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ABSTRACT

In dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) of renal perfusion with injection of a contrast
agent, the segmentation of kidney in regions of interest
like cortex, medulla and pelvo-caliceal cavities is neces-
sary for accurate functional evaluation. Several semiautoma-
tic segmentation methods using time-intensity curves of re-
nal voxels have been recently developed. Most of the time,
quantitative result validation consists in comparisons with a
manual segmentation by an expert. However it can be ques-
tionable to consider such a segmentation as a ground truth,
especially because of intra- and inter-operator variability.
Moreover it makes comparisons between results published
by different authors delicate. We propose a method to built
synthetic DCE-MRI sequences from typical time-intensity
curves and an anatomical model that can be used for objec-
tive assessment of renal internal structures.

1. INTRODUCTION

Perfusion dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI) with injection of a contrast agent
like gadolinium chelates is widely used for renal assessment.
The segmentation of kidney in regions of interest like cor-
tex, medulla and pelvo-caliceal cavities is necessary for ac-
curate functional evaluation. In order to avoid tedious and
time-consuming manual segmentation, semiautomatic me-
thods for segmentation of internal renal structures have been
recently developed ; most of them are based on the analysis
of time-intensity curves of renal pixels [1, 2, 3, 4, 5, 6, 7].
Validation is mostly performed by comparing the resulting
segmentations with a manual one. However it can be ques-
tionable to consider such a segmentation as a ground truth or
a gold standard, even if it is done by an expert. It is indeed
subject to intra- and inter-operator variability, especially be-
cause of some subjectivity in gray-level based boundary deli-
neation. It is thus difficult to know whether errors are linked
with this variability or the tested algorithm is not really effi-
cient and should be improved. Moreover it makes compari-
sons between results published by different authors delicate.
A method for objective segmentation assessment would be
worthwhile. We propose to generate synthetic DCE-MRI se-
quences of renal perfusion with contrast agent injection for
normal and pathological kidneys from typical time-intensity
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FIG. 1 — Hard segmentation of a kidney in three compart-
ments (a) : cortex, medulla and cavities (respectively light,
medium and dark gray) and corresponding binary segmenta-
tions (b to d)

curves and an anatomical model. This model can be used as
a ground truth for segmentation validation.

2. BASIC MODEL DESCRIPTION
2.1 Main ideas

We confine ourselves to a 2D model in order to generate
only one slice, but a 3D one could be built in the same way.
The main elements of our model are a 2 dimensional ana-
tomical representation of a kidney slice with three compart-
ments and four average perfusion curves (one for each renal
compartment and one for neighboring organs). Our purpose
is not to simulate the whole MRI acquisition process with
slice reconstruction but to get simply a series of sufficiently
realistic frames to test segmentation algorithms.

2.1.1 Anatomical model

The kidney is represented by a matrix corresponding to
its segmentation in three anatomical compartments with a gi-
ven spatial resolution. Because renal structures are usually
thinner than a voxel, each of them is a mixture of seve-
ral compartments and of other organs. Each element j of

the matrix is thus a quadruplet {ocj(.’) }, 1 <i<4 giving the
proportion of cortex, medulla, cavities and other organs for
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FIG. 2 — Example of a anatomical renal model with three in-
ternal compartments with the proportions of cortex (a), me-
dulla (b), cavities (c) and other organs (d) for each voxel.

voxel j. Plausible proportions can be obtained simply from a
hard segmentation (figure 1) by filtering every corresponding
binary segmentation with a same two-dimensional low-pass
FIR filter F
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For the example in figure 2, with details in figure 3, ¢ =
0.4,c1 =0.045 and ¢, = 0.015. The composition of any voxel
of the hard segmentation is thus modulated by including a
percentage of its 24-nearest neighbors : this takes into ac-
count that voxels located on the boundaries between different
compartments are a mixture of them. The relative values of
filter coefficients can be adjusted to increase or reduce the
mixture.

