performance can be compared against the benchmark results
available in the literature.

In linear prediction (LP) based speech coding, the LP
spectrum is generally coded through the quantization ef lin
spectrum frequency (LSF) parameters. The performance of
LSF quantization is measured using a perceptual distance
measure called spectral distortion (SD). It is prescrithed t

For the SVQs of the GMPVQ method, we need to storean average SD of 1 dB is required to achieve a transparent

a set of codebooks designed forralimensional ZMUV

quality quantization performance (i.e. to achieve inaledib

subvector and dp — r)-dimensional ZMUV subvector for SPectrum quantization distortion) [16], [17]. We assuna th

varying bits/subvector.

bits/vector allocated to the GMPVQ methodd§). We as-
sume that the coder always uses a bitrateo difits/vector
where b < b,

tor among ther-dimensional subvectors and to(a—r)-
dimensional subvector using eq. (7). B8Y bits/vector allo-

cation, let us denote the highest bit allocation to a sulovect

For the highesb™ bits/vector alloca-
tion, we can find the highest bit allocations to a subvec-

Let us consider that the highes® coder need not perform better than achieving the quality of

1 dB average SD. As the direct use of SD is computationally
intensive, an auxiliary distortion measure of vector depen
dent weighted square Euclidean distance (WSED) measure
can be used for VQ of LSF parameters at high rate [16], [18].
The WSED approximates the SD at high rate [18].

We compared between three GMPVQ methods which are
developed based on unstructured and structured GMMs: (1)
the GMPVQ method of [2] (unstructured GMM based), (2)

amongr-dimensional subvectors m,&h) bits/subvector and e GMPVQ method of [5] (structured GMM based), and
to a (p— r)-dimensional subvector atsgl), bits/subvector. (3) the proposed GMPVQ method (structured GMM based).
h s-1 h The GMPVQ method of Subramaniam and Rao [2] uses an
Thereforebi” = max{{{bm,i}i:l }Vm}‘b:b(h) andbE,_), ~  optimal TrS% as a PVQ and hence, we refer this[n]1ethod as
max{ {{bmi}i_s}m}|p_ym- TO design scalable SVQs for GMTrSQ. The GMPVQ method of Chatterjee and Sreenivas
all the Gaussian mixtures, we need to store the codebook8] is referred to as GMSQ where an optimal SQ is used as a
designed for a-dimensional ZMUV subvector and@—r)-  PVQ.AnSVQis used as a PVQ in the new GMPVQ method

dimensional ZMUV subvector at continuum bits/subvectorand hence, itis referred to as GMSVQ. All these three GM-
upto respectiveljoﬁm bits/subvector and@r bits/subvector. PVQ methods are bitrate scalable and use AbS technique to

For the SVQ based GMPVQ method, he total memory comg P08 18 122 Pt Are T f Ll e T et
plexity (.77) to store the codebooks is (in floats) weighting coefficients [18]. We note that the GMTrSQ and
GMSQ methods were earlier used for wideband LSF quan-
tization [17], [5]. For GMTrSQ method, we used eight full
covariance Gaussian mixtures to model a GMM (ie= 8).
Synthetic training datasets of ZMUV subvectors are usedo achieve best R/D performance, we designed a variable
to design the codebooks through employing the LBG algorate GMTrSQ method as implemented in [2]. On the other
rithm [14]. To keep the complexity under check, we assumdiand, for GMSQ and GMSVQ, we used a GMM consisting
that an allocation of highest bits/subvector does not ekeee of 256 uncorrelated Gaussian mixtures (iM.= 256). To
practical limit of 10 bits/subvectér Such a choice of high- keep the computational complexity under check; 10 and

est bits/subvector can be invoked through a design choice &f= 5 were respectively chosen for GMSQ and GMSVQ.

number of splitsS. The speech data used in the experiments is from the
TIMIT database. The specification of AMR-WB speech
4. SPEECH SPECTRUM QUANTIZATION codec [19] is used to compute the 16-th order LP parame-

The application of the new GMPVQ method is demonstrategier vectors which are then converted to 16-dimensional LSF
in the context of speech spectrum quantization. Even thou ecé%rls 'Lg\ll:evlfasc:?grggi’?:sst I&itz \(lgigtt(i)r:it?fogwatlg?rﬂnd%?a\tznd
the new quantization method can be used for several other ap;- 9

C . : sing the training data, the GMMs were trained using EM
plications, such as in image coding, speech waveform quar .~
tization etc., we consider the wide-band speech spectru%lgor.'thm' For the SVQs of the GMSVQ _method, we used
a split arrangement of (3,3,3,3,4)-dimensional subvedimr

code a 16-dimensional LSF vector. Therefore, in case of
the GMSVQ method, we store the codebooks designed for

) b

A = S ex2 3 (por)x 2. ®)

For a practical application, a search complexity more tB¢2'°) is
computationally intensive.
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