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ABSTRACT second-order statistics. For this purpose, we develop a novel itera-

An accurate representation of the acquired data, while also conserfY€ 9reedy algorithm for CS reconstruction of sparse signals with

ing limited resources, such as power, bandwidth and storage capddon-negative components corrupted by additive heavy-tailed noise.
ity, is a challenging task. Besides, the Gaussian assumption, whidf} Particular, the prior belief for a highly impulsive signal and/or
plays a predominant role in signal processing being widely used as'iS€ is modelled using members from the familySofS distribu-
signal and noise model, is unrealistic for a wide range of real-world!OnS: To the best of our knowledge, this is the first effort to bridge
data, which can be highly sparse in appropriate orthonormal base$€ fiélds of CS and alpha-stable modelling. .

In the present work, the inherent property of compressed sensing 1€ Paper is organized as follows: in Section 2, we briefly re-
(CS) working simultaneously as a sensing and compression protéﬂew the main properties &a S distributions exploited in our pro-

col using a small subset of random projections is exploited to reducBSed method. In Section 3, tBerS-based CS reconstruction al-
the total amount of data. In particular, we propose a novel itergdorithm is presented by considering jointBe'S signal and noise

tive algorithm for sparse representation and reconstruction of nor{:_ompdonents. InhSe_chn 4, we comp?r(ra] the ptér;ormance of thehp:jo-
negative signals in highly impulsive background using the familyP9S€d approach with recent state-of-the-art CS recovery methods,

of symmetric alpha-stable distributions. The experimental evalua?/hile we conclude in Section 5.

tion shows that our proposed method results in an increased recon-

struction performance, while also achieving a higher sparsity when 2. STATISTICAL SIGNAL MODEL

compared with state-of-the-art CS algorithms. In the framework of CS, if a given signdi € RN is L-sparse in a
suitable transform domain, then it is possible to be reconstructed di-
1. INTRODUCTION rectly using a compressed set of (noisy) measureng:rbtained

Acquisition of high-resolution data with modern digital devices through incoherent random projectiogs= T f+1j = ®W-+1j,
rises a very important issue, that is, how to effectively and preciselyvhere ® = [@1,...,a]" is aM x N (M < N) random measure-
describe the information content of a given source signal such thanent matrix,® is aN x N matrix, whose columns correspond to
it can be stored, processed or transmitted by taking into considethe transform basis functions and must be incoherent with the rows
ation the limited power and storage resources. Several studies [0f ®, andw € RN is the sparse weight vector withnon-zero com-
have shown that many natural signals result in highly sparse reprgronents (or equivalently, the transform-domain representatiéh of
sentations when they are projected on localized orthonormal bas@gost of the recent literature on CS has concentrated on solving con-
(e.g., wavelets, sinusoids). Motivated by this, compressed sensingrained optimization problems, where the unknown vegtand/or
(CS) [2] enables a potentially significant reduction in sampling anghe noisefj (with unknown variancerﬁ) are modelled as Gaussian
computation costs at a sensing system with limited capabilities. 1f;n46m variables. However, the Gaussian assumption is inadequate
parjucular, a signal having a sparse representation in atransform d&'}r a highly sparse vectof. For this purpose, recent studies in-
main can be reconstructed from a small set of random incohererly orated several non-Gaussian (heavy-tailed) distributions (e.g.,
projections onto a suitable measurement basis. , Laplace, Cauchy) [8, 9] for modelling the prior belief that the vast
The majority of previous works on CS-based reconstruction of . 5iority of W's components have negligible amplitude. We also
sparse signal solve constrained optimization problems. Commonly te that in practicd is not strictlyL-sparse bucompressiblgthat
used approaches are typically based on convex relaxation (ba |'8the re-orgered com onentsm)tljecg ata owerF-)Iaw
pursuit), non-convex (gradient based) local optimization, or greedys' In the present work? the prior belie¥thﬁﬁsphighly spérse is ex-
strategies ((Orthogonal) Matching Pursuit (O)MP) [3, 4]. Al theseIql_oited by using &a Sdistribution as its prior, which is heavy-tailed

