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ABSTRACT
In this paper, the Gaussian mixture model (GMM) based
parametric framework is used to design a product vec-
tor quantization (PVQ) method that provides rate-distortion
(R/D) performance optimality and bitrate scalability. We use
a GMM consisting of a large number of Gaussian mixtures
and invoke a block isotropic structure on the covariance ma-
trices of the Gaussian mixtures. Using such a structured
GMM, we design an optimum and bitrate scalable PVQ,
namely an split (SVQ), for each Gaussian mixture. The use
of an SVQ allows for a trade-off between complexity and
R/D performance that spans the two extreme limits provided
by an optimum scalar quantizer and an unconstrained vector
quantizer. The efficacy of the new GMM based PVQ (GM-
PVQ) method is demonstrated for the application of speech
spectrum quantization.

1. INTRODUCTION

Conventional design of a product vector quantization (PVQ)
method is carried out in a non-parametric framework where
the quantizer is designed directly from a training databasefor
a specified bitrate. Generally, a PVQ method does not pro-
vide R/D optimality and bitrate scalability. To achieve R/D
optimality, an optimum bit allocation strategy can be used
[1], but with the requirement of better modeling a source
pdf in a parametric framework. A simple strategy of mod-
eling a vector source pdf using a unimodal density (such as
a Gaussian or Laplacian pdf) may not lead to a better R/D
performance. On the other hand, for the issue of bitrate scal-
ability, we desire to design a quantizer that can operate at any
specified bitrate (from a lowest bitrate to a specified highest
bitrate) without the requirement of retraining the quantizer or
storing multiple codebooks designed for continuum bitrates.

To achieve R/D optimality and bitrate scalability, Sub-
ramaniam and Rao [2] proposed a pdf optimized paramet-
ric framework where a vector source pdf is modeled using a
multi-modal Gaussian mixture (GM) density. The use of a
Gaussian mixture model (GMM) is well known in the liter-
ature for modeling an arbitrary source pdf quite accurately.
For designing a GMM based PVQ (GMPVQ) method with
R/D optimality, a basic requirement is to design an optimum
PVQ for each Gaussian mixture of the GMM. In [2], Sub-
ramaniam and Rao had used a GMM of an unconstrained
structure, consisting of a lower number of correlated Gaus-
sian mixtures. Hence, for each correlated Gaussian mixture,
they used a transform domain scalar quantizer (TrSQ) [1] as a
simple PVQ. For the TrSQ of a correlated Gaussian mixture,
the relevant mixture specific KLT was used to de-correlate
the source vector and then the transform domain uncorrelated
components were quantized using an optimum scalar quan-
tizer (SQ) [1]. To design an optimum SQ, a variance based

optimum bit allocation strategy was invoked [1]. In the same
framework of using an unconstrained GMM, another GM-
PVQ method was developed in [3] where the use of a lat-
tice VQ was explored as a PVQ. The lattice based GMPVQ
method of [3] was shown to provide better R/D performance
than the SQ based GMPVQ method of [2] at higher bit rates,
but to suffer at lower bitrates. A lattice VQ suffers at lower
bitrates due to the problem of lattice scaling in a support re-
gion and hence, the use of a lattice VQ does not guarantee
better R/D performance for any bitrate.

To quantize a non-stationary source (for example, speech
and image sources, and their parameters), the use of a GMM
consisting of a large number of Gaussian mixtures leads to
better modeling of the source pdf. Because of the choice
of a large number of mixtures, it is a standard practice to
choose a diagonal covariance matrix for each Gaussian mix-
ture leading to uncorrelated vector components within each
mixture [4]. Using such a structured GMM consisting of a
large number of uncorrelated Gaussian mixtures, an optimum
and scalable GMPVQ method was developed in [5] where an
optimum SQ was designed as a PVQ for each uncorrelated
Gaussian mixture. For quantization of non-stationary speech
parameters at any bitrate, the structured GMM based GM-
PVQ method of [5] was shown to provide better R/D perfor-
mance than the unstructured GMM based GMPVQ method
of [2] while retaining bitrate scalability.

