
IMPROVED SPEECH RECOGNITION IN NOISY ENVIRONMENTS BY USING A 

THROAT MICROPHONE FOR ACCURATE VOICING DETECTION 

Tomas Dekens
 1
, Werner Verhelst

 1
, François Capman

 2
, Frédéric Beaugendre

 3
 

1 Interdisciplinary Institute for Broadband Technology – IBBT, Vrije Universiteit Brussel, 

dept. ETRO-DSSP, Pleinlaan 2, B-1050 Brussels, Belgium 

tdekens@etro.vub.ac.be, wverhels@etro.vub.ac.be 
2 
Thales Communications, Multimedia Processing, 146, Bd de Valmy, BP 82, 92704 Colombes, France 

francois.capman@fr.thalesgroup.com 
3
 Voice Insight, bat. EEBIC, avenue J. Wybran 40, 1070 Brussels, Belgium 

frederic.beaugendre@gmail.com

ABSTRACT 

In this paper we show that microphones that capture the 

bone-conducted voice can be used to improve Automatic 

Speech Recognition in noisy environments. These micro-

phones exhibit good noise rejection properties and their 

signals are therefore good indications of speech activity, 

even in very noisy conditions. We conducted experiments 

where we used a throat microphone signal as a Voice Activ-

ity Detection (VAD) input signal and found that recognition 

accuracies in non-stationary noise improve significantly 

compared to when VAD is executed on a conventional mi-

crophone signal. 

1. INTRODUCTION 

Modern day speech recognizers achieve very high recogni-

tion rates. Even very large vocabulary continuous speech 

recognition is possible. One of the biggest problems that 

remain in the Automatic Speech Recognition (ASR) domain 

is noise robustness. Unwanted background signals that cor-

rupt the desired speech signal cause a mismatch between 

this speech signal and the training data of the acoustic mod-

els of the recognizer. This leads to a degraded recognition 

performance. A second consequence of the added back-

ground signals is that it becomes more difficult to tell at 

what times exactly the user is speaking. This so called Voice 

Activity Detection is a very important aspect of ASR; it tells 

the recognizer when it has to listen to the input signal. If the 

recognizer listens while the user is silent, this can cause a 

high amount of insertion errors; not listening while the user 

is speaking will certainly lead to deletion errors. The VAD 

becomes particularly challenging when the background 

noises are non-stationary. In this paper we use special mi-

crophones to capture the body-conducted voice signal to 

help reduce the influence of background noise sources on 

the accuracy of a VAD.  

In section 2 of this paper we give a brief description of 

the properties of non-conventional microphones and explain 

why they are of particular interest when it comes to Voice 

Activity Detection. We also explain the VAD algorithm that 

was used in our experiments. In section 3 of this paper we 

show the results of the Automatic Speech Recognition ex-

periments that were conducted. Finally, in the last section we 

draw some conclusions. 

2. VAD WITH BODY-CONDUCTING 

MICROPHONES 

2.1 Body-conducting microphones 
Body-conducting microphones are sensors that rely on the 

fact that the human voice signal is not only transmitted 

through the air. When a person speaks this will also lead to 

vibrations of the bones and tissues of this person, and the 

speech signal will propagate through these media as well. 

Because interfering signal sources are typically not in con-

tact with a person, they will be present in the air surrounding 

this person but not in his or her internal structure. This 

means that if we would capture this so called body-

conducted signal (or bone signal), we can capture an uncor-

rupted speech signal. A downside of this, however, is that 

the signal can be very limited in bandwidth. Since the signal 

propagates through human bone and tissue, its high frequen-

cies will be attenuated and a low-pass speech signal will be 

retained. This property makes the body-conducted signal as 

such unsuitable for speech applications where a broadband 

signal is required. Today’s speech recognizers are such ap-

plications. The acoustic models they use are those of 

“broadband” speech; using narrowband speech at the input 

side would cause discrepancies with the training data, lead-

ing to recognition errors. In [1] it was found that the body-

conducted signal captured at the upper lip resembles the air 

signal the most and that using this signal as an ASR input 

signal is not impossible.  A better solution to this problem 

would be to train a recognizer using a very large database 

consisting of body-conducted data. If their bandwidth is 

large enough to contain some formants, these signals will 

contain sufficient information for speech recognition pur-

poses. However, no such database exists at this time. A dif-

ferent approach is to transform the bone signal into a regular 

air signal and use this signal as input. This transformed sig-

nal would also be suited for human communication and 

would be a solution to the problem of human communica-

tion in very noisy environments. Multiple attempts have 

been made to transform a body-conducted signal into a clean 
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air signal, either by using only the body-conducted signal 

e.g.[2][3], or by accompanying this signal with the noisy 

broadband signal picked up by a regular microphone [4]-[8]. 

