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ABSTRACT

Sensor networks gather an enormous amount of data over space and
time to derive an estimate of a parameter or function. Several con-
straints, such as limited power, bandwidth, and storage capacity,
motivate the need for a new paradigm for sensor data processing
in order to extend the network’s lifetime, while also obtaining ac-
curate estimates. In a companion paper [1], we proposed a novel
iterative algorithm for reconstructing non-negative sparse signals in
highly impulsive background by modeling their prior distribution
using symmetric alpha-stable distributions. In the present work, we
extend this algorithm in the framework of distributed compressed
sensing using duality theory and the method of subgradients for the
optimization of the associated cost function. The experimental re-
sults show that our proposed distributed method maintains the re-
construction performance of its centralized counterpart, while also
achieving a highly sparse basis configuration, thus reducing the to-
tal amount of data handled by each sensor.

1. INTRODUCTION

A major challenge in designing wireless sensor network (WSN)
systems and algorithms is that transmitting data from a sensor to
a central processing node may set a significant exhaustion of com-
munication and energy resources. Such concerns may place un-
desirable limits on the amount of data collected and processed by
sensor networks. Thus, it is natural to seek distributed algorithms
for processing the data gathered by the nodes of a sensor network.

Distributed compressed sensing (DCS) [2] enables a potentially
significant reduction in sampling and computation costs at a sensing
system with limited capabilities. In particular, an ensemble of sig-
nals having a jointly sparse representation in a transform domain
(e.g., wavelets, sinusoids) can be reconstructed from a small set
of projections onto a second, measurement basis that is incoher-
ent with the first one. In a WSN scenario, compressive wireless
sensing (CWS) [3] appears to be able to reduce the latency of data
gathering in a single-hop network by delivering linear projections of
sensor readings through synchronized amplitude-modulated analog
transmissions or in a distributed fashion.

On the other hand, the majority of the previous CS algorithms
are based on a Gaussian assumption for the signal and/or noise
statistics, which is violated in several distinct environments, such as
in underwater acoustics [4] and in sonar/radar [5], where the asso-
ciated signals and/or noise take large-amplitude values much more
frequently than what a Gaussian model implies. In addition, these
studies, as well as several other recent works, show that the family
of alpha-stable distributions, and particularly the class ofsymmet-
ric alpha-stable(SαS) distributions, is a powerful statistical tool for
modelling highly impulsive, and thus highly sparse, source signals.
For this purpose, in a companion study [1] we developed a new iter-
ative greedy algorithm for CS reconstruction of sparse signals cor-
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rupted by additive heavy-tailed noise, by modelling the impulsive
behavior using members from the family ofSαSdistributions.

Moreover, there are cases where the information may not be
available in a single node of a WSN. In a WSN, power and stor-
age resources are limited enough such that the communication of
an increased amount of data to a central node (fusion center) would
affect significantly the network’s lifetime. Working in a distributed
framework, it is well known that a famous basis selection method,
namely, the basis pursuit (BP) can be reformulated as a distributed
linear program [6]. However, the resulting approach requires a fully
connected network in the sense that, at each iteration, every sensor
must be able to communicate with all the remaining ones. Mo-
tivated by this, we develop a DCS algorithm for reconstructing a
non-negative sparse signal corrupted by additive heavy-tailed noise,
while requiring a less demanding network topology. The prior be-
lief for a highly sparse signal and heavy-tailed noise is modelled by
employing members from the family ofSαSdistributions.

The paper is organized as follows: in Section 2, we briefly re-
view for completeness the main properties of the family ofSαS
distributions exploited in the development of the proposed method.
In Section 3, the distributedSαS-based CS algorithm is described
by employing a dual non-linear method based on subgradients. In
Section 4, we compare the performance of the proposed approach
with its centralized counterpart, while we conclude in Section 5.

