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ABSTRACT

An accurate representation of the acquired data, while also conserv-
ing limited resources, such as power, bandwidth and storage capac-
ity, is a challenging task. Besides, the Gaussian assumption, which
plays a predominant role in signal processing being widely used as a
signal and noise model, is unrealistic for a wide range of real-world
data, which can be highly sparse in appropriate orthonormal bases.
In the present work, the inherent property of compressed sensing
(CS) working simultaneously as a sensing and compression proto-
col using a small subset of random projections is exploited to reduce
the total amount of data. In particular, we propose a novel itera-
tive algorithm for sparse representation and reconstruction of non-
negative signals in highly impulsive background using the family
of symmetric alpha-stable distributions. The experimental evalua-
tion shows that our proposed method results in an increased recon-
struction performance, while also achieving a higher sparsity when
compared with state-of-the-art CS algorithms.

1. INTRODUCTION

Acquisition of high-resolution data with modern digital devices
rises a very important issue, that is, how to effectively and precisely
describe the information content of a given source signal such that
it can be stored, processed or transmitted by taking into consider-
ation the limited power and storage resources. Several studies [1]
have shown that many natural signals result in highly sparse repre-
sentations when they are projected on localized orthonormal bases
(e.g., wavelets, sinusoids). Motivated by this, compressed sensing
(CS) [2] enables a potentially significant reduction in sampling and
computation costs at a sensing system with limited capabilities. In
particular, a signal having a sparse representation in a transform do-
main can be reconstructed from a small set of random incoherent
projections onto a suitable measurement basis.

The majority of previous works on CS-based reconstruction of a
sparse signal solve constrained optimization problems. Commonly
used approaches are typically based on convex relaxation (basis
pursuit), non-convex (gradient based) local optimization, or greedy
strategies ((Orthogonal) Matching Pursuit ((O)MP) [3, 4]. All these
methods are primarily based on a Gaussian assumption for the un-
derlying signal and/or noise processes, which is often violated in
several distinct environments, such as in underwater acoustics, in
sonar/radar and in medical imaging, where the associate signals take
large-amplitude values much more frequently than what a Gaus-
sian model implies. In addition, several studies have shown that
the family of alpha-stable distributions, and particularly the class of
symmetric alpha-stable(SαS) distributions, is a powerful statistical
tool for modelling highly impulsive, and thus highly sparse, source
signals [5, 6, 7].

Despite its efficiency, the family ofSαSdistributions has never
been exploited in the framework of CS due to the lack of closed-
form expressions for the density functions, as well as the lack of
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second-order statistics. For this purpose, we develop a novel itera-
tive greedy algorithm for CS reconstruction of sparse signals with
non-negative components corrupted by additive heavy-tailed noise.
In particular, the prior belief for a highly impulsive signal and/or
noise is modelled using members from the family ofSαSdistribu-
tions. To the best of our knowledge, this is the first effort to bridge
the fields of CS and alpha-stable modelling.

The paper is organized as follows: in Section 2, we briefly re-
view the main properties ofSαSdistributions exploited in our pro-
posed method. In Section 3, theSαS-based CS reconstruction al-
gorithm is presented by considering jointlySαS signal and noise
components. In Section 4, we compare the performance of the pro-
posed approach with recent state-of-the-art CS recovery methods,
while we conclude in Section 5.

2. STATISTICAL SIGNAL MODEL

In the framework of CS, if a given signal~f ∈ RN is L-sparse in a
suitable transform domain, then it is possible to be reconstructed di-
rectly using a compressed set of (noisy) measurements~g, obtained
through incoherent random projections:~g= ΦΨT~f +~η = Φ~w+~η ,
whereΦ = [~φ1, . . . ,~φM ]T is a M×N (M < N) random measure-
ment matrix,Ψ is a N×N matrix, whose columns correspond to
the transform basis functions and must be incoherent with the rows
of Φ, and~w∈RN is the sparse weight vector withL non-zero com-
ponents (or equivalently, the transform-domain representation of~f ).
Most of the recent literature on CS has concentrated on solving con-
strained optimization problems, where the unknown vector~w and/or
the noise~η (with unknown varianceσ2

η ) are modelled as Gaussian
random variables. However, the Gaussian assumption is inadequate
for a highly sparse vector~w. For this purpose, recent studies in-
corporated several non-Gaussian (heavy-tailed) distributions (e.g.,
Laplace, Cauchy) [8, 9] for modelling the prior belief that the vast
majority of ~w’s components have negligible amplitude. We also
note that in practice~f is not strictlyL-sparse butcompressible, that
is, the re-ordered components of~w decay at a power-law.