In [9] the body-conducting microphone was used to help 

retrieve the clean speech recognition feature vector. 

VAD on the other hand is an application that does not 

necessarily require a broadband signal. VAD is very suscep-

tible to noise, especially if this noise is non-stationary. The 

bone signal should typically contain a negligible amount of 

background signals, which should significantly simplify the 

VAD task as every signal activity would correspond to 

speaker activity. One problem however is that, since the bone 

signal is a low-pass signal, sounds that are characterized by 

high frequency energy, such as fricatives, will hardly be 

found at all in the bone signal. Detecting these sounds accu-

rately using only the bone signal might be impossible, but the 

presence of speech could nevertheless be inferred from the 

bone signal activity as every syllable will include at least one 

voiced phoneme (the vowel nucleus). The multisensory 

speech enhancement techniques described in [4], [6]-[8] do 

implement VAD based on the body-conducted signal, but do 

not report on its direct impact on ASR performance. [10] on 

the other hand does report a relative improvement in error 

rate of 0%, 61.1% and 45.4% at 40dBA, 84dBA and 96dBA 

noise levels respectively, when the close talk microphone 

signal is replaced by a throat microphone signal for VAD. In 

[5] a reduction of 90% in the number of insertion errors is 

achieved when the signal is amplitude modulated by the 

speech confidence, which is derived from the bone signal’s 

energy level. 

 

2.2  Energy based VAD 
We considered that analysing the energy of the bone-

conducted signal should suffice for the purpose of Voice Ac-

tivity Detection as this signal shows a high SNR such that 

high energy content becomes a direct indication of speaker 

activity. Thus, to detect the active speech parts in the body-

conducted signal, we developed a simple energy based voice 

activity detector, that we named eVAD. The feature used in 

the eVAD algorithm is the smoothed energy, contained in the 

frequency region of interest. Let ),( kmY  be the STFT of the 

input signal )(ty , with m the frame number and k the fre-

quency index. The smoothed energy is then calculated as: 
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where ),(' kmY  is the same as ),( kmY , except when k corre-

sponds to DC or half the sampling frequency, then ),(' kmY  

is 2),( kmY . This ensures that the energy at these fre-

quency bins is only considered once. One can see that the 

parameter N in (1) controls the extent to which the feature is 

smoothed in time and by adjusting the range [ ]21 , kk  a given 

frequency band can be selected. 

During an initialization phase the first frames of the in-

put signal are used to calculate the noise energy using (1); the 

mean of these noise frame energies is an initial estimation of 

the smoothed noise energy
NoiseE . Next, the smoothed energy 

is calculated for each signal input frame. This energy is then 

divided by 
NoiseE  and the logarithm is taken: 
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This ratio is then compared to a threshold. When the ratio is 

smaller than this threshold the frame is considered to contain 

only noise and the noise energy is updated: 

 )()1()()1( mEmEmE NoiseNoise αα −+=+  (3) 

with 10 ≤≤ α . If the ratio is larger than the threshold, 

speech is detected and the current noise energy estimate will 

remain unchanged: 

 )()1( mEmE NoiseNoise =+    (4) 

As stated in the previous section, unvoiced phonemes 

such as e.g. /s/ or /t/ might not be captured by a body-

conducting microphone. This leads to a low instantaneous 

energy part in the signal while there is active speech.  If these 

phonemes occur in the middle of a speech fragment, this 

does not pose a big problem in practice. First, the surround-

ing voiced phonemes ensure that the smoothed energy fea-

ture curve can not drop to too low values. Furthermore, one 

can select a minimum duration that a detected pause should 

have before it is classified as a pause. This can filter out 

pauses that would be detected due to a short unwanted drop 

in the energy curve. 