Several GMPVQ methods have been developed in recent
literature [6]-[9], notably the switched quantization methods.
Most of these methods address the issue of R/D optimality,
but not the bitrate scalability. Developing a bitrate scalable
GMPVQ method is hamstrung due to the prohibitive mem-
ory requirement of storing PVQ codebooks designed for all
Gaussian mixtures at continuum bitrates. In case of the GM-
PVQ methods of [2] and [5], the use of SQs (as PVQs) al-
lows for invoking a simple statistical normalization (mean
removal and variance normalization) technique without com-
promising the optimality of R/D performance and inherently
helps to solve the memory complexity problem. For these
SQ based GMPVQ methods, storing a set of optimum code-
books designed for a zero mean and unit variance (ZMUV)
Gaussian scalar source at continuum bits/scalar suffices to
address the R/D optimality as well as bitrate scalability; note
that the codebook storage requirement of a ZMUV Gaussian
scalar source at continuum bits/scalar is minimally intensive.

For the scalable GMPVQ methods of [2] and [5], the
use of SQ results in a loss of higher dimensional coding ad-
vantage, mainly the space-filling loss [10]. To recover the
space-filling loss at any bit rate, we propose to use an op-
timum product VQ, namely an split VQ (SVQ) [11]. In the
new GMPVQ method, an optimum SVQ is designed for each
Gaussian mixture. For an optimal SVQ to quantize an un-
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Figure 1: Gaussian mixture model based product vector quantization (GMPVQ) method.

correlated Gaussian vector source, a source vector is split
into subvectors and then quantized independently following
a subvector-based optimum bit allocation strategy [11]. The
R/D performance and complexity trade-off of an optimum
SVQ spans the two extreme limits provided by an optimum
SQ and an unconstrained VQ. In general, for quantizing a
vector source with arbitrary covariance structure, an opti-
mum SVQ does not provide bitrate scalability through the
use of a statistical normalization method. To provide bitrate
scalability, we use a GMM consisting of a large number of
uncorrelated Gaussian mixtures and further impose a struc-
ture on the covariance matrices of the Gaussian mixtures. We
propose to use ablock isotropic covariance matrix for each
uncorrelated Gaussian mixture. Based on such a structured
GMM, we show that it is possible to design and use a bitrate
scalable SVQ through the application of a statistical normal-
ization method. For speech spectrum quantization, we show
that the new SVQ based GMPVQ method provides better
R/D performance than the SQ based GMPVQ methods of
[2] and [5] while retaining bitrate scalability.

2. GMM BASED PVQ

In this section, we discuss the general structure of a GMPVQ
method. LetX be thep-dimensional source vector; the pdf
of X is modeled using a GMM ofM Gaussian components
as

fX(x) ≈
M

∑
m=1

αm N (x; µm,X,Cm,X) , (1)

whereαm, µm,X andCm,X are the prior probability, mean
vector and covariance matrix of them’th Gaussian mix-
tureN (x; µm,X,Cm,X). The approximate equality, used in
eq. (1), is because of modeling a source pdf using the GMM
with finite number ofM mixtures. For the proposed GM-
PVQ method, we choose a large number of mixtures (i.e.
a largeM) and invoke a structure on the covariance matri-
ces of the Gaussian mixtures. A GMM consisting of a large
number of mixtures has been used in the literature [12] to
predict the theoretical high rate performance of a full search
VQ. Following a standard practice, we use an expectation-
maximization (EM) algorithm for evaluating the GMM pa-
rameters.

In the case of an optimum GMPVQ, an optimum PVQ is
designed for each Gaussian mixture of the GMM. Therefore,
a GMPVQ method comprises a set ofM PVQs. A general
block diagram of a GMPVQ is shown in Fig. 1. To quantize
an input vector, the algorithmic steps are as follows:

1. Selection of PVQs: The input vector is compared with
the M mean vectors of all Gaussian mixtures using the
square Euclidean distance (SED) measure and the SED
distance values are rank ordered (sorted); according to
the rank ordering, theL number of nearest neighbor (NN)
optimum PVQs are chosen from the set ofM optimum
PVQs for quantization.