methods are primarily based on a Gaussian assumption for the u - X . X .
derlying signal and/or noise processes, which is often violated i"d thus suitable for representing accurately an impulsive behavior.
! the following, we consider that the noigeis also drawn from a

several distinct environments, such as in underwater acoustics, Sdistribution. The use of this family is motivated by the fact that
sonar/radar and in medical imaging, where the associate signals ta| ; ution. ' e Use y €d by AR
he tails of aSa Sdistribution decay at an algebraic rate, which is in

large-amplitude values much more frequently than what a Gau X
sian model implies. In addition, several studies have shown thatdreement with the rate of decay of the re-ordered components of a
' f:ompressmle vectok.

the family of alpha-stable distributions, and particularly the class o

symmetric alpha-stabl distributions, is a powerful statistical . I

tgol for moderl)ling highﬁﬁrﬁ)pulsive, and thus hFi)gth sparse, sourcez'1 The family of SxSdistributions

signals [5, 6, 7]. In the following, we introduce briefly the family of univariagerS
Despite its efficiency, the family &a Sdistributions has never distributions, as well as some of their fundamental properties ex-

been exploited in the framework of CS due to the lack of closedploited in the proposed CS method. S& S distribution is best de-

form expressions for the density functions, as well as the lack ofined by its characteristic function [10]:

This work was funded by the Greek General Secretariat for Research Q(t) = exp(iot — y*|t|7), 1)
and Technology under ProgramENEA-Code 0369 and by the Marie
Curie TOK-DEV “ASPIRE” grant (MTKD-CT-2005-029791) withinthd's ~ wherea (0 < a < 2) is the characteristic exponentwhich is a
European Community Framework Program. shape parameter controlling the “thickness” of the tails of the den-
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sity function,d € R is thelocation parameteandy > 0 is thedis- 2.2 Estimation of p parameter

persion which determines the spread of the distribution around itsNIost of the quantities involved in th@a'S-CS algorithm, which we

location parameter, similar to the variance of the Gaussian. Th%- : : : :
v > . h - ill introduce in Section 3, will depend on the paramegtewhose
smaller thea, the heavier the tails of & Sdensity function. ASaS optimal value depends om. We a?so note thatpin the subsequent

distribution is callecstandardf 6 =Oandy = 1. With X~ fa (v, 8)  4pa1ysis we are restricted In< a < 2. The optimal value of is

we denote SolrSranldomdv?rlable( with parame_ter:ﬂ, V. 0. d computed as the one thatinimizes the standard deviatiaf the
_Ingeneral, no closed-form expressions exist for nSsden- ) G\ pased covariation estimator obtained from (5) by replacing

S'tyjlincthorl‘.i e;(rfeg for the (?aus,t'slaah(; hZ)hand the CatL.’CIhty.l the expectations with the arithmetic means. For this purpose, we

(Cg bl )d n_{_ e he alIJsslz)an' (tanni"%’(w Ic gsgxponen 1al tallS st died the influence gb on the performance of the estimator via

stable densities have algebraic tafs{X > x} ~Cx"%, asx — e, \50te Carlo runs using twsa'S random variable, Y of length

whereC is a constant depending on the model parameters. Hencg, — 5443 We executed 000Monte-Carlo runs with €[1:005:

SaSrandom variables with smadt values are highly impulsive. : h - ' ;
An important characteristic dda'S distributions (witha < 2) i} daéwr?sfec;rscg;ppe“rr?éoirrl](;méyggbr:':ilrr:grn{%glltgfas]lntervaﬂ0.0L 5] with

is the lack of second-order moments. Instead, all moments of order Table 1 shows the averaged optinpavalues as a function of

p < a do exist and are called tft@actional Lower-Order Moments a > 1. where the average i ; :
) - . >1, ge is taken over the corresponding optimal
(FLOMs). In particular, the FLOMs oK ~ fa(y, 6 = 0) are given p's for all dispersion pairgyx, ) and Monte-Carlo runs. This