On the other hand, very often a speech fragment starts or 

ends with problematic unvoiced phonemes and this can not 

be dealt with by selecting a minimum pause length. That is 

why detected speech portions are extended in time (front and 

back) by a given small amount, i.e. the regions before and 

after a detected speech fragment will be classified as speech 

regions as well. 

Signals captured by a body-conducting microphone can 

also contain undesired sounds such as teeth clacks or swal-

lowing sounds. These sounds cause a rise in the energy 

curve, but generally have a short duration, especially com-

pared to speech.  To cope with these short bursts of high en-

ergy a minimum speech length can be selected. If a speech 

region is detected that is shorter than this minimum length, it 

will be classified as noise. 

Besides the relative energy ratio (2), we found it useful 

to also use an absolute power measure. This will make the 

VAD deaf to signals whose power is below a threshold value. 

So if 
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frame m will be classified as a noise fame, where Nwin  is 

the length of the window used. 

3. ASR EXPERIMENTS 

Our goal is to determine the influence of VAD with body-

conducting microphones on automatic speech recognition 

performances. During previous work we recorded a multi-

lingual database of noisy speech using multiple microphones 

[11]. It was noticed that the throat microphone signals in this 

database exhibited good noise rejection properties and there-
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fore we selected this throat microphone (a Clearercom 

Stryker PC [12]) for our experiments. The air signal we used 

in our experiments was produced by a Bluetooth close-talk 

microphone, designed by Voice Insight [13]. 

The signals of the throat microphone contain some low 

frequency noise but no high frequency voice energy. For this 

reason, the energy in the region [250 5000] Hz was used to 

calculate the energy ratios used in the eVAD. 

Figure 1 depicts an example of the power (in the se-

lected frequency region) of the throat microphone signal and 

that of an air microphone. The background noise source was 

a second speaker. The vertical lines indicate the speech start 

and stop positions. It can be clearly seen that the throat signal 

exhibits a much higher SNR than the air signal, making it 

well suited for energy based VAD indeed. 

The multilingual database contains noise corrupted ut-

terances for two speech recognition tasks and some numbers. 

For the experiments in this paper, we chose to let the speech 

recognizer recognize isolated numbers, since this is a more 

generic task from which we expect the most clear results as 

the other two tasks come with a very restrictive grammar. 

We picked four noise types for these experiments: diesel 

and jet engine noise, since these are stationary noise types; a 

siren, as this is a noise type that is stationary on a short time 

basis, but globally alternates periodically between two 

sounds; babble noise, since this is a speech-like noise and 

more or less stationary. The last noise type that was selected 

was an interfering speaker, which is the most challenging 

background sound that exists for a VAD or speech recog-

nizer, since it is non-stationary and its characteristics are 

identical to those of the desired signal. 

The loudness levels of the noise at the ear of the speaker 

during the recordings of the database were set to 80dBA, 

except for the levels of babble noise and of the interfering 

speaker, which were chosen in a way that they sounded real-

istic. The number of utterances (utterance being a number in 

the range [0-9999]) per noise type was equal to 25 for each 

speaker. 

The ASR engine that was used was the Nuance Vocon 

3200 [14]. In one set-up we just fed the noisy signals to the 

speech recognizer. This means that the internal VAD of the 

recognizer is assigned with the job of determining when the 

speaker is actually talking using only the air microphone 

signal as input. This VAD analyses the signal by looking at 

the energy levels, duration and frequency content of events to 

decide whether the event corresponds to a talking user. All 

parameters of the internal VAD where set to their default 

values as these should provide the best general performance. 

In a second set-up we used the synchronized throat micro-

phone signal to determine with the help of our energy based 

VAD the speech start and stop positions. For this we used 

32ms long Hamming windows with 50% overlap.  The num-

ber of FFT points was 512. Equation 1 was used to calculate 

the energy, using a smoothing parameter N = 6 and a range 

[ ]21 , kk  corresponding to the frequency band [250 5000] Hz. 

