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ABSTRACT rupted by additive heavy-tailed noise, by modelling the impulsive

S tworks aath t of dat b(ﬂmavior using members from the family & S distributions.
ensor networks gather an énormous amount or data over space an Moreover, there are cases where the information may not be

time to derive an estimate of a parameter or function. Several con, . . . 3
straints, such as limited power, bandwidth, and storage capaci&va”able in a single node of a WSN. In a WSN, power and stor

motivate the need for a new paradiam for sensor data rocessirﬁe resources are limited enough such that the communication of
. paradig . pr increased amount of data to a central node (fusion center) would
in order to extend the network’s lifetime, while also obtaining ac-

curate estimates. In a companion paper [1], we proposed a ncNaffect significantly the network’s lifetime. Working in a distributed
: P pap y prop ‘Famework, it is well known that a famous basis selection method,

iterative algorithm for reconstructing non-negative sparse signals 'Hamely, the basis pursuit (BP) can be reformulated as a distributed

highly impulsive background by modeling their prior distribution ;.05 5 o0ram [6]. However, the resulting approach requires a fully
using symmetric alphq—stable distributions. I.n the present work, wi onnected network in the sense that, at each iteration, every sensor
extend this algorithm in the framework of distributed compresse ust be able to communicate with all the remaining ones. Mo-

sensing using duality theory and the method of subgradients for thig, 0.y 1 this, we develop a DCS algorithm for reconstructing a
opiimization of the associated cost function. The experimental reﬁon-negative sparse signal corrupted by additive heavy-tailed noise,
sults show that our proposed distributed method maintains the rihile requiring a less demanding network topology. The prior be-

construction performance of its centralized counterpart, while alsgo gt o highiy sparse signal and heavy-tailed noise is modelled by
achieving a highly sparse basis configuration, thus reducing the toe'mploying members from the family &S distributions

tal amount of data handled by each sensor. The paper is organized as follows: in Section 2, we briefly re-
view for completeness the main properties of the familySafS
1. INTRODUCTION distributions exploited in the development of the proposed method.

A major challenge in designing wireless sensor network (WSN’gvSection 3, the distribute8a S-based CS algorithm is described

systems and algorithms is that transmitting data from a sensor
a central processing node may set a significant exhaustion of conr- . ; . : .
munication and energy resources. Such concerns may place ulyith its centralized counterpart, while we conclude in Section 5.
desirable limits on the amount of data collected and processed by

sensor networks. Thus, it is natural to seek distributed algorithms 2. STATISTICAL SIGNAL MODEL

for processing the data gathered by the nodes of a sensor networl;s\ccOrding to the CS theory, if a given sigrk RN is L-sparse in a

Distributed compressed sensing (DCS) [2] enables a potentially, isape transform domain, then it is possible to be reconstructed di-

significant reduction in sampling and computation costs at a sensi | in mor f (noisy) m . in
system with limited capabilities. In particular, an ensemble of si r_\%cty using a compressed set of (noisy) measureng:nibtained

nals having a jointly sparse representation in a transform domaifirough incoherent random projectiorgs= QU F47j = W+ 1,
(e.g., wavelets, sinusoids) can be reconstructed from a small séhere® = [@,...,@u]" isaM x N (M < N) random measurement
of projections onto a second, measurement basis that is incohdiatrix, ¥ is aN x N transform matrix, whose columns are the trans-
ent with the first one. In a WSN scenario, compressive wireles§orm basis functions and must be incoherent with the roved aind
sensing (CWS) [3] appears to be able to reduce the latency of dat€ R" is the sparse weight vector withnon-zero components (or
gathering in a single-hop network by delivering linear projections ofequivalently, the transform-domain representatiorf of We also
sensor readings through synchronized amplitude-modulated anale@te that in practicd is not strictlyL-sparse butompressiblgthat
transmissions or in a distributed fashion. is, the re-ordered componentswHecay at a power-law.