by [10]: D p table is then used as a lookup (interpolation) table in order to find
E{[X|’} = (C(p.a)-y)", O0<p<a, (2 the optimalp for every1 < a < 2. It is important to note that the
o (1 p) optimal value ofpis close toa /2, as observed in the table.
where (C(p.a))" = W&l_p)- The Sa'S model parameters a T [105| 11 | 115] 12 [ 125 13 | 135
(a,y) can be estimated using the consistent Maximum Likeli-| Optimal p || 0.52 | 0.54 | 056 | 057 | 058 | 059 | 061 | 062
hood (ML) method described by Nolan [11], which gives reliable a 14 [ 145] 15 [ 155] 16 | 1.65] 1.7 [ 1.75
estimates and provides the tightest possible confidence intervals.Optimal p || 0.64 | 0.66 | 0.69 | 0.71 | 0.72 | 0.74 | 0.76 | 0.79
From (2) we get the following expression for the dispersioX of a 18 | 1.85] 19 | 1.95] 2
Optimal p || 0.81 | 0.84 | 0.88 | 0.93 | 0.8

v = (E{XIPH)P(C(p.a)) . 3)

The covariation normof X ~ fo(y,0) with a > 1 is defined by
IIX|la = yx, wherey is given from (3). This definition is extended 2.3 An adaptive Sa Smeasurement matrix
to a quasi-norm foor < 1, resulting in the following expressions:

Table 1: Optimalp parameter as a function of.

A disadvantage of the previous CS methods is that they employ
measurement matricaB which, in general, are not adapted to the
X[la = {yx forO<p<a,1<a<2 () true statistics of the sparse signal. In this section, we study the
g .for0O<p<a,0<a<l performance of existing measurement matrices in the case of alpha-
stable statistics and we introduce a new measurement matrix, which
The concept of covariance is fundamental in the second-ordes best adapted to the statisticsSofSdata. In particular, the desired
moment theory. However, covariances do not existSeSran-  measurement matrix must: i) approximate gtebility propertyas
dom variables. Instead, a quantity callemvariation which plays expressed by (8), that is, the output characteristic exponent esti-
an analogous role foBa'S random variables to the one played by mated fromg is close to the input characteristic exponentipfii)
covariance in the Gaussian case, has been proposed, ebe  satisfy therestricted isometry propertRIP) [2].

jointly SaSrandom variables withh < a < 2, zero location param- First, we test the stability property by carrying out a set@®0
eters and dispersiong andyy, respectively. Then the covariation Monte-Carlo runs for eacti € [0.9: 0.05: 2, where in each run we
of X with Y is defined by: generate distinct vectoms ¢ R19° andrj ¢ RM, for a varyingM,
“p1> containing i.i.d.SaSentries (for clarity we present the results only
X, Y]a = E{XY }HYHa (5)  forM =250 by noting that a8 increases the stability property is
’ E{|Y|P} a> approximated more closely). Their corresponding dispersions are
chosen uniformly at random in the interj@l01,2.5]. The perfor-
where for anyz € R and a > 0 we use the notatioz=® = mance was evaluated for several measurement matrices with i.i.d.
|z12sign(z), while for a real vectoZz ¢ RN anda > 0 we write  entries drawn from distributions satisfying the RIP (e.g., Bernoulli,
7<% = [|z|3sign(z1), . .., |zn|sign(zy)]. The covariation satisfies Gaussian), but we present the results for the following six matrices,

the following (pseudo-)linearity properties in the first and secondwvhich approximated more closely the stability property®}) - its
argument, respectively: Xi,Xp,Y are jointly SaS, then for any  entries are i.i.d. Bernoulli samples, ®), - its entries are i.i.d. stan-

constants, b € R we have: dard Gaussian sampleSaSwith a = 2) and normalized columns
to unit ¢o-norm, 3) @3 - its entries are i.i.d. standai®rS sam-
[aXs +bXo,Y]a = a[X1,Y]a +b[X2,Y]qa (6) ples, 4)®4 - obtained by normalizing the columns &3 to unit
lo-norm, 5)®5 - obtained by normalizing the columns &3 to

[Y,aX; +bXo)q = a<a-1> Y, Xq]a + p<a-1> Y, Xo)q - (7 unit /o-norm and 6)®¢ - obtained by normalizing the columns of