In the present work, the prior belief that~w is highly sparse is ex-
ploited by using aSαSdistribution as its prior, which is heavy-tailed
and thus suitable for representing accurately an impulsive behavior.
In the following, we consider that the noise~η is also drawn from a
SαSdistribution. The use of this family is motivated by the fact that
the tails of aSαSdistribution decay at an algebraic rate, which is in
agreement with the rate of decay of the re-ordered components of a
compressible vector~w.

2.1 The family of SαSdistributions

In the following, we introduce briefly the family of univariateSαS
distributions, as well as some of their fundamental properties ex-
ploited in the proposed CS method. ASαSdistribution is best de-
fined by its characteristic function [10]:

φ(t) = exp(iδ t− γα |t|α ), (1)

whereα (0 < α ≤ 2) is the characteristic exponent, which is a
shape parameter controlling the “thickness” of the tails of the den-
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sity function,δ ∈ R is thelocation parameterandγ > 0 is thedis-
persion, which determines the spread of the distribution around its
location parameter, similar to the variance of the Gaussian. The
smaller theα, the heavier the tails of aSαSdensity function. ASαS
distribution is calledstandardif δ = 0andγ = 1. With X∼ fα (γ , δ )
we denote aSαSrandom variableX with parametersα, γ , δ .

In general, no closed-form expressions exist for mostSαSden-
sity functions except for the Gaussian (α = 2) and the Cauchy
(α = 1). Unlike the Gaussian density, which has exponential tails,
stable densities have algebraic tails:Pr{X > x} ∼Cx−α , asx→ ∞,
whereC is a constant depending on the model parameters. Hence,
SαSrandom variables with smallα values are highly impulsive.

An important characteristic ofSαS distributions (withα < 2)
is the lack of second-order moments. Instead, all moments of order
p< α do exist and are called theFractional Lower-Order Moments
(FLOMs). In particular, the FLOMs ofX ∼ fα (γ, δ = 0) are given
by [10]:

E{|X|p}=
(
C(p,α) · γ)p

, 0 < p < α, (2)

where
(
C(p,α)

)p =
Γ
(

1− p
α

)

cos
(

π
2 p

)
Γ(1−p)

. The SαS model parameters

(α,γ) can be estimated using the consistent Maximum Likeli-
hood (ML) method described by Nolan [11], which gives reliable
estimates and provides the tightest possible confidence intervals.
From (2) we get the following expression for the dispersion ofX:

γX =
(
E{|X|p})1/p(

C(p,α)
)−1

. (3)

The covariation normof X ∼ fα (γ ,0) with α > 1 is defined by
‖X‖α = γX , whereγX is given from (3). This definition is extended
to a quasi-norm forα < 1, resulting in the following expressions:

‖X‖α =
{

γX , for 0 < p < α, 1≤ α ≤ 2
γα
X , for 0 < p < α, 0 < α < 1

(4)

The concept of covariance is fundamental in the second-order
moment theory. However, covariances do not exist forSαS ran-
dom variables. Instead, a quantity calledcovariation, which plays
an analogous role forSαS random variables to the one played by
covariance in the Gaussian case, has been proposed. LetX, Y be
jointly SαSrandom variables with1 < α ≤ 2, zero location param-
eters and dispersionsγX andγY, respectively. Then the covariation
of X with Y is defined by:

[X,Y]α =
E{XY<p−1>}
E{|Y|p} ‖Y‖α

α , (5)

where for anyz ∈ R and a ≥ 0 we use the notationz<a> =
|z|asign(z), while for a real vector~z ∈ RN and a ≥ 0 we write
~z<a> = [|z1|asign(z1), . . . , |zN|asign(zN)]. The covariation satisfies
the following (pseudo-)linearity properties in the first and second
argument, respectively: IfX1,X2,Y are jointly SαS, then for any
constantsa,b∈ R we have:

[aX1 +bX2,Y]α = a[X1,Y]α +b[X2,Y]α (6)

[Y,aX1 +bX2]α = a<α−1>[Y,X1]α +b<α−1>[Y,X2]α . (7)

Let X ∼ fα (γX ,0) andY ∼ fα (γY,0) be independentSαS random
variables. Then,cX∼ fα (|c|γX ,0) (c 6= 0) andX +Y ∼ fα

(
(γα

X +
γα
Y )1/α ,0

)
. Thus, for the noisy CS measurements~g = Φ~w+~η , if

{wi ∼ fα (γi ,0)}N
i=1 and{η j ∼ fα (γη ,0)}M

j=1, then

g j ∼ fα
([ N

∑
i=1

(|φ ji |γi)α + γα
η

]1/α
,0

)
, j = 1, . . . ,M , (8)

whereφ ji is the element ofΦ in row- j and column-i, that is, each
CS measurement follows aSαSdistribution with the sameα.