2.1.2  Time-intensity curves of renal voxels

For each compartment a time-intensity curve is then defi-
ned : it constitute a typical contrast evolution of a voxel that
would contain only one type of tissue, without acquisition
noise (see example in figure 4). Even if exterior organs can
have fairly different contrast evolution, they are represented
by a single average curve for the sake of simplicity. In the

(b)

F1G. 3 — Example of a anatomical renal model with three in-
ternal compartments with the proportions of cortex (a), me-
dulla (b), cavities (c) and other organs (d) for each voxel :
zoom on selected area in figure 3

proposed example these curves /;(¢),1 < i < 4 are obtained
by denoising average curves from real data.

3. MODELLED PHENOMENA

To build realistic sequences using the above anatomical
model and the curves [;(¢),1 < i < 4, different phenomena
are taken into account according to the flow chart in figure 5.

3.1 Partial volume effect

Signal intensity /(j,¢) for a given voxel j at time 7 is a
linear combination of the contributions of the different tis-
sues it contains [8] : this is known as the Partial Volume Ef-
fect (PVE). For a model with C compartments, let OCJ(»l) be the
proportion of tissue i in voxel j :

o () with Yo =1et0<a <1 @

1(j;1) =

i

L

A first series of frames can thus be built thanks to the anato-
mical model and the curves I;(r), 1 <i <4 (figure 6a and b).

3.1.1 Dominant anatomical compartment

The dominant anatomical compartment for voxel j is
compartment k with :

k = argmax Ot;i) (3)

and should be recovered with any consistent segmentation
method.
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F1G. 4 — Typical time-intensity curves for the three renal
compartments and for other organs

3.1.2 Dominant functional compartment

For the proposed model, four typical time-intensity
curves are used. It is possible to compute some distance bet-
ween each of them and the curve of a given voxel. The mi-
nimal distance indicates the dominant functional compart-
ment. The underlying hypothesis for hard time-intensity ba-
sed clustering is that dominant anatomical and functional
compartment are the same : even for real data with no ground
truth, reference segmentation used for validation can rather
be considered as an anatomical one. However this is not true
for all the voxels. For the proposed model, using Euclidean
distance between curves, the dominant functional compart-
ment is not the anatomical one for only 6 voxels out of 1264,
i.e. less than 0.5%. Nevertheless noise, spatial filtering and
misregistration may actually increase this difference.

3.2 Acquisition noise

Noise in MRI magnitude images is signal-dependent and
commonly modelled by the Rician distribution [9]. Each
frame is transformed in a noisy image with the Rician noise
generator proposed in [10] that allows easy noise level ad-
justment. Examples are presented in figure 6¢ and d.

3.3 Spatial filtering

Reconstruction process is not exactly known and depends
on the scanner. The real data we want to treat afterwards are
acquired on a 1.5 T MR-scanner (General Electric Health-
care) with an ultra-fast gradient echo LAVA sequence with
T, weighting with the following acquisition parameters : 15°
flip angle, TR/TE 2.3 ms/1.1 ms. Interval between acquisi-
tions is approximately 1.5 to 2 sec for the first 5 min and 9 sec
for the last 6 min. The initial matrix size is 256 x 256 with
pixel size between 1.172 mm and 1.875 mm for a 10 mm
slice thickness. Each kidney can be included in a rectangular
area which size varies between 47 x 35 and 84 x 59. It can be
observed on their Fourier transform that images are filtered
with a 2D spatial low-pass filter (approximate pass-band nor-
malized frequencies : 0 — 0.57 rad\sample). Such a filter is
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F1G. 5 — Flow chart for sequence synthesis

thus applied to our data. For examples in figure 7b and d, do-
minant anatomical and functional compartments are different
for about 5% of renal voxels.