. P43 to unit covariation norm, where the normalization of a vector
Let X ~ fa(yx,0) andY ~ fq(y,0) be independeraSrandom g RM tg unit covariation norm is performed as follows:
variables. ThencX ~ fq(|c|yx,0) (c# 0) andX +Y ~ fq ((V§ +
¥)Y/@.0). Thus, for the noisy CS measuremegts: ®W + 7j, if 2
1 1py1/P -1
(Wi ~ Ta (Y, 01N, and{n; ~ fa(yp,0)}M,, then Ko (& 3™, (P)YP(C(p.a))

%@ X _c(paMP—X_
Xl

. o _ - . ©

N 1a thatis, the norma_llzatlon to unit covariation normis a scaled version

gj ~ fa([Z(Mi e+ vf,’] 70> i=1...M, 8) of the normalization to unifp norm with p < 1. Fig. 1 shows the
= output values ofr estimated frong, averaged over all Monte-Carlo
runs, as a function of the inpat. We observe tha®z and®g are

wheregj; is the element ofb in row-j and columni, that is, each  the top candidates, since they approximate more closely the stability
CS measurement followsSur Sdistribution with the samer. property (diagonal line).
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) ‘ ‘ ‘ ‘ ‘ _ Fig. 2 validates the Lipschitz condition for the candidate
------- e m T ;7._1,-":'"" measurement matrice®s and ®g, by showing the ratios
Rihs =" wn 1P [ B[P
18] . ] 121, pH‘fWZH['J averaged over a set 600 Monte-Carlo runs,
o B M (C(p.a)) "W~ |, _ _
B o where in each run we generate a pair of matricés,(@g),
g Lo . 1 with M = 250, and two sparse vectof, W, € R1000 with L
% o : {50,...,250} non-zero components, whose locations are selected
3 | = == - @y (Bermoull) uniformly at random and their corresponding values are drawn from
% = . @, (Gaussian, unit |1, ) a Sa S distribution with a dispersion drawn uniformly from the in-
o e —o—®_ (standard Sas) terval [0.1,1]. First we observe that the two matrices satisfy the
X 12f ®, (Sas, unit |J|,) Lipschitz co_n'dition, since the values _of the above ratio are less than
= o, (SaS, unit111) one. In addition, the values d#g'’s ratio are equal or less than the
e cae s e values of®3 for the corresponding paifer,L/N) and thus the Lip-
- P, (Sas, unit |L.]| ) schitz condition is satisfied in a higher extend. This fact, in addition
1 12 12 16 I8 2 to the observation thakg approximates the stability property quite
Truea closely, as shown in Fig. 1, motivated the selection®gf as the

Flgure 1 Stabl“ty property testlng for six measurement matrlcesmOSt suitablesa'S measurement matrix.

P; (ref. Sec. 2.3).

@, (standard SaS)
T = o 0.15

The second property to be satisfied #yis the RIP, which is
known to be valid for sub-Gaussian random matrogsg., Gaus- 015
sian, Bernoulli), and random partial bounded orthogonal matrices
(e.g., the partial Fourier ensemble) [2]. However, since our method
will be based orfp norms we consider a variant of the RIP, namely,
therestricted p-isometry propertfRplIP). A matrix® satisfies the
RplP of ordetL if there exists & € (0, 1) such that:

(=) |}, < [[@r [l < (1+&)wlly,  (10)

for all setsl with card(l) < L and all theL-sparse vectors € RN
(card(-) denotes the cardinality of a set).

A theoretical proof of the RplP for general random matrices is
a difficult problem. To the best of our knowledge, the RIP/RpIP has

0.05

0.15

Sparsity level [L/N]

1 12 14 16 18 2

not been shown for alpha-stable random matrices. Although this Characteristic exponent a

is, by all means, of great independent theoretical interest, however,

here we give a computational evidence that an RpIP-like conditiofrigure 2: Verification of Lipschitz condition fOf( = || @G
holds with high probability folSa Smatrices. A theoretical proofis and for each matri®@s, ®¢, as a function ofa, N) (ae(1,2),Le
by its own a special study, which we are currently pursuing. {50,...,250}, N = 100Q M = 250).