The parts where speech was detected in each of the re-

cordings were cut out from the corresponding air channel 

signal and consolidated into separate sound files. Note that in 

our isolated numbers task the VAD should ideally detect only 

one speech part in each recording: the one corresponding to 

the uttered number. The sound files that were obtained in this 

way were then used as input files for the speech recognition 

system. Since the recognizer uses the first 100ms of the input 

Nuance Vocon 3200 

HMM recognition 

module 

VAD module 

eVAD 

Cut 

Air signal 

Throat 

signal 

Cut air 

signal 

Figure 1- Signal power, top: air signal, bottom: throat signal 

Figure 2-Schematic representation of experimental set-up 
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signal to execute noise estimation, we ensured that the sound 

files started with 100ms of background noise, in order to not 

disturb this noise estimation process. The internal VAD of the 

recognizer was switched off so as to make sure that all parts 

of these signals would be analysed by the recognizer itself. 

Figure 2 gives a schematic representation of this second set-

up. 

The Nuance Vocon 3200 requires a Backus-Naur Form 

grammar in order to work properly. We provided the system 

with a grammar that contained all numbers from 0 to 9999. 

This means that during our tests the recognizer could recog-

nize 10000 different numbers. 

Table 1 compares the word accuracies that were attained 

from the Nuance Vocon 3200 when the internal VAD was 

used with the situation in which the throat microphone signal 

was used as input signal for eVAD voice activity detection. 

Also an estimation of the signal to noise ratio is given for 

each noise type and speaker. 

The Word Accuracy (WA) is defined as: 

 
N

IH
WA

−
=     (6) 

where H is the number of correctly recognized words, which 

is equal to the total number N of words to be recognized 

minus the sum of the number of deletions and substitutions; 

I represents the number of insertions. Note, however, that 

since in our case only one word needs to be recognized, no 

deletions or insertions are possible.  

 First of all, it can be clearly seen that the use of the 

throat based eVAD leads to important WA improvements in 

general. It can also be seen that when stationary noise such as 

jet or diesel engine noise is present, relatively smaller im-

provements in Word Accuracy are obtained compared to the 

other noise types. This is due to the fact that a Voice Activity 

Detector is more robust against stationary noises, and so is a 

speech recognizer. The fact that the recognizer’s WA for the 

French speaker is inferior to that of the German speaker 

could be explained by the fact that this French speaker was 

less influenced by the Lombard effect; the speaker kept the 

loudness of his voice at a relatively low level, even at this 

very high noise level of 80 dBA. This resulted in air signals 

with very low SNR, which makes the recognition task more 

difficult. While the German speaker did produce Lombard 

speech, it seems the mismatch with normal speech was not 

big enough to affect the recognition performance much. 

When a less stationary or more speech-like noise cor-

rupts the speech signal, such as a siren or babble noise, abso-

lute word accuracy improvements in the range of 20-30% are 

obtained.  When the speech signal of the user is accompanied 

by the speech signal of a second, undesired, speaker, the 

most remarkable results can be noticed. In this case accurate 

air-based VAD becomes impossible, especially when there is 

no big difference in energy levels between the two speech 

signals, considering that the other properties of the two sig-

nals are comparable. In addition, when a signal fragment that 

contains only speech produced by the interfering speaker is 

sent to the recognizer, the recognizer will conclude that the 

signal contains speech and will make an attempt to recognize 

this speech, which will lead to incorrect transcriptions. Table 

1 shows that these effects cause a Word Accuracy as low as 

0%. Since the speech recognition task consisted of recogniz-

ing one word per run, no deletions or insertions were possible 

and a WA of 0% means that not a single word was recog-

nized correctly.  Using the throat microphone based eVAD 

for telling the speech recognizer where the useful speech can 

be found, pushed the recognition accuracy up to 80%. 

 

 

Table 1 ASR results 

 

 

4.  CONCLUSION 

In this paper we used a throat microphone to improve the 

accuracy of an off-the-shelve state-of-the-art speech recog-

nizer. To this end, the recognizer’s internal VAD was de-

activated and our eVAD algorithm was used on the throat 

microphone signal to eliminate the non-speech segments 

from the recognizer’s close talk microphone input (100ms of 

leading background noise was left for the recognizer’s noise 

suppression algorithm). Our experiments showed a system-

atic improvement in word accuracy and with non-stationary 

noise sources remarkably higher word accuracies were 

achieved, especially when the noise consisted of competing 

speech. 
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