2. STATISTICAL SIGNAL MODEL

According to the CS theory, if a given signal~f ∈RN is L-sparse in a
suitable transform domain, then it is possible to be reconstructed di-
rectly using a compressed set of (noisy) measurements~g, obtained
through incoherent random projections:~g= ΦΨT~f +~η = Φ~w+~η ,
whereΦ = [~φ1, . . . ,~φM ]T is aM×N (M < N) random measurement
matrix,Ψ is aN×N transform matrix, whose columns are the trans-
form basis functions and must be incoherent with the rows ofΦ, and
~w∈RN is the sparse weight vector withL non-zero components (or
equivalently, the transform-domain representation of~f ). We also
note that in practice~f is not strictlyL-sparse butcompressible, that
is, the re-ordered components of~w decay at a power-law.

In the present study, the prior belief that the unknown signal~w is
highly sparse and the noise~η (with unknown varianceσ2

η ) is heavy-
tailed is exploited by using aSαSdistribution as their prior. We also
note that at the present study we consider only a measurement noise
without assuming any kind of quantization. In the following, we
consider that the signal and noise components are also jointlySαS.
The use of this family is motivated by the fact that the tails of aSαS
distribution decay at an algebraic rate, which is in agreement with
the rate of decay of the re-ordered components of a compressible
vector~w.

2.1 The family of SαSdistributions

For convenience, we introduce briefly the family of univariateSαS
distributions, as well as some of their fundamental statistical prop-
erties exploited in the proposed distributed CS method. ASαSdis-
tribution is best defined by its characteristic function [7]:
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φ(t) = exp(iδ t− γα |t|α ), (1)

whereα (0 < α ≤ 2) is the characteristic exponent, which is a
shape parameter controlling the “thickness” of the tails of the den-
sity function,δ ∈ R is thelocation parameterandγ > 0 is thedis-
persion, which determines the spread of the distribution around its
location parameter, similar to the variance of the Gaussian. The
smaller theα, the heavier the tails of aSαSdensity function. ASαS
distribution is calledstandardif δ = 0andγ = 1. With X∼ fα (γ , δ )
we denote aSαSrandom variableX with parametersα, γ , δ .

In general, no closed-form expressions exist for mostSαSden-
sity functions except for the Gaussian (α = 2) and the Cauchy
(α = 1). Unlike the Gaussian density, which has exponential tails,
stable densities have algebraic tails:Pr{X > x} ∼Cx−α , asx→ ∞,
whereC is a constant depending on the model parameters. Hence,
SαSrandom variables with smallα values are highly impulsive.

An important characteristic ofSαS distributions is the lack of
second-order moments. Instead, all moments of orderp < α do ex-
ist and are called theFractional Lower-Order Moments(FLOMs).
In particular, the FLOMs ofX ∼ fα (γ , δ = 0) are given by [7]:

E{|X|p}=
(
C(p,α) · γ)p

, 0 < p < α, (2)

where
(
C(p,α)

)p =
Γ
(

1− p
α

)

cos
(

π
2 p

)
Γ(1−p)

. The SαS model parameters

(α,γ) can be estimated using the consistent Maximum Likelihood
(ML) method described by Nolan [8], which gives reliable esti-
mates and provides the tightest possible confidence intervals. By
restricting ourselves to the case1≤ α ≤ 2, thecovariation normof
X ∼ fα (γ ,0) is defined by

‖X‖α = γX , 0 < p < α , (3)

whereγX is given by solving (2) with respect toγX .
The concept of covariance, which is fundamental in the second-

order moment theory, is not valid in theSαScase. Instead, a quan-
tity calledcovariation, which plays an analogous role forSαS ran-
dom variables to the one played by the covariance in the Gaussian
case, has been proposed. LetX, Y be jointly SαSrandom variables
with 1< α ≤ 2, zero location parameters and dispersionsγX andγY,
respectively. Then, the covariation ofX with Y is defined by [7]:

[X,Y]α =
E{XY<p−1>}
E{|Y|p} ‖Y‖α

α , (4)

where for anyz ∈ R and a ≥ 0 we use the notationz<a> =
|z|asign(z), while for a real vector~z ∈ RN and a ≥ 0 we write
~z<a> = [|z1|asign(z1), . . . , |zN|asign(zN)]. The covariation satisfies
the following (pseudo-)linearity properties in the first and second
argument, respectively: IfX1,X2,Y are jointly SαS, then for any
constantsa,b∈ R we have:

[aX1 +bX2,Y]α = a[X1,Y]α +b[X2,Y]α (5)

[Y,aX1 +bX2]α = a<α−1>[Y,X1]α +b<α−1>[Y,X2]α . (6)

Let X ∼ fα (γX ,0) andY ∼ fα (γY,0) be independentSαS random
variables. Then,cX∼ fα (|c|γX ,0) (c 6= 0) andX +Y ∼ fα

(
(γα

X +
γα
Y )1/α ,0

)
. Thus, for the noisy CS measurements~g = Φ~w+~η , if

{wi ∼ fα (γi ,0)}N
i=1 and{η j ∼ fα (γη ,0)}M

j=1, then

g j ∼ fα
([ N

∑
i=1

(|φ ji |γi)α + γα
η

]1/α
,0

)
, j = 1, . . . ,M , (7)

whereφ ji is the element ofΦ in row- j and column-i, that is, the
CS measurements are jointlySαSwith the signal and noise compo-
nents. In addition, since only the FLOMs are finite forSαS vari-
ables, then, if~X,~Y are two jointlySαSrandom vectors we consider
the following statistical “inner product”:

(~X,~Y) = ‖~Y‖2−α
α [~X,~Y]α . (8)

We observe that most of the above quantities associated with a
SαSdistribution depend on the parameterp, whose value depends
on α. By noting that in the subsequent analysis we are restricted in
1≤ α ≤ 2, we computed theoptimal value ofp as a function ofα
via a Monte-Carlo simulation resulting in a lookup table, which is
then used to find the optimalp for every1≤ α ≤ 2 through inter-
polation (ref. Table 1 in [1]). This table is also employed for the
estimation ofp in the proposed distributedSαS-CS algorithm.

In addition, the efficiency of a CS method is highly affected
by the selection of an appropriate measurement matrixΦ, which
embeds the information content of the sparse signal in a low-
dimensional vector of CS measurements~g. The disadvantage of
the previous CS methods is that they employ measurement matrices
which, in general, are not adapted to the true statistics of the sparse
signal. However, in the companion paper [1] we introduced a mea-
surement matrix, which isbest adaptedto the underlying heavy-
tailed statistics of highly impulsive signal and noise components as
expressed by aSαSmodel. In particular, we showed that the most
appropriate measurement matrixΦ, which will be also used in the
subsequent derivations, satisfying the stability property (7), as well
as an analogue of the restricted isometry property (RIP), is obtained
by drawing independent and identically distributed (i.i.d.) samples
from a standardSαSdistribution and then normalizing its columns
to unit covariation norm. The normalization of a vector~x∈ RM to
unit covariation norm is performed as follows:

~x
‖~x‖α

(2),(3)
=

~x
( 1

M ∑M
i=1 |xi |p

)1/p(C(p,α)
)−1

= C(p,α)M1/p ~x
‖~x‖`p

.

(9)

3. DISTRIBUTED SαS-CS

In the following, we extend our previousSαS-CS algorithm [1] in
a distributed fashion in order to deal with the potentially limited
resources in a WSN scenario. There are cases in a WSN application
where the CS-related information, namely, the measurement matrix
Φ and the sparse signal~w may not be available in a single node. In
particular, we consider the case of a network, where each sensor has
access only to aportion of Φ. In the following, we assume that the
columns ofΦ are distributed across the nodes of the network.