In the case of &S measurement matrix we exploit a concen-
tration of measure inequality derived for alpha-stable vectors, which
states that iff is a Lipschitz function (under th& norm) andw is
an alpha-stable vector with € (1, 2), then the deviation probability 3. MINIMUM DISPERSION CS INVERSION

Pr{|f (W) —E{f(W)}| > u} is upper bounded by, forutaking  The development of the proposed iteratb@S-CS method starts
values in a finite range interval, wheee> 0 is a constant depend- by noting that for alpha-stable data, the Minimum Mean Squared
ing ona [12]. We begin with the random variabféw) = II‘I’WHa, Error (MMSE) criterion is not valid and it should be replaced by
where the randomness concerns the selectid, athile the vector  the Minimum Dispersio{MD) criterion since, unlike the variance,
Wis considered to be fixed at a given realization. The expected valuge dispersion is finite and gives a good measure of the spread of
of f(W), is obtained by combining (2),(8) and noting that = 1, estimation errors around zero. This provides a natural justification

since the entries oP are i.i.d standar@a Ssamples, as follows: for the eligibility of £, norms withp < 1 in conjunction with &5a'S
3.4 1 N prior model. From (3) we also observe that the MD criterion can
E{f(W)} —— Z E{| Z@iwi |p} be viewed as deast/p-norm estimation errorcriterion since the
M(C(p.a)" & & FLOM E{|X|P} can be estimated as tlig norm of the vectoX.

1 M N Yayp In _the subs_equt_ant_ derivations the_ following co_nventions are
=——— 5 z (C(p,a) [Z‘Wila] > = ||\,*\,H§J . (11) used:_l)I": set withn |_nd|ce;s co_r_respondlng to _the “active” c_ol_umns
p,a)) = i= “ of @ in the current iteration, ii}®n: submatrix of® containing
only those columns with indices if' (the same notation is used

for vectors, e.g.Wn), iii) W,"n*l: card(1")-dimensional vector cal-
By settingu — EHWHE in the above deviation probability for culated in iteratiom — 1, that is, the elements m‘l’n which are not

alpha-stable vectors and combining with (11), the following RpIP-" W+ are set to zero.

like inequality holds for &a Smeasurement matrix with probability S|m|larly to previous greedy CS algorithms, the proposed ap-

exceedingl — e SEIWI%)" (whereCy o — M(C(p,a))P): proach minimizes an objective function depending on the norm of
Ma = P. ) the approximation error. However, in contrast to the majority of

1—€)Cy o IWIP < 1BWIP < (1+€)Cy o I[P . 12 them, which are based dh or /1 norms of the error, ousaS-CS

(2=&)Cmallwlly, < [18Wl7, < (1+€)Cu.allWly, (12) method employg, norms ( < 1), approximating more closely the

1A random matrix® is sub-Gaussian if its i.i.d. entries are drawn from ideal{o case:

a sub-Gaussian random varial{ewith variancel, that is, whose tail dis-

tribution is dominated by that of the standard Gaussian random variable:

Jc, ¢ > 0s.t.Pr{|X| > x} < cle*CZXZ, for all x> 0.

Notice that in the last equatiofiw||,, denotes the standafd norm
and not the covariation nornj\{||4).

N
JD(W):.ZL‘WﬂpHTVGRNyOS p<i. (13)
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In particular, Jp(-) is minimized in terms of the estimation error where|X — Y|P £ (|x; —y1|P,...,|xn —Yn|P). In particular, an in-
r(W) = g— ®w (for convenience we will also use the notatibn dexi is added inl" if the “distance” between theth basis vector,
instead ofr (W)). For this purpose, a hybrid schemedifectional (ﬁ and the current residuaP, is below a certain threshold
updatess employed. Specifically, in theth iteration the estimated

sparse vector is updated by calculating a direcifband a step-size I"=1"20{i | do(@, ) <& -min(da(@;,7")},  (22)
u" as follows ]