On the other hand, the majority of the previous CS algorithms  |n the present study, the prior belief that the unknown sigrial
are based on a Gaussian assumption for the signal and/or noiggyhly sparse and the noige(with unknown Varianc@'ﬁ) is heavy-
statistics, which is violated in several distinct environments, such a§jjaq is exploited by using 8 Sdistribution as their prior. We also
in underwater acoustics [4] and in sonar/radar [S], where the assQiye that at the present study we consider only a measurement noise

ciated signals and/or noise take large-amplitude values much mogi, 5t assuming any kind of quantization. In the following, we

frequently than what a Gaussian model implies. In addition, thes onsider that the signal and noise components are also jSaty

studies, as well as several other recent works, show that the family\o ;se of this family is motivated by the fact that the tails 86
of alpha-stable distributions, and particularly the classyshmet-  qisinytion decay at an algebraic rate, which is in agreement with

ric alpha-stable(Sa'S) distributions, is a powerful statistical tool for e rate of decay of the re-ordered components of a compressible
modelling highly impulsive, and thus highly sparse, source signals,actora.

For this purpose, in a companion study [1]_we developed anew iter-
ative greedy algorithm for CS reconstruction of sparse signals €O 1 The family of SaSdistributions

This work was funded by the Greek General Secretariat for ResearchOr convenience, we introduce briefly the family of univarigites
and Technology under ProgramENEA-Code 03R69 and by the Marie  distributions, as well as some of their fundamental statistical prop-
Curie TOK-DEV “ASPIRE” grant (MTKD-CT-2005-029791) withinth&6  erties exploited in the proposed distributed CS metho&a/s dis-
European Community Framework Program. tribution is best defined by its characteristic function [7]:

employing a dual non-linear method based on subgradients. In
ection 4, we compare the performance of the proposed approach
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o(t) = exp(iot — y*[t|7), Q) We observe that most of the above quantities associated with a
) o o Sa S distribution depend on the paramefgrwhose value depends
wherea (0 < a < 2) is the characteristic exponentwhich is @  ona. By noting that in the subsequent analysis we are restricted in
shape parameter controlling the “thickness” of the tails of the denq < g < 2, we computed theptimal value ofp as a function ofx
sity function,d € R is thelocation parameteandy > Qis thedis-  via a Monte-Carlo simulation resulting in a lookup table, which is
persion which determines the spread of the distribution around itghen used to find the optimal for every1 < a < 2 through inter-
location parameter, similar to the variance of the Gaussian. Thgolation (ref. Table 1 in [1]). This table is also employed for the
smaller thea, the heavier the tails of&x Sdensity function. ASOS  estimation ofp in the proposed distribute®rS-CS algorithm.
distribution is calledstandardif 6 = 0andy=1. With X ~ fq(y, 8) In addition, the efficiency of a CS method is highly affected
we denote &a Srandom variableX with parameterst, y, 3. by the selection of an appropriate measurement maixvhich
~Ingeneral, no closed-form expressions exist for n8ssden-  embeds the information content of the sparse signal in a low-
sity functions except for the Gaussiao €& 2) and the Cauchy  dimensional vector of CS measuremegts The disadvantage of
(o = 1). Unlike the Gaussian density, which has exponential tailsthe previous CS methods is that they employ measurement matrices
stable densities have algebraic taPs{X > x} ~Cx~%, asx—,  which, in general, are not adapted to the true statistics of the sparse
whereC is a constant depending on the model parameters. Hencgignal. However, in the companion paper [1] we introduced a mea-
Su Srandom variables with smadt values are highly impulsive.  surement matrix, which iSest adaptedo the underlying heavy-
An important characteristic dda'S distributions is the lack of  tajled statistics of highly impulsive signal and noise components as
second-order moments. Instead, all moments of opderr do ex-  expressed by &aSmodel. In particular, we showed that the most
ist and are called thBractional Lower-Order Moment&~LOMS).  appropriate measurement maté which will be also used in the

In particular, the FLOMs oK ~ f4(y, & = 0) are given by [7]: subsequent derivations, satisfying the stability property (7), as well
as an analogue of the restricted isometry property (RIP), is obtained
E{|X|P} = (C(p,a)- y)p , O0O<p<a, (2) by drawing independent and identically distributed (i.i.d.) samples
from a standarca S distribution and then normalizing its columns
r(1-2 to unit covariation norm. The normalization of a vecior RM to
where (C(p,a))” = ms(ngpgrﬁ)' The SaS model parameters is ooy ariation norm is performed as follows:
(a,y) can be estimate Using tﬁe consistent Maximum Likelihood g 5 3) %