Due to the lack of second-order moments forSαSdistributions
the Minimum Mean Squared Error (MMSE) criterion is not valid
and it should be replaced by theMinimum Dispersion(MD) crite-
rion since, unlike the variance, their dispersion is finite and gives a
good measure of the spread of estimation errors around zero. We
also observe that from (2) the MD criterion can be viewed as aleast
`p-norm estimation errorcriterion since the FLOME{|X|p} can be
estimated as thèp norm of the vectorX. This justifies the use of
the following objective function to be optimized:

Jp(~w) =
N

∑
i=1
|wi |p , ~w∈ RN , 0≤ p≤ 1 . (10)

The problem under consideration is stated as follows: “givenK
nodes each one storing a subset of columns ofΦ, find appropriate
network topologies along with distributed algorithms for solving the
following problem (P1)”,

PRIMAL (P1): minJp(~w) s.t. ~g = Φ~w+~η , −~w≤ 0 ,

where by−~w ≤ 0 (⇔ ~w ≥ 0) we mean that each component of
~w should be non-negative. We assume that the columns ofΦ are
distributed amongK nodes, such that thek-th node stores thek-th
submatrix in the horizontal partition ofΦ = [Φ1, . . . ,Φk, . . . ,ΦK ],
whereΦk ∈ RM×nk , andn1 + · · ·+nK = N. A corresponding parti-
tion also holds for the sparse vector,~w= [~w1, . . . ,~wk, . . . ,~wK ], where
~wk ∈ Rnk . The proposed method is based on theDuality Theory[9]
for the solution of the primal problem (P1). Under the appropri-
ate conditions, such as separability of the objective function and the
constraints, dual problems can be confronted by distributed meth-
ods. Hereafter, we assume thatΦ has full rank in order to ensure
the feasibility of (P1) with high probability.
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By construction of the objective function the followingfeasibil-
ity & boundednesscondition holds: There exists at least one feasi-
ble solution for the primal problem (P1) and the objective function
is bounded, that is,−∞ < J∗p < ∞, whereJ∗p denotes the optimal
value ofJp(~w).

In order to enforce a direct applicability in a distributed setting
(since the objective function is already separable), we introduce a
redundant constraint [9]. In particular, letU > 0 be an upper bound
of the`∞ norm of any solution of (P1). Then, a bounded version of
(P1) is given by:
BoundedPRIMAL (P2):

minJp(~w) s.t. ~g = Φ~w+~η , −~w≤ 0 , ‖~w‖p
∞ ≤U .

The following inequalities determine a rule for the selection ofU :

‖~w∗‖p
∞ ≤ Jp(~w∗)≤ Jp

(
~w) = Jp(Φ†(~g−~η)

)≤ N‖Φ†(~g−~η)‖p
∞

≤ N‖Φ†‖max‖1(~g−~η)‖p
∞ < (N‖Φ†‖maxR

p) = U ,

where‖Φ†‖max = max
{∣∣[Φ†]nm

∣∣}
1≤n≤N,1≤m≤M (Φ† is the pseu-

doinverse),1 ∈ RN×M is the matrix with all of its entries being
equal to one andR is a positive constant greater than the maximum
amplitude component of~g−~η . Since these areSαS random vec-
tors, this maximum is unknown in advance, but it suffices to select
an R that satisfies this requirement with “high-probability”. In a
specific signal processing application, there is usually some prior
knowledge about the signal content so that we can achieve an ap-
propriate choice forR by assigning a relatively large value to it in
comparison with the entries of the (known) measurement vector~g
and the expected noise amplitude.

3.1 Dualization and distributed solution of P1

We consider thedual functionL (·) defined for~λ ∈RM as follows:

L (~λ ) = inf
~w∈RN

+
‖~w‖p

∞≤U

L (~w,~λ ) , (11)

whereL (~w,~λ ) is theLagrangian functionand~λ is the vector of
Lagrange multipliers. Thedual problemis defined by:

DUAL (D1): maxL (~λ ) s.t. ~λ ≥ 0 .