2. Quantization: Quantize the input vector using the se-
lectedL NN optimum PVQs.

3. Analysis-by-synthesis: Reconstruct theL quantized vec-
tors. Choose the best quantized vector using an applica-
tion specific relevant distance measure.

For the GMPVQ method of Subramaniam and Rao [2]
and its later extension [3], a lower number of Gaussian mix-
tures is used to model a GMM. Therefore, the mixtures are
highly overlapping in nature and thus, it is required to use
all the mixture specific PVQs to choose the best quantized
vector through the analysis-by-synthesis (AbS) technique.
This approach of using all the quantizers from a set of avail-
able quantizers follows a framework of universal quantiza-
tion (UQ) [13]. As we use a GMM consisting of a large num-
ber of Gaussian mixtures, strictly following the UQ frame-
work of employing all the PVQs leads to high computational
complexity. Following the work of [5], [9], we use a sub-
set of quantizers from a set of all quantizers. We use a
selection stage where an input vector is compared withM
mean vectors of Gaussian mixtures using the SED measure
(i.e. using nearest neighbor criteria) and a set ofL optimum
PVQs are chosen from the set ofM optimum PVQs using
rank ordering (sorting). For a fixedM, an increase ofL re-
sults in a decrease of quantization distortion. Theoretically,
least quantization distortion is achieved if we truly follow
the UQ framework, i.e., if we useL = M. In practical cases,
a decreasing trend of quantization distortion saturates with
an increase ofL. Therefore, a suitableL can be chosen on
the basis of a trade-off between computational complexity
and quantization distortion. For an input vector, the use ofL
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PVQs (practicallyL ≪ M) keeps the complexity under check
and permits us to choose a much higher value ofM for better
source density modeling. Also, the increase ofM allows for
using Gaussian mixtures with diagonal covariance matrices.
The use of uncorrelated Gaussian mixtures helps to invoke
further structure on the covariance matrices.

3. STRUCTURED GMM BASED PVQ

We design a scalable and optimum GMPVQ method where
a scalable and optimum PVQ is designed for each Gaussian
mixture of the GMM. Invoking a structure on the covariance
matrices of the Gaussian mixtures in the GMM, we design
a set of scalable and optimum PVQs which are not storage
intensive. To model the source pdf using a GMM, we use
a large number of Gaussian mixtures and assume that the
mixtures are uncorrelated.

For the PVQs, we propose to use scalable and opti-
mum SVQs. Let us consider to design a scalable and op-
timum SVQ for them’th Gaussian mixture. For them’th
Gaussian mixture specific SVQ, an input vectorX is split
into Sm number of subvectors (1≤ Sm ≤ p) such thatX =
[

X
T
m,1 X

T
m,2 . . .XT

m,Sm

]T
and each subvectorXm,i is vector

quantized independently. Let, the dimension ofXm,i beqm,i

such that∑Sm
i=1 qm,i = p. It is possible to design an optimum

SVQ for each Gaussian mixture through optimum bit allo-
cation among subvectors [11], but difficult to address the is-
sue of bitrate scalability. For a GMM consisting of a large
number of uncorrelated Gaussian mixtures, we invoke fur-
ther constraint on the structure of the GMM to address the
issue of designing bitrate scalable SVQs. Using the split vec-
tor notation, let us express the diagonal covariance matrixof
them’th Gaussian mixtureCm,X as:

Cm,X =











CXm,1Xm,1 0 . . . 0

0 CXm,2Xm,2 . . . 0

...
...

. . .
...

0 0 . . . CXm,SmXm,Sm











, (2)

whereCXm,iXm,i is the covariance matrix of thei’th subvector
Xm,i; eachCXm,iXm,i is a diagonal matrix of dimensionqm,i×
qm,i. We invoke a constraint such that a sub-vector covariance
matrix is isotropic, i.e.