X
; ; ; . : — 1/p
(ML) method described by Nolan [8], which gives reliable esti- = I — =C(p.a)M ~
mates and provides the tightest possible confidence intervals. By“XH" (ﬁ M, X [P) /p(C(p,a)) X,
restricting ourselves to the casec a < 2, thecovariation normof 9)
X ~ fq(y,0) is defined by
3. DISTRIBUTED SaSCS
Xlla=w ,0<p<a, ®)

‘s i ; ; In the following, we extend our previol& S-CS algorithm [1] in
whereyx is given by solving (2) with respect t. L L - . ]
Théxcongcept ofycovaria%ée) which isr;undua&mental in the second? distributed fashion in order to deal with the potentially limited
order moment theory, is not va{lid in tiBr S case. Instead, a quan- €SOUrces in a WSN scenario. There are cases in a WSN application
tity calledcovariation’which plays an analogous role fSo;Sran- where the CS-related information, namely, the measurement matrix

dom variables to the one played by the covariance in the Gaussiah &1d the sparse signamay not be available in a single node. In
case, has been proposed. XetY be jointly SaSrandom variables particular, we consider the case of a network, where each sensor has

with 1 < a < 2, zero location parameters and dispersignandy, access only to portion of . In the following, we assume that the
respectively. Then, the covariation ¥fwith Y is defined by [7]: columns of® are distributed across the nodes of the network.
Due to the lack of second-order moments $mS distributions
E{XY<P-1>} o the Minimum Mean Squared Error (MMSE) criterion is not valid
X.Y]a = WHYHa ; (4)  and it should be replaced by théinimum Dispersior(MD) crite-
rion since, unlike the variance, their dispersion is finite and gives a
where for anyz€ R and a > 0 we use the notatioz<®> =  good measure of the spread of estimation errors around zero. We

|z2sign(z), while for a real vectoz € RN anda > 0 we write also observe that from (2) the MD criterion can be viewed lesist
F<a> _ Hzlllasigr(zl) ..,|zn|3sign(zy)]. The covariation satisfies £p-norm estimation errocriterion since the FLOME{[X|P} can be
the following (pseudo-)linearity properties in the first and secondEStimated as thé, norm of the vectoiX. This justifies the use of
argument, respectively: Xy, Xo,Y are jointly Sa'S, then for any the following objective function to be optimized:
constants, b € R we have: N N
Jp(W):;\wilp,WeR ,0<p<1. (10)

[aXy +0Xo,Y]a = aX1,Y]a +b[Xz,Y]a (5) i=
The problem under consideration is stated as follows: “giken

Y, aX +bXo]q = a~ " Y, Xg]g + b T Y, Xl - (6)  nodes each one storing a subset of column® ofind appropriate

N N . network topologies along with distributed algorithms for solving the

Let_X fa(yx,0) andY ~ fq(y,0) be independersa S random following problem (P1)”,
variables. ThencX ~ fa(|c|yx,0) (c#0) andX +Y ~ fq ((\§ + _
¥é)¥/@ 0). Thus, for the noisy CS measuremegts ®w+1j, if ~ PRIMAL (P1): minJp(W) st §=®wW+7, ~-W<0,

{wi ~ for(Vl»O)}i’\lzl and{nj ~ fa(y"lvo)}’j\/lzl' then where by—w < 0 (& W > 0) we mean that each component of
N y W should be non-negative. We assume that the column® afe
) e a a _ distributed amondK nodes, such that tHeth node stores thk-th
9i fa(LZ(KDMW) +V’ﬂ ’O> =ML () submatrix in the horizontal partition @b = [®1,..., ®y,..., Pk],
) ) ) . ) where®; € RM*™ andny +---+nk = N. A corresponding parti-
where g is the element off in row-j and columnk, that is, the  tion also holds for the sparse vectdir= [, ..., W, ..., Wk ], where
CS measurements are join®g Swith the signal and noise compo- Wi € R™. The proposed method is based on Eheality Theory[9]