Following the standard dualization approach on all constraints ex-
cept for the redundant ones and exploiting the separability of the ob-
jective function, as well as the partition ofΦ and~w, the Lagrangian
function is expressed as follows:

L (~w,~λ ) = Jp(~w)+~λ T(~g−Φ~w) . (12)

Notice that although the noise component is not explicitly employed
in the above expression, its presence will always result in an approx-

imation~̂w
∗

of the optimal vector~w∗.
Because of the lack of second-order statistics we are interested

in developing a distributedSαS-CS algorithm based on FLOMs.
The standard Lagrangian function (12) employs the usual (Eu-
clidean) inner product, which can be viewed as a measure of vari-
ance between the associated vectors, and thus it is not suitable for
representing the statistics of aSαSmodel. For this purpose, we in-
troduce the following Lagrangian function that exploits covariations
instead of variances and thus it best adapts to ourSαS framework:

L S(~w,~λ ) = Jp(~w)+(~λ ,~g−Φ~w)
(8)
= Jp(~w)+‖~g−Φ~w‖2−α

α [~λ ,~g−Φ~w]α︸ ︷︷ ︸
s

. (13)

For convenience, we will restrict ourselves to the case1≤ α ≤ 2.
By noting that‖~g−Φ~w‖2−α

α = ‖~η‖2−α
α = γ2−α

η (from (3)) and us-
ing the pseudo-linearity property (6), the second term of (13) takes
the following form:

s = γ2−α
η

(
[~λ ,~g]α +(−1)<α−1>[~λ ,Φ~w]α

)

(2),(4)
= γ2−α

η

(
E{~λ .∗~g<p−1>}
C(p,α)p γ p−α

g
− E{

~λ .∗(∑K
k=1Φk~wk

)<p−1>}
C(p,α)p γ p−α

Φ~w

)

(14)

where “.∗” denotes element-by-element multiplication between two
vectors. In order to avoid numerical instability caused by the esti-
mation ofγg andγΦ~w, we will consider scenarios where the signal
power is greater than the noise power (analogous to a relatively high
SNR assumption). In this caseγg ' γΦ~w. We also note that in (14)
the first expectation is taken over~g, while the second expectation
is over~wk. However, the computational implementation proceeds
by substituting the expectations with the corresponding arithmetic
means (expressed as inner products) and (14) takes the following
form:

s =
γ2−α

η γα−p
g

MC(p,α)p

[
~λ T

(
~g<p−1>− (

K

∑
k=1

Φk~wk
)<p−1>

)]
. (15)

Sinceγη is unknown and also along withγg they act as positive scal-
ing factors and thus they do not affect the minimization operator, the
final expression of the proposed Lagrangian function is given by:

L S(~w,~λ ) =
K

∑
k=1

Jp(~wk)+~λ T
(
~g<p−1>−(

K

∑
k=1

Φk~wk
)<p−1>

)
(16)

which is in a separable form and thus amenable to a distributed
implementation. In particular, we solve the dual problem (D1) by
replacingL (~w,~λ ) with theSαS-based LagrangianL S(~w,~λ ). We
proceed by employing the method of subgradients [9], that is,

~λ i+1 = [~λ i +si ~d(~λ i)]+ , (17)

where~λ i is the estimated dual variable in thei-th iteration,si > 0 is
a step-size parameter,~d(~λ i) is a supergradient1 of the dual function
L S(~λ ), obtained by substituting (16) in (11), and[·]+ denotes the
projection of a vector on the non-negative halfplane (due to the con-
straint of (D1)). This method guarantees that for a sufficiently small
step-sizesi the distance of the current iterate,~λ i+1, to the optimal
solution is reduced. In practice, the convergence of the subgradient
method is ensured using the following step-size:

si = ci (L̂ S(~λ i)−L S(~λ i)
)/‖~d(~λ i)‖2 , (18)

whereL̂ S is an approximation to the (unknown) optimal dual so-
lution, which can be estimated using the best current dual value

L̂ S(~λ i) = max0≤i′≤i L
S(~λ i′). In (18), ci is a number chosen such

that it guarantees a diminishing step-size. This can be achieved by
settingci = (1+β )/(i +β ), whereβ is a fixed positive integer.