2.2 Estimation of p parameter

Most of the quantities involved in theSαS-CS algorithm, which we
will introduce in Section 3, will depend on the parameterp, whose
optimal value depends onα. We also note that in the subsequent
analysis we are restricted in1≤ α ≤ 2. The optimal value ofp is
computed as the one thatminimizes the standard deviationof the
FLOM-based covariation estimator obtained from (5) by replacing
the expectations with the arithmetic means. For this purpose, we
studied the influence ofp on the performance of the estimator via
Monte-Carlo runs using twoSαS random variablesX, Y of length
N = 2048. We executed1000Monte-Carlo runs withα ∈ [1 : 0.05 :
2] and for dispersions(γX ,γY) ranging in the interval[0.01,5] with
a denser sampling in the sub-interval[0.01,2.5].

Table 1 shows the averaged optimalp values as a function of
α ≥ 1, where the average is taken over the corresponding optimal
p’s for all dispersion pairs(γX ,γY) and Monte-Carlo runs. This
table is then used as a lookup (interpolation) table in order to find
the optimalp for every1≤ α ≤ 2. It is important to note that the
optimal value ofp is close toα/2, as observed in the table.

α 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
Optimal p 0.52 0.54 0.56 0.57 0.58 0.59 0.61 0.62

α 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
Optimal p 0.64 0.66 0.69 0.71 0.72 0.74 0.76 0.79

α 1.8 1.85 1.9 1.95 2
Optimal p 0.81 0.84 0.88 0.93 0.8

Table 1: Optimalp parameter as a function ofα.

2.3 An adaptiveSαSmeasurement matrix

A disadvantage of the previous CS methods is that they employ
measurement matricesΦ which, in general, are not adapted to the
true statistics of the sparse signal. In this section, we study the
performance of existing measurement matrices in the case of alpha-
stable statistics and we introduce a new measurement matrix, which
is best adapted to the statistics ofSαSdata. In particular, the desired
measurement matrix must: i) approximate thestability propertyas
expressed by (8), that is, the output characteristic exponent esti-
mated from~g is close to the input characteristic exponent of~w, ii)
satisfy therestricted isometry property(RIP) [2].

First, we test the stability property by carrying out a set of1000
Monte-Carlo runs for eachα ∈ [0.9 : 0.05 : 2], where in each run we
generate distinct vectors~w∈ R1000 and~η ∈ RM , for a varyingM,
containing i.i.d.SαSentries (for clarity we present the results only
for M = 250, by noting that asM increases the stability property is
approximated more closely). Their corresponding dispersions are
chosen uniformly at random in the interval[0.01,2.5]. The perfor-
mance was evaluated for several measurement matrices with i.i.d.
entries drawn from distributions satisfying the RIP (e.g., Bernoulli,
Gaussian), but we present the results for the following six matrices,
which approximated more closely the stability property: 1)Φ1 - its
entries are i.i.d. Bernoulli samples, 2)Φ2 - its entries are i.i.d. stan-
dard Gaussian samples (SαSwith α = 2) and normalized columns
to unit `2-norm, 3)Φ3 - its entries are i.i.d. standardSαS sam-
ples, 4)Φ4 - obtained by normalizing the columns ofΦ3 to unit
`2-norm, 5)Φ5 - obtained by normalizing the columns ofΦ3 to
unit `α -norm and 6)Φ6 - obtained by normalizing the columns of
Φ3 to unit covariation norm, where the normalization of a vector
~x∈ RM to unit covariation norm is performed as follows:

~x
‖~x‖α

(3),(4)
=

~x
( 1

M ∑M
i=1 |xi |p

)1/p(C(p,α)
)−1

= C(p,α)M1/p ~x
‖~x‖`p

,

(9)
that is, the normalization to unit covariation norm is a scaled version
of the normalization to unit̀p norm with p < 1. Fig. 1 shows the
output values ofα estimated from~g, averaged over all Monte-Carlo
runs, as a function of the inputα. We observe thatΦ3 andΦ6 are
the top candidates, since they approximate more closely the stability
property (diagonal line).
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Figure 1: Stability property testing for six measurement matrices
Φi (ref. Sec. 2.3).