- ~n—1_ ,mn
Wih = Wih "+ ph (14) with & > 1 (usually it sufficest ~ (14 &) with & being close to
Following a conjugate gradient approach, the step-gizand the  zero). Notice that whe# = 1 the basis selection rule reduces to the
updated residual are given by completely greedy approach, where a single optimal basis vector
is selected in each iteration. The algorithm terminates whether a
pn o= (rnTcplnv{‘n)(vlnnT q;ITncplnv{‘n)*l (15)  predefined maximum number of iterations is reached, or when the
. 1 relative decrease of the residéginorm falls bellow a threshold
o= 7" 7[1n‘I’|nVPn . (16)
i ici imal direction i (Ll P a3
A more computationally efficient sub-optimal direction is computed p lp ce. <l
by combining the current gradient and the previous direction only ||rn—1“1§’ ’ ’
P

v = [O3p)in + b2 17)
. . A . . 4. EXPERIMENTAL RESULTS
whereb" is a step-size parameter afidl] is the negative gradient

vector of the cost function with respectiio In this section, we evaluate the performance of the prop&eeti
CS algorithm by comparing it with state-of-the-art norm-based CS
[ﬁ\]p} =" |p| diag(|r1\p‘2, o |rM‘p—2)r7 (18)  methods. Of course there are quite many CS methods in the recent

literature with which we could compare, however, the scope of this

where diag(|r1|p—27.,.7|rM|p—2) is the M x M diagonal matrix study is to highlight the advantages of theSmodel in developing
with elements the components of the residual vetterg — ®Ww. CS reconstruction algorithms and to exhibit its superiority against

In order to calculate the step-sib®, we introduce a statistical Some of the most recent norm-based iterative CS methods. Hence,
pseudo-orthogonality condition between t8@S random vectors. We compared the performance with several CS techniques, which
First we note that ifX, ¥ are two jointly Gaussian random vectors, €MPIOY¢2, £1, or p (p < 1) norms, but hereafter we present the re-
they are considered to be orthogonal if their covariance is equal tgu!tS With respect to the main competitors of the propde&CS
zero. Since only the FLOMSs are finite f&o'S variables, then, if ~method only, namely, the LASSO with a non-negativity constraint
X, Y are two jointly Sa'S random vectors we consider them to be (nnLasso)_, the smo_othdid (SLO), and the stagewise weak conju-
orthogonal if the following “inner product” is zero: gate gradient pursuit (SWCGR) . . . .

As an alternative to the usual signal-to-noise ratio, which is not
valid in theSa S case due to the lack of finite second-order statis-
tics, the so-calledrractional-order SNRFSNR) is employed as a
signal distortion measure. When the signal and noise components
are jointlySa'S (ag = ap) the FSNR takes the following form:

XY = IVI5 X, Y]a - (19)

Thus, the step-siza” is computed by requiring the new direction to
be “orthogonal” to the previous one, that qwn,v{‘;l) =0, where

_ E{[gP}y _
(0,5 1) = [ Y12 A FSNR= 101060 g7 o ) = P+ 1000mo(yo/v )+ (23
A7)(6) |\V|nn_l|\c2fa ([[ﬁJphn,VPn‘l} s ph [v',“n‘l,v{‘n‘l] a) ] wherey, v, are the signal and noise dispersion, respectively.

Under the non-negativity assumption for the sparse vector, first
we generate vectossof lengthN = 512with L € {5,...,20} non-

By equating the last expression with zero and noting fli@t- |« # zero components, whose values are drawn frdda &distribution,

0 and[v{‘fl,v;“;l]u = yvﬂ’q,l, the step-siz&" is given by placed in randomly chosen positions. Then, the non-negative vector
" to be reconstructed i& = abgX) £ (|x1],...,|Xn|). The value ofx
. E{[ﬁJp]w s (vlnn—l)<p71>} varies in[1.1,2], while the dispersiom is chosen fron0.1,1]. Ac-
b'=— — (20)  cording to the results of section 2.1, the entries of the measurement
E{ |V 1|p} matrix ® are standar®a S samples, and then its columns are nor-