nents. In addition, since only the FLOMs are finite &rSvari-  for the solution of the primal problem (P1). Under the appropri-
ables, then, iX, Y are two jointlySa Srandom vectors we consider ate conditions, such as separability of the objective function and the
the following statistical “inner product”: constraints, dual problems can be confronted by distributed meth-
o = o ods. Hereafter, we assume ththas full rank in order to ensure
(X.Y) = V)2 X, Y]a . (8) the feasibility of (P1) with high probability.
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By construction of the objective function the followifiegpsibil-
ity & boundednessondition holds: There exists at least one feasi-
ble solution for the primal problem (P1) and the objective function g _ \2-a (3} _D<e-1>13 P
is bounded, that is;-c0 < J; < », whereJ; denotes the optimal ® V'% <[ G +(=1) A, }a>
value ofJp(W). NG oo (B{A P>V E{A.x(SK, @) P}
In order to enforce a direct applicability in a distributed setting @ )Vﬁ a( é Qp p_a} - éZkfl > p_)a )
(since the objective function is already separable), we introduce a (P.a)Pyg (P.0)PVgy

redundant constraint [9]. In particular, ldt> 0 be an upper bound (14)
of the /s, norm of any solution of (P1). Then, a bounded version of
(P1) is given by: where “x” denotes element-by-element multiplication between two
BoundedPRIMAL (P2): vectors. In order to avoid numerical instability caused by the esti-
. B o - - mation of yy andysw, we will consider scenarios where the signal
minJp(W) st g=@W+r, -W<0, [W|E<U. power is greater than the noise power (analogous to a relatively high

o - ] ) SNR assumption). In this casg ~ yay. We also note that in (14)
The following inequalities determine a rule for the selectiokJof the first expectation is taken ovgr while the second expectation
is overwy. However, the computational implementation proceeds
W8 < Jp(W) < Jp(W) = Jp(®(g— i) < N||®T(@—7)|R by subsgituting th% exp_ectationsdwit? ;he go(rﬁiptorlldin?hariftr}lmet_ic
o means (expressed as inner products) an akes the followin
<N @ maxl| 1@~ 1) 15 < (N[ |maxRP) = U , o o P g

where||®"||max= max{|[®"]nm| }, <y 1cmem (@7 is the pseu- V2o e P
doinverse),1 € RN*M s the matrix with all of its entries being ~ © = MC(p,a)P
equal to one an® s a positive constant greater than the maximum

amplitude component df - 7j. Since these ar€a'S random vec- inceyy is unknown and also along witla they act as positive scal-
tors, this maximum is unknown in advance, but it suffices to selecb eV g witly they actas p
Ing factors and thus they do not affect the minimization operator, the

an R that satisfies this requirement with “high-probability”. In a final h fh dL ian function is ai by-
specific signal processing application, there is usually some priof & EXPression ot the proposed Lagrangian function is given py:

K
XT <p—l> _ @ = <p71> :| . 15
(Q (k; KWic) ) (15)

knowledge about the signal content so that we can achieve an ap- K K
propriate choice foR by assigning a relatively large value to itin - /Siw Xy = S I, (W 7\T( <p-1> _ B <pfl>> 16
comparison with the entries of the (known) measurement vegtor (W.2) & p(Vik)+ g (kgl ) (16)

and the expected noise amplitude.
o o ' which is in a separable form and thus amenable to a distributed
3.1 Dualization and distributed solution of P1 implementation. In particular, we solve the dual problem (D1) by

We consider thelual function?’(-) defined forA € RM as follows: repIacingZ(v“v,X) with the SoS-based Lagrangiaﬁﬁs(\fv,ﬂ). We

3(7\) — inf 2W f\) (11) proceed by employing the method of subgradients [9], that is,
WeRY T - .