Turning back into (17), for a given~λ a supergradient~d(~λ ) can
be obtained by differentiating (16) with respect to~λ as follows:

~d(~λ ) =~g<p−1>− (
K

∑
k=1

Φk~w
∗
k(~λ )

)<p−1>
, (19)

where~w∗k(~λ ) maximizesL S(~λ ). We select the{~w∗k(~λ )}K
k=1 by em-

ploying a heuristic approach. First, in the currenti-th iteration the
term~λ iT~g<p−1> can be considered as a constant and thus it suffices

1The vector~h is a supergradient (resp. subgradient) of a concave (resp.
convex) functionf at the point~x if ∀~y, f (~y)≤ f (~x)+~hT(~y−~x) (resp. f (~y)≥
f (~x)+~hT(~y−~x)).
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to find ~w∗k(~λ
i) such that the vector~w∗(~λ i) = [~w∗1(~λ

i), . . . ,~w∗K(~λ i)]
satisfies the expression

~w∗(~λ i) = arg inf
~w∈RN

+
‖~w‖p

∞≤U

( K

∑
k=1

Jp(~wk)−~λ iT (
K

∑
k=1

Φk~wk
)<p−1>

)
. (20)

The following relations hold under the consideration{~a≤~b⇔ ai ≤
bi ,∀ i} (the same holds for “≥”):

(
K

∑
k=1

Φk~wk
)<p−1> =

[|v1|p−1sign(v1), . . . , |vM |p−1sign(vM)
]T

≤
sign(·)≤1

[|v1|p−1, . . . , |vM |p−1]T with vm =
K

∑
k=1

nk

∑
j=1

[Φk]m jwk j ,

(21)

where[Φk]m j denotes the(m j)-th element of the submatrixΦk and
wk j is the j-th component of~wk. Taking the inner products of both

sides of the above inequality with~λ i under the dual constraint~λ i ≥
0 results in the following relations:

~λ iT (
K

∑
k=1

Φk~wk
)<p−1> ≤ ~λ iT [|v1|p−1, . . . , |vM |p−1]T

=
M

∑
m=1

λ i
m|vm|p−1 =

M

∑
m=1

|(λ i
m)

1
p−1 vm|p−1 . (22)

From (22) we can see that them-th component of the current La-
grange multiplierλ i

m, risen to the power of1/(p−1), multiplies the
m-th row of each submatrixΦk. We seek for a vector~w∗(~λ i) that
minimizes (20). By combining with the inequality in (22), whose
right-hand side consists of non-negative terms, we suggest that in-
stead of finding a~w∗(~λ i) satisfying (20) we relax this requirement
by searching for a~w∗(~λ i) such that

~w∗(~λ i) = arg inf
~w∈RN

+
‖~w‖p

∞≤U

( K

∑
k=1

Jp(~wk)−
M

∑
m=1

|(λ i
m)

1
p−1 vm|p−1

)
, (23)

where{vm}M
m=1 (ref. (21)) depend explicitly on{~w∗k(~λ i)}K

k=1 and
the relaxation refers to the fact that the estimated~w∗ does not
achieve exactly the infimum of (20) but a lower value with our goal
being to make this difference as small as possible. This relaxation
has the advantage that we estimate~w∗ without the ambiguity of the
sign(·) function.