CXm,iXm,i = σ2
m,iI. (3)

Using such a block isotropic covariance matrix, we note that
theqm,i-dimensional subvectorXm,i can be quantized using a
codebook designed for aqm,i-dimensional subvector consist-
ing of ZMUV Gaussian scalar components. Let us refer to a
subvector consisting of ZMUV Gaussian scalar components
as a ZMUV subvector. An input subvectorXm,i is mean re-
moved and covariance normalized to produce a ZMUV sub-
vector

Ym,i =
{

C
−1
Xm,iXm,i

}1/2
[

Xm,i −µXm,i

]

, (4)

where µXm,i is the corresponding subvector part of
the mean vector ofm’th Gaussian mixture µm,X =
[

µT
Xm,1

µT
Xm,2

. . .µT
Xm,Sm

]T
. The ZMUV subvectorYm,i is

vector quantized aŝYm,i and then the quantized subvector
X̂m,i is computed through statistical inverse normalization as

X̂m,i =
{

CXm,iXm,i

}1/2
Ŷm,i + µXm,i . (5)

For vector quantizingXm,i, we note that the use of an
isotropic sub-covariance matrix allows to use a codebook de-
signed for a ZMUV subvectorYm,i without any loss of quan-
tization performance. That is, we achieve the same quanti-
zation performance as that of the case where a codebook is
directly designed and used for vector quantizingXm,i.

Now, for them’th Gaussian mixture specific SVQ, let us
choose the dimensions of subvectors as equal as possible.

Supposerm =
⌊

p
Sm

⌋

and we choose the dimensions of sub-
vectors as

qm,i =

{

rm for 1≤ i ≤ Sm −1,
p− rm for i = Sm.

(6)

Using such dimensions, we note that them’th Gaussian mix-
ture specific SVQ becomes scalable through the use of a set
of codebooks designed for arm-dimensional ZMUV subvec-
tor and a(p− rm)-dimensional ZMUV subvector.

Further invoking a constraint that the number of splits
is equal for all the SVQs, i.e.∀m,Sm = S, we note that all
the M SVQs become scalable through the use of a set of
codebooks designed for ar-dimensional ZMUV subvector
and a(p− r)-dimensional ZMUV subvector, wherer =

⌊ p
S

⌋

.
The codebooks are designed at varying bits/subvector and
used as reference codebooks. Using such a design choice of
equal number of splits, subvector dimensions and structured
GMM, we design bitrate scalable SVQs and hence, design a
scalable GMPVQ. Note that if we useS = p, the optimum
SVQs are nothing but optimum SQs providing poorest R/D
performance with minimum complexity and the SVQ based
GMPVQ method becomes the SQ based GMPVQ method
of [5]. On the other hand, forS = 1, the SVQs are noth-
ing but unconstrained VQs with best R/D performance at the
expense of highest complexity. Therefore, the use of an op-
timum SVQ provides a trade-off between R/D performance
and complexity which spans the two extreme limits of using
an optimum SQ and an unconstrained VQ. For a practical
SVQ method, a choice of splits decides the trade-off.

3.1 Optimum R/D Performance

In this subsection, we address the R/D performance optimal-
ity of the SVQ based GMPVQ method. For ab bits/vector
GMPVQ coder,bc = log2 M bits are used for transmitting
the winning quantizer (or mixture) identity and thus, the re-
maining (b− bc) bits are used for the corresponding PVQ,
here the corresponding SVQ. In case of them’th Gaussian
mixture specific optimum SVQ,(b− bc) bits are allocated
optimally to theS subvectors as shown in eq. (7) [11],
wherebm,i denotes the allocated bits to thei’th subvector.
In eq. (7), Kr is a dimensionality dependent constant as