The second property to be satisfied byΦ is the RIP, which is
known to be valid for sub-Gaussian random matrices1 (e.g., Gaus-
sian, Bernoulli), and random partial bounded orthogonal matrices
(e.g., the partial Fourier ensemble) [2]. However, since our method
will be based oǹ p norms we consider a variant of the RIP, namely,
the restrictedp-isometry property(RpIP). A matrixΦ satisfies the
RpIP of orderL if there exists aδL ∈ (0,1) such that:

(1−δL)‖~wI‖p
`2
≤ ‖ΦI~wI‖p

`p
≤ (1+δL)‖~wI‖p

`2
(10)

for all setsI with card(I) ≤ L and all theL-sparse vectors~w∈ RN

(card(·) denotes the cardinality of a set).
A theoretical proof of the RpIP for general random matrices is

a difficult problem. To the best of our knowledge, the RIP/RpIP has
not been shown for alpha-stable random matrices. Although this
is, by all means, of great independent theoretical interest, however,
here we give a computational evidence that an RpIP-like condition
holds with high probability forSαSmatrices. A theoretical proof is
by its own a special study, which we are currently pursuing.

In the case of aSαSmeasurement matrix we exploit a concen-
tration of measure inequality derived for alpha-stable vectors, which
states that iff is a Lipschitz function (under thè2 norm) and~w is
an alpha-stable vector withα ∈ (1,2), then the deviation probability
Pr{| f (~w)−E{ f (~w)}| ≥ u} is upper bounded bye−cuα

, for u taking
values in a finite range interval, wherec > 0 is a constant depend-
ing onα [12]. We begin with the random variablef (~w) = ‖Φ~w‖p

α ,
where the randomness concerns the selection ofΦ, while the vector
~w is considered to be fixed at a given realization. The expected value
of f (~w), is obtained by combining (2),(8) and noting thatγφ ji = 1,
since the entries ofΦ are i.i.d standardSαSsamples, as follows:

E{ f (~w)} (3),(4)
=

1

M
(
C(p,α)

)p

M

∑
j=1
E

{∣∣ N

∑
i=1

φ ji wi
∣∣p

}

=
1

M
(
C(p,α)

)p

M

∑
j=1

(
C(p,α)

[ N

∑
i=1
|wi |α

]1/α)p
= ‖~w‖p

`α
. (11)

Notice that in the last equation,‖~w‖`α denotes the standard`α norm
and not the covariation norm (‖~w‖α ).

By settingu = ε‖~w‖p
`α

in the above deviation probability for
alpha-stable vectors and combining with (11), the following RpIP-
like inequality holds for aSαSmeasurement matrix with probability
exceeding1−e−c(ε‖~w‖p

`α )α
(whereCM,α = M

(
C(p,α)

)p):

(1− ε)CM,α‖~w‖p
`α
≤ ‖Φ~w‖p

`p
≤ (1+ ε)CM,α‖~w‖p

`α
. (12)

1A random matrixΦ is sub-Gaussian if its i.i.d. entries are drawn from
a sub-Gaussian random variableX with variance1, that is, whose tail dis-
tribution is dominated by that of the standard Gaussian random variable:

∃c1,c2 > 0 s.t. Pr{|X|> x} ≤ c1e−c2x2
, for all x > 0.

Fig. 2 validates the Lipschitz condition for the candidate
measurement matricesΦ3 and Φ6, by showing the ratios∣∣‖Φ~w1‖p

`p
−‖Φ~w2‖p

`p

∣∣
M

(
C(p,α)

)p‖~w1−~w2‖`2

averaged over a set of500Monte-Carlo runs,

where in each run we generate a pair of matrices (Φ3,Φ6),
with M = 250, and two sparse vectors~w1,~w2 ∈ R1000 with L ∈
{50, . . . ,250} non-zero components, whose locations are selected
uniformly at random and their corresponding values are drawn from
a SαS distribution with a dispersion drawn uniformly from the in-
terval [0.1,1]. First we observe that the two matrices satisfy the
Lipschitz condition, since the values of the above ratio are less than
one. In addition, the values ofΦ6’s ratio are equal or less than the
values ofΦ3 for the corresponding pairs(α,L/N) and thus the Lip-
schitz condition is satisfied in a higher extend. This fact, in addition
to the