Since both terms in the parentheses of (23) are non-negative the
infimum of their difference, under a non-negativity constraint for
~w∗, will be equal to zero. Notice also that the second term implies
that the parts of the partition ofΦ and~w corresponding to thek-th
sensor are distributed overM (additive) terms in a row-wise way
(ref. (21)). Thus, in order to enforce this contribution of thek-th
sensor to be close to its associated objective function value,Jp(~wk),
we keep only these components of~wk for which the sum of their
coefficients over thoseM terms is non-negative, that is, for thek-th
sensor the set of indicesT i

k corresponding to the active components
in the i-th iteration is given by

T i
k =

{
j :

M

∑
m=1

(λ i
m)

1
p−1 [Φk]m j ≥ 0

}
, 1≤ j ≤ nk . (24)

Each sensor computes individually its setT i
k , which is then

transmitted to the central node (fusion center), where the single set
of the current active components,T i , is obtained as the union of
theK sets,

T i =
K⋃

k=1

T i
k . (25)

Finally, then-th component of the current “optimal” vector~w∗(~λ i)
is formed as follows:

[~w∗(~λ i)]n =

{
0 , if n /∈T i

U
1
p , if n∈T i .

(26)

The above discussion indicates a natural star-shaped network topol-
ogy for the distributed implementation of the proposed subgradient
method, where each sensor transmits directly to the fusion center
only its index setT i

k .
Through the Karush-Kuhn-Tucker (KKT) conditions and the

relaxation represented by (23) it can be seen that for any optimal
solution~λ ∗ of (D1), usingL S(·) instead ofL (·), we have that
supp(~w∗)⊂T ∗, wheresupp(~w∗) = {n : [~w∗]n 6= 0} is the support
of the optimal sparse vector satisfying (P2) andT ∗ is the final set
of active components after the algorithm has converged. In other
words, once the central node computes~λ ∗ then, it obtains an over-
estimate of the support of a solution of (P2) and thus of (P1), since
the two problems are equivalent. This means that at this point the
central node could solve a problem (P1) of reduced dimensionality
by removing the columns ofΦ, whose indices are not included in
T ∗ (and consequently setting[~w]n′ = 0 for n′ /∈T ∗).

In particular, the central node estimates the sparse vector~w,
which satisfies the observation model~g = ΦT ∗~wT ∗ +~η , using the
centralizedSαS-CS algorithm described in [1]. The proposed dis-
tributedSαS-CS strategy relies on the knowledge of~λ ∗. In practice,
the subgradient method terminates at the central node after a max-
imum finite number of iterations is reached, or when the relative
error of the estimated dual variable falls below a predefined toler-
anceε, ‖~λ i+1−~λ i‖2 < ε ·‖~λ i+1−~λ 0‖2. As a result, the distributed
algorithm converges to a suboptimal~λ ∗s and consequently to a sub-
optimal setT ∗

s .
Notice thatΦ is distributed over theK nodes. However,ΦT ∗

s

is required to the central node to estimate the sparse vector. This is
carried out as follows: after stopping the subgradient method, the
central node sends~λ ∗s to theK nodes, which compute their corre-
sponding fragments ofT ∗

s in a parallel way and transmit them back
to the central node.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed dis-
tributedSαS-CS algorithm and compare it with its centralized ver-
sion [1]. We start by noting that the so-calledFractional-order SNR
(FSNR) is employed as a signal distortion measure as an alterna-
tive to the usual signal-to-noise ratio, which is not valid in theSαS
case due to the lack of finite second-order statistics. For jointlySαS
signal and noise components (αg = αη ) the FSNR takes the form

FSNR= 10log10

( E{|~g|p}
E{|~η |p}

)
= p ·10log10

(
γg/γη

)
, (27)

whereγg, γη are the signal and noise dispersions, respectively. The
reconstruction quality is measured via the relative reconstruction
SNR, rSNR= 10log10

(‖~w‖2
`2

/‖~w− ~̂w‖2
`2

)
, with ~̂w denoting the

reconstructed sparse vector.
Under the non-negativity assumption for the sparse vector, first

we generate vectors~x∈ RN, N = 512, with L = 10 non-zero com-
ponents, whose values are drawn from aSαS distribution, placed
in randomly chosen positions. Then, the non-negative vector to be
reconstructed is~w= abs(~x) , (|x1|, . . . , |xN|). The value ofα varies
in [1.1,2], while the dispersionγw is chosen randomly from[0.1,1].
Then, the noise dispersionγη is determined via (27) for a given pair
(αw,γw) and FSNR value (in dB). The entries of the measurement
matrix Φ are standardSαSsamples, and then its columns are nor-
malized to unit covariation norm. We also note that the subsequent
results are represented as an average over100Monte-Carlo runs.