Kr = 2
(

r
2Γ

(

r
2

))
2
r
(

r+2
r

)
r
2 . For each Gaussian mixture, the

optimum bit allocation is carried out to minimize the mean
square error (MSE) based on the high rate quantization the-
ory as shown in [11]. To find the integer bit allocation from
the real valued bit allocation of eq. (7), the well-known
water-filling algorithm or the recently proposed lattice based
algorithm by Farber and Zeger [15] may be applied. We use a
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bm,i =







































r b−bc
p + r

2 log2







1
r Kr

∣

∣

∣
CXm,iXm,i

∣

∣

∣

1
r

[

(Kr
r )

r
S−1 Kp−r

p−r

]
1
p
|Cm,X|

1
p






, for 1≤ i ≤ S−1,

(p− r) b−bc
p + (p−r)

2 log2







1
(p−r) K(p−r)

∣

∣

∣
CXm,iXm,i

∣

∣

∣

1
(p−r)

[

(Kr
r )

r
S−1 Kp−r

p−r

]
1
p
|Cm,X|

1
p






, for i = S,

(7)

simple heuristic algorithm [1] to get the integer bit allocation
for practical implementation. The quantized informationsare
the winning quantizer identitym⋆ usingbc = log2 M bits and
the indices of SVQ codebooks using{bm⋆,i}

S
i=1 bits. At the

decoder, the reconstructed vector is obtained after covariance
scaling and mean compensation.

3.2 Design of codebooks and memory complexity

For the SVQs of the GMPVQ method, we need to store
a set of codebooks designed for ar-dimensional ZMUV
subvector and a(p − r)-dimensional ZMUV subvector for
varying bits/subvector. Let us consider that the highest
bits/vector allocated to the GMPVQ method isb(h). We as-
sume that the coder always uses a bitrate ofb bits/vector
where b ≤ b(h). For the highestb(h) bits/vector alloca-
tion, we can find the highest bit allocations to a subvec-
tor among ther-dimensional subvectors and to a(p − r)-
dimensional subvector using eq. (7). Forb(h) bits/vector allo-
cation, let us denote the highest bit allocation to a subvector

amongr-dimensional subvectors asb(h)
r bits/subvector and

to a (p − r)-dimensional subvector asb(h)
p−r bits/subvector.

Therefore,b(h)
r = max

{{

{bm,i}
S−1
i=1

}

∀m

}∣

∣

∣

b=b(h)
andb(h)

p−r =

max
{{

{bm,i}i=S

}

∀m

}∣

∣

b=b(h) . To design scalable SVQs for
all the Gaussian mixtures, we need to store the codebooks
designed for ar-dimensional ZMUV subvector and a(p−r)-
dimensional ZMUV subvector at continuum bits/subvector
upto respectivelyb(h)

r bits/subvector andb(h)
p−r bits/subvector.

For the SVQ based GMPVQ method, the total memory com-
plexity (M ) to store the codebooks is (in floats)

M = ∑b(h)
r

i=1 r×2i +∑
b(h)

p−r
i=1 (p− r)×2i. (8)

Synthetic training datasets of ZMUV subvectors are used
to design the codebooks through employing the LBG algo-
rithm [14]. To keep the complexity under check, we assume
that an allocation of highest bits/subvector does not exceed a
practical limit of 10 bits/subvector1. Such a choice of high-
est bits/subvector can be invoked through a design choice of
number of splitsS.

4. SPEECH SPECTRUM QUANTIZATION

The application of the new GMPVQ method is demonstrated
in the context of speech spectrum quantization. Even though
the new quantization method can be used for several other ap-
plications, such as in image coding, speech waveform quan-
tization etc., we consider the wide-band speech spectrum

1For a practical application, a search complexity more thanO(210) is
computationally intensive.

quantization problem as the real world application since the
performance can be compared against the benchmark results
available in the literature.

In linear prediction (LP) based speech coding, the LP
spectrum is generally coded through the quantization of line
spectrum frequency (LSF) parameters. The performance of
LSF quantization is measured using a perceptual distance
measure called spectral distortion (SD). It is prescribed that
an average SD of 1 dB is required to achieve a transparent
quality quantization performance (i.e. to achieve inaudible
spectrum quantization distortion) [16], [17]. We assume that
a coder need not perform better than achieving the quality of
1 dB average SD. As the direct use of SD is computationally
intensive, an auxiliary distortion measure of vector depen-
dent weighted square Euclidean distance (WSED) measure
can be used for VQ of LSF parameters at high rate [16], [18].
The WSED approximates the SD at high rate [18].