. ) ) malized to unit covariation norm. The noise dispersjgns deter-

where the expectations are estimated by taking the mean of the cained via (23) for a given paifaw, ) and an FSNR value (in dB).
responding vectors and«” denotes element-by-element multipli- \ve also note that the subsequent results are represented as an aver-
cation between two vectors. age overl00 Monte-Carlo runs. Besides, the parameténvolved

. . in the basis selection rule is set1d®05in order to accelerate the
3.1 Basis selection rule Sa'S-CS approach by permitting the simultaneous selection of more
The performance of a CS algorithm is affected significantly bythan one basis vectors in each iteration. The reconstruction quality
the appropriate selection of the sparsest subset of basis vectdgssmeasured via the relative reconstruction SNR (rSNR), which is
(columns of®) that best represents the d@aFor instance, MP  defined as followsrSNR = 10|oglo(\|v*v|\(§ /HvT/fv*vH% ), with W
selects iteratively the column @b resulting in the largest (in ab- genoting the reconstructed sparse vector. ?
solute magnitude) inner product with the current approximation er- | the following, we compare the reconstruction performance
ror /. In the proposeda S-CS algorithm, we select the optimal g, the degree of sparsity achieveddmS-CS, along with LASSO,
set of basis functions,”, by introducing the following “distance g 0 and SWCGP, favl = 120andFSNR= 10 dB. In particular, for
measure” between tw8a'S random vectorX,Y € RN, based on  each pair(a,L) we perform a set 0100 Monte-Carlo runs, where
FLOMSs (withO < p < a):

2For the implementation of the other CS methods we used the

(E{\XJ{\P})W MATLAB codes included in the packageshttp://sparselab.
ARV = [ VI —d <@ 1<a <2 21 stanford.edu/ ., http://Awww.acm.caltech.edu/llmagic ,
o (X,Y) = [|X=Ylla = (E{‘x,wp})a/p (1) http://ee.sharif.ir”"SLzero ,  http:/lwww.see.ed.ac.
o O<axl uk/"tblumens/sparsify/sparsify.html
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in each run the dispersiogy, is chosen fron0.1,1] uniformly at »

random. Fig. 3 shows the corresponding average rSNR values fc sl L=5
the four methods. We observe that for highly impulsive signals, tha
is, for a — 1the propose®a S-CS method outperforms clearly all 15
the others. In additiorSaS-.CS outperforms all the other methods
for a higher range ofr asL increases. This means that the capabil- o 1°
ity of the other CS methods in discriminating an increasing numbe g OO OGO
of non-negative components drawn from a heavy-taie® distri- (7)
bution is reduced. O
On the other hand, Fig. 4 shows the corresponding CS ratios @ 2 14 16 18 t2 4 16 18
The CS ratio, which is used as an index of sparsity, is defineda & :::g[‘gAsso
follows: g . SWCGP
number of CS measurements < —®—SASCS

CS ratio= — (24)
number of non-zero componentswf

where the number of non-zero components of the estinva{egar-
sity) depends on the algorithm. The higher the CS ratio the highe
the sparsity is for a fixed value dfl. We can see that on aver- 12 14 16 = 18 t2 14 16 18
age the propose8r S-CS method results in much higher CS ratios, a a

or equivalently in much sparser solutions when compared with the-; . .
other CS techniques. In addition, we note that the slightly bettezzgggr?u?{ C’;‘\(’)ir%%; S\Iistf:aEOGS 1({?1%(:1?3 ;@S(?\IO;SSLlozaRAd EVIISQG P

reconstruction performance of the SWCGP method whier 2 FSNR= 10 dB)

comes at the cost of a significant increase in the number of basis o '

functions (much smaller CS ratio), which must be employed to rep-

resent accurately a highly sparse signal. Besides, the CS ratio of ti@ssible with a norm-based iterative approach. In addition, we will
SaS-CS method decreases as the number of non-zero componergstend theSaS-CS method in the case of non-jointBa S signal
increases and' — 2. In other words, as the underlying statistics and noise componente, # ap).

tend to a Gaussian distribution, tiSer'S-based algorithm requires

more basis functions to capture the inherent information content REFERENCES
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