3.4 Misregistration

As examination duration is about 10 minutes, kidney is
moving essentially because of respiratory motion of the pa-
tient. A registration step can correct most of these move-
ments. Nevertheless it can be noticed that some subpixel mo-
tions remain frequently, as reported in [11, 12, 13]. Imperfect
registration has thus to be taken into account. For the sake of
simplicity, no rotation nor elastic deformation is considered
here. Every frame of the sequence is transformed with ran-
dom independent horizontal and vertical translations drawn
from a normal distribution with mean 0 and standard devia-
tion 0.5 pixel. Required interpolation is performed with cubic
splines. For the proposed example voxels with different do-
minant anatomical and functional compartment represent 8%
of renal voxels.

3.5 Results

Examples of synthetic images are presented in figure 7
and can be compared with real frames of the kidney that our
model is inspired from. Let us stress that our objective is not
to reproduce exactly these frames.

4. CRITICAL ANALYSIS

The proposed model provides fairly realistic synthetic
images of renal DCE-MRI with contrast agent injection des-
pite rough modelling of some steps, in particular spatial fil-
tering. The anatomical structure is simpler than the real one
too. It can be noticed that the dark area around boundary bet-
ween medulla and cavities in real image in figure 7b does not
appear on synthetic image 7d, since typical contrast curves
do not include such a temporal evolution. This model does
not pretend to be universal nor to represent all the variety
of kidney shapes and of average time-intensity curves de-
pending on acquisition conditions. It does not allow to test
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F1G. 6 — Example of synthetic images with partial volume
effect but without noise during cortical peak (a) and late per-
fusion phase (b) ; the corresponding noisy images are (c) and

(d)

automatic extraction ok kidney since other organs are only
modelled with a time-varying uniform background. It would
be anyway relatively difficult to simulate their residual non-
rigid motion after kidney registration.

However the model is simple to built and to use and does
not require any simulation of the whole reconstruction pro-
cess. Dominant anatomical and functional compartments can
be distinguished and the origine of segmentation errors dif-
ferentiated. For instance a method based on time-intensity
curve clustering may correctly regroup voxels according to
their dominant functional compartment but fail to recover
anatomical segmentation.

The model highlights the difficulty to delineate compart-
ment boundaries on blurred images and allows estimation of
intra- and inter-operator variability for manual segmentation,
which can then be compared with the one of semiautomatic
methods. For instance, as a preliminary test, a manual seg-
mentation of cortex, medulla and cavities was performed by
two experts on the same synthetic sequence. The results were
then compared with the anatomical ground truth provided by

F1G. 7 — Example of real (a and c) and synthetic images (b
and d) near cortical peak and in late perfusion phase

our model. Only about 90 % of pixels belonged to the same
compartments in both any manual and ground truth segmen-
tations, and a 15 % error rate was achieved for comparisons
between the two manual segmentations.

We have adapted the model to pathological kidney simu-
lation too by modifying typical time-intensity curve of cavi-
ties (with low contrast during the whole perfusion) and by
choosing an anatomical model with dilated cavities and thin-
ner parenchyma.

5. CONCLUSION

We proposed a method to generate synthetic DCE-MRI
sequences of renal perfusion for objective assessment of me-
thods based on analysis of voxel time-intensity curves. Our
objective was to build sufficiently realistic images without si-
mulation of the whole reconstruction process while making
easy tuning of some parameters (noise level, spatial mixing
of compartments for PVE simulation, registration error). We
suggest to use such a model for a first validation of segmen-
tation algorithms before assessment on real data in order to
identify different types of error and to quantify their relative
significance in global results.
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The described model is two-dimensional but can easily
be extended to a three-dimensional one from a volumetric
hard segmentation by using 3D filters for anatomical mo-
del creation and for PVE simulation and by allowing out of
plane translation for uncorrected residual motions. The typi-
cal time-intensity curves could also be generated thanks to
some renal model with known parameters [14]. These para-
meters can then be estimated from the synthetic sequence and
the estimated value could be compared with the true one.

Concerning independent component analysis applied to
voxel time-intensity curves [4] or, more generally, methods
resulting in segmentation with fractional labels, it can be dif-
ficult to decide meaning of these coefficients. The proposed

model could help to interpret them and to decide if they are

related or not to the (xj(’).
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