We compared between three GMPVQ methods which are
developed based on unstructured and structured GMMs: (1)
the GMPVQ method of [2] (unstructured GMM based), (2)
the GMPVQ method of [5] (structured GMM based), and
(3) the proposed GMPVQ method (structured GMM based).
The GMPVQ method of Subramaniam and Rao [2] uses an
optimal TrSQ as a PVQ and hence, we refer this method as
GMTrSQ. The GMPVQ method of Chatterjee and Sreenivas
[5] is referred to as GMSQ where an optimal SQ is used as a
PVQ. An SVQ is used as a PVQ in the new GMPVQ method
and hence, it is referred to as GMSVQ. All these three GM-
PVQ methods are bitrate scalable and use AbS technique to
choose the best codevector. For AbS, we use the WSED mea-
sure where the spectral sensitivity coefficients are used asthe
weighting coefficients [18]. We note that the GMTrSQ and
GMSQ methods were earlier used for wideband LSF quan-
tization [17], [5]. For GMTrSQ method, we used eight full
covariance Gaussian mixtures to model a GMM (i.e.M = 8).
To achieve best R/D performance, we designed a variable
rate GMTrSQ method as implemented in [2]. On the other
hand, for GMSQ and GMSVQ, we used a GMM consisting
of 256 uncorrelated Gaussian mixtures (i.e.M = 256). To
keep the computational complexity under check,L = 10 and
L = 5 were respectively chosen for GMSQ and GMSVQ.

The speech data used in the experiments is from the
TIMIT database. The specification of AMR-WB speech
codec [19] is used to compute the 16-th order LP parame-
ter vectors which are then converted to 16-dimensional LSF
vectors. We used 361,046 LSF vectors as training data and
87,961 LSF vectors as test data (distinct from training data).
Using the training data, the GMMs were trained using EM
algorithm. For the SVQs of the GMSVQ method, we used
a split arrangement of (3,3,3,3,4)-dimensional subvectors to
code a 16-dimensional LSF vector. Therefore, in case of
the GMSVQ method, we store the codebooks designed for
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Figure 2: R/D performance comparison between three GM-
PVQ methods: GMTrSQ, GMSQ and GMSVQ.

three and four dimensional ZMUV subvectors from zero
bits/subvector to the highest 10 bits/subvector.

Fig. 2 shows the R/D performance of the three methods.
We note that the use of a GMM consisting of a large number
of Gaussian mixtures in the GMSQ method leads to better
performance than the GMTrSQ method where a GMM con-
sisting of a few Gaussian mixtures is used. The use of a large
number of mixtures helps to model a pdf better. Next, we
note that the GMSVQ method provides better performance
than the GMSQ method. The GMSVQ method provides an
improvement of 1 bits/vector than the GMSQ method at any
chosen bitrate. The GMSVQ method provides the transpar-
ent quality quantization performance of achieving 1 dB av-
erage SD at 44 bits/vector. For the GMSVQ method, we
assume that more than 44 bits/vector is not required to use at
any point of time. At 44 bits/vector, the coder uses a rate of
nearly 3 bits/scalar which is in the region of high rate. On
the other hand, at 30 bits/vector, the coder uses slightly less
than 2 bits/scalar which is in the region of lower rate. Unlike
the case of a lattice quantizer as shown in [3], we note that
the use of SVQ does not lead to a poorer quantization perfor-
mance compared to the use of SQ at the lower rate region.

5. CONCLUSIONS

We show that the use of a structured GMM along-with an
optimum PVQ leads to a design of a bitrate scalable and
optimum quantizer. For the application of wideband speech
spectrum quantization, the new GMPVQ method is shown to
perform the best compared to the recent GMPVQ methods.

We mention that there is still scope for further improve-
ment in R/D performance considering the lower bound of
LSF quantization [20]. Therefore, further research should
consider to develop improved scalable PVQs along-with bet-
ter source density modeling.
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