First, we validate the efficiency of the proposed FLOM-based
Lagrangian function (16) in capturing the significant basis functions
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(columns ofΦ) to be activated for the estimation of the sparse vec-
tor ~w, in contrast to the standard Lagrangian given by (12). We do
so using simulatedSαSsignal (~w) and noise (~η) components with
α ∈ [1.1,2], γw = 0.7, FSNR∈ [5,15] by repeating the process for
each triplet (α,γw = 0.7,FSNR) for 100 Monte-Carlo runs. Then,
for each signal~w the centralizedSαS-CS algorithm ([1]) is executed
to estimate~̂w, as well as the corresponding set of significant basis
functions, whose indices are stored in a vectorTR . We proceed by
settingK = 15, M = 100, β = 1 andε = 10−6.

The proposed distributed algorithm is executed next using the
standard and the FLOM-based Lagrangian function for reconstruct-
ing the same sparse vector~w, resulting in the vectorsT andTS,
respectively, containing the corresponding indices of the significant
basis functions. We also note that a different partition ofΦ (and~w)
is created in each Monte-Carlo run, by assigning a different number
of columnsnk to thek-th sensor (k = 1, . . . ,K). However, we take
care of generating “balanced” partitions in the sense that all sensors
obtain a similar number of columns ofΦ.

Fig. 1 shows the average percentage of successful retrievals of
the significant basis functions, as expressed via the cardinalities of
the intersectionsTR∩T andTR∩TS as a function ofα and FSNR
(in dB). It is clear that, on average, the standard Lagrangian func-
tion2, which is based on second-order statistics, is able to retrieve
less than half of the significant basis functions as estimated by the
centralizedSαS-CS method. On the other hand, the distributed
SαS-CS method combined with the FLOM-based Lagrangian func-
tion has an100%percentage of success in retrieving the significant
basis functions given by its centralized implementation.

Fig. 2 shows the relative reconstruction SNR for the proposed
distributedSαS-CS algorithm as a function ofα and FSNR. First,
we observed that the reduced dimensionality problem resulting by
implementing the distributedSαS-CS method, which is then solved
at the central node, achieved the same reconstruction performance
with its centralized full dimensional counterpart. The reason is
that the FLOM-based Lagrangian employed by the distributedSαS-
CS method is able to capture accurately the significant columns of
Φ. In addition, we can see that the reconstruction performance in-
creases as the values ofα and FSNR increase. The decrease of
rSNR asα → 1 is related to the increased inaccuracy in estimating
the characteristic exponentα using a measurement vector~g of small
sizeM = 100. This problem can be alleviated by increasingM.
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Figure 1: Average percentage of successful retrievals of the signif-
icant basis functions for the standard and FLOM-based Lagrangian
function, as a function ofα and FSNR (in dB).

2We mention for clarification that when using the standard Lagrangian
the i-th column ofΦ, ~φi , is considered to be significant if|~φT

i
~λ | ≥ 1.
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Figure 2: Average reconstruction rSNR (in dB) for the distributed
SαS-CS method, as a function ofα and FSNR.

5. CONCLUSIONS AND FUTURE WORK

In this work, we developed a distributed method for CS recon-
struction of highly impulsive signals with non-negative components
working in a non-linear programming framework with application
in a WSN. The high sparsity of the signal and noise components
was modelled directly by usingSαS distributions as their priors.
The experimental results revealed that the distributed method main-
tained the increased reconstruction performance of its centralized
counterpart, while also reducing significantly the cost for process-
ing and transmitting the data at each sensor meeting the limitations
of a WSN. As a future work, we will extend the distributedSαS-CS
method in more complex network topologies, as well as in the case
of disjointly SαSsignal and noise components (αw 6= αη ).
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