) w[2<u ) AL = A dd(A) T, 17)
where.Z (W, A) is the Lagrangian functiorandA is the vector of N )
Lagrange multipliers Thedual problemis defined by: whereA' is the estimated dual variable in théh iteration,s > 0is
DuAL (D1): max$(7\) st A>0. a step-size parametd(A') is a supergradiehbf the dual function

) o ) 25(7\), obtained by substituting (16) in (11), afdi™ denotes the
Following the standard dualization approach on all constraints exyrojection of a vector on the non-negative halfplane (due to the con-
cept for the redundant ones and exploiting the separability of the obstraint of (D1)). This method guarantees that for a sufficiently small
jective function, as well as the partition & andw, the Lagrangian step-sizes' the distance of the current iteraii+1 to the optimal

function is expressed as follows: solution is reduced. In practice, the convergence of the subgradient
LW 7\) = Jp(W) +7\T(g»7 W) . (12) method is ensured using the following step-size:
Notice that although the noise component is not explicitly employed s =c (ZSAN) —25AN) /IdAY)] 2, (18)

in the above expression, its presence will always result in an approx- —=. o .
L A . _, where.#S is an approximation to the (unknown) optimal dual so-
imationw of the optimal vectow*.

B . . én{,ﬂon, which can be estimated using the best current dual value
ecause of the lack of second-order statistics we are interest o S 3 -

in developing a distribute@aS-CS algorithm based on FLOMs. -£S(A') = max<ii<i £3(A"). In (18),¢' is a number chosen such
The standard Lagrangian function (12) employs the usual (Euthat it guarantees a diminishing step-size. This can be achieved by
clidean) inner product, which can be viewed as a measure of varbettingc' = (1+3)/(i+ ), wherep is a fixed positive integer.

ance betWeen the aSSOCiated VectorS, and thUS it iS not Suitable fOr Turning back into (17), for a giveﬁ a Supergradier&(x) can

representing the statistics ofSaSmodel. For this purpose, we in- . . L . > )
troduce the following Lagrangian function that exploits covariationsbe obtained by differentiating (16) with respeciias follows:

instead of variances and thus it best adapts tdSm8framework:
LIWA) = Jp(W)+(A,g— dW)
8 . g _ - o . .
@ Jp(W) + |G — dW[ 5 “[A,G— BWg . (13) wherevij;(A ) maximizes#’S(A ). We select thgwj (A )}, by em-
5 ploying a heuristic approach. First, in the curreth iteration the
termAi g<P—1> can be considered as a constant and thus it suffices

—

A)=g=P - (% @ (1) (19)
k=1

For convenience, we will restrict ourselves to the chsea < 2.

By noting that||g— ®W||3~% = ||ij||3 % = y,%*“ (from (3)) and us- The vectorh is a supergradient (resp. subgradient) of a concave (resp.
ing the pseudo-linearity property (6), the second term of (13) takesonvex) functionf at the poinkif vy, f (y) < f(X)+h' (y—X) (resp.f(y) >
the following form: f(%) +hT (y—X)).
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to find W (A') such that the vector* (A') = [W; (A1), ..., W (A1)]
satisfies the expression

W' (A)=arg inf
weRY
[[w]g<u

(K Jo(W) — A" ( S & w)<”*1>> (20)
kZl PRk kgl K A

The following relations hold under the considerati@h< be g <
bi,Vi} (the same holds for*"):

K
(Y i) P = [jvalPLsign(va). .., v P~ Esignv)] "
k=1

K ng

Dyl Wi,
k;j;[ Kl Wkj 5
(21)

where[®y], . denotes thémj)-th element of the submatri®y and

- T
< [wilPh P with v =

sign(-)<1

W is the j-th component ofi. Taking the inner products of both

sides of the above inequality wittl under the dual constraiff >
Oresults in the following relations:

+ K o,
ATCS @) P < AT Pt v P
k=1

M o
> 1A PPt
m=1

Mo
=3 Amlvm|P? (22)
m=1

From (22) we can see that tmeth component of the current La-

grange multiplien\.,, risen to the power of /(p— 1), multiplies the
m-th row of each submatri®,. We seek for a vector*(A') that

minimizes (20). By combining with the inequality in (22), whose

Finally, then-th component of the current “optimal” vectar (7\‘)
is formed as follows:

i 0 ,ifn¢ T

[ (A% n {Uv§ ,ifne 7. (26)
The above discussion indicates a natural star-shaped network topol-
ogy for the distributed implementation of the proposed subgradient
method, where each sensor transmits directly to the fusion center
only its index set7},.

Through the Karush-Kuhn-Tucker (KKT) conditions and the

relaxation represented by (23) it can be seen that for any optimal

solution A* of (D1), using.ZS(-) instead of.Z(-), we have that
supp(wW*) C 7%, wheresupp(W*) = {n : [W*], # 0} is the support
of the optimal sparse vector satisfying (P2) a#id is the final set
of active components after the algorithm has converged. In other

words, once the central node compuAésthen, it obtains an over-
estimate of the support of a solution of (P2) and thus of (P1), since
the two problems are equivalent. This means that at this point the
central node could solve a problem (P1) of reduced dimensionality
by removing the columns oP, whose indices are not included in
7* (and consequently setting]y = 0for n’ ¢ .7*).

In particular, the central node estimates the sparse vegtor
which satisfies the observation modek ® oW - + 1j, using the
centralizedSa S-CS algorithm described in [1]. The proposed dis-
tributedSa S-CS strategy relies on the knowledgedf. In practice,
the subgradient method terminates at the central node after a max-
imum finite number of iterations is reached, or when the relative
error of the estimated dual variable falls below a predefined toler-

anceg, A1 - 4|, < £-[|AIT1—A0||,. As aresult, the distributed
algorithm converges to a suboptimél and consequently to a sub-
optimal set7*.

Notice that® is distributed over th& nodes. Howeverd .

right-hanq si_de consists of.nor?-negative terms, we suggest that iR required to the central node to estimate the sparse vector. This is
stead of finding av*(A') satisfying (20) we relax this requirement carried out as follows: after stopping the subgradient method, the

by searching for &*(A') such that

WA =arg inf
weRY
[[w]|g<U

where {vm}M_, (ref. (21)) depend explicitly or{W;(Xi)}E:l and

K Mo
(5 3= > 1A 7 2vnlP) . (23)
=1 m=1

central node send}g to theK nodes, which compute their corre-
sponding fragments of;" in a parallel way and transmit them back
to the central node.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed dis-

the relaxation refers to the fact that the estimaiddoes not tributedSaS-CS algorithm and compare it with its centralized ver-
achieve exactly the infimum of (20) but a lower value with our goalsion [1]. We start by noting that the so-callecctional-order SNR
being to make this difference as small as possible. This relaxatiofFSNR) is employed as a signal distortion measure as an alterna-
has the advantage that we estimatewithout the ambiguity of the  tive to the usual signal-to-noise ratio, which is not valid in 80e5
sign(-) function. case due to the lack of finite second-order statistics. For joBatly
Since both terms in the parentheses of (23) are non-negative tiggnal and noise componentsy(= ap) the FSNR takes the form
infimum of their difference, under a non-negativity constraint for E{|g|"}
w*, will be equal to zero. Notice also that the second term implies EIE ) =p- 10Ioglo<yg/y,,) ,
that the parts of the partition @ andw corresponding to thk-th {In[P}
sensor are distributed ovét (additive) terms in a row-wise way Whereyg, y, are the signal and noise dispersions, respectively. The

FSNR= 1OIoglo( 27)

(ref. (21)). Thus, in order to enforce this contribution of thh
sensor to be close to its associated objective function vahig),

we keep only these componentswf for which the sum of their

coefficients over thoskl terms is non-negative, that is, for theh

reconstruction quality is measured via the relative reconstruction
SNR, rSNR = 10Ioglo(|\v“v\|,%2/\|\7vf\lgv\|/?2) , with W denoting the
reconstructed sparse vector.

Under the non-negativity assumption for the sparse vector, first

sensor the set of indic£<i corresponding to the active components e generate vectoise RN, N = 512, with L = 10 non-zero com-

in thei-th iteration is given by

_ Mo
yk':{j: E(Ar'n)ﬁ[@k]mjzo},lgjgnk.

m=1

(24)

Each sensor computes individually its s&}, which is then
transmitted to the central node (fusion center), where the single s
of the current active components;', is obtained as the union of

theK sets,

K
T = 9. (25)
k=1

ponents, whose values are drawn frorasS distribution, placed
in randomly chosen positions. Then, the non-negative vector to be
reconstructed i& = abg(X) 2 (|x.|,-..,|Xn|). The value ofx varies
in [1.1,2], while the dispersiomy is chosen randomly fror®.1, 1].
Then, the noise dispersigq is determined via (27) for a given pair
égw, ¥w) and FSNR value (in dB). The entries of the measurement
matrix @ are standar®a S samples, and then its columns are nor-
malized to unit covariation norm. We also note that the subsequent
results are represented as an average ld@Monte-Carlo runs.

First, we validate the efficiency of the proposed FLOM-based
Lagrangian function (16) in capturing the significant basis functions
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(columns of®) to be activated for the estimation of the sparse vec- Distributed SaS CS
tor W, in contrast to the standard Lagrangian given by (12). We do
so using simulate@a S signal (%) and noise j) components with

a €[1.1,2], ww = 0.7, FSNRe [5,15] by repeating the process for
each triplet &, v = 0.7,FSNR) for 100 Monte-Carlo runs. Then,
for each signalvthe centralizea S-CS algorithm ([1]) is executed

to estimatew, as well as the corresponding set of significant basis
functions, whose indices are stored in a vec#gy. We proceed by
settingK = 15, M = 100, 8 = 1 ande = 1076.

The proposed distributed algorithm is executed next using the
standard and the FLOM-based Lagrangian function for reconstruct- s
ing the same sparse vectdr resulting in the vectors” and 7,
respectively, containing the corresponding indices of the significant
basis functions. We also note that a different partitiodofandw) 8
is created in each Monte-Carlo run, by assigning a different number input FSNR [dB]
of columnsny to thek-th sensork=1,...,K). However, we take
care of generating “balanced” partitions in the sense that all sensors

obtain a similar number of columns &f. Figure 2: Average reconstruction rSNR (in dB) for the distributed
Fig. 1 shows the average percentage of successful retrievals 6frS-CS method, as a function of and FSNR.

the significant basis functions, as expressed via the cardinalities of

the intersections’;, N and. 7, N Jsas a function ofr and FSNR 5. CONCLUSIONS AND FUTURE WORK

(in dB). It is clear that, on average, the standard Lagrangian func-

tion2, which is based on second-order statistics, is able to retrievg: thif WO;I?]'. V;’]? _develloped a dilstribtjﬁed rr_1etho?_ for CS recort1-
less than half of the significant basis functions as estimated by thg\ ucton o NIghly IMPUISIVE Signais with non-négative components
centralizedSaS-CS method. On the other hand, the distributedwOrklng Ina non-.llnear programming framework W.'th application

Sa'S-CS method combined with the FLOM-based Lagrangian func & WSN. The high sparsity of the signal and noise components

: : ! - delled directly by usinga S distributions as their priors.
tion has arl00%percentage of success in retrieving the significan was mode S .
basis functions given by its centralized implementation. LI'he experimental results revealed that the distributed method main-

} ) } ained the increased reconstruction performance of its centralized
__Fig. 2 shows the relative reconstruction SNR for the proposeqoynterpart, while also reducing significantly the cost for process-
distributedSa S-CS algorithm as a function af and FSNR. First, * jng and transmitting the data at each sensor meeting the limitations

we observed that the reduced dimensionality problem resulting b5 \wsN. As a future work, we will extend the distributedS-CS
implementing the distributeBa S CS method, which is then solved method in more complex network topologies, as well as in the case
at the central node, achieved the same reconstruction performa”ﬁ?disjointlySaSsignaI and noise components,+ ap).

with its centralized full dimensional counterpart. The reason is n

that the FLOM-based Lagrangian employed by the distribGtes

CS method is able to capture accurately the significant columns of REFERENCES

$. In addition, we can see that the reconstruction performance in-
creases as the values afand FSNR increase. The decrease of
rSNR asa — 1is related to the increased inaccuracy in estimating
the characteristic exponeatusing a measurement vecghof small
sizeM = 100. This problem can be alleviated by increasiig

= N N 2]
@ S a S

Average rSNR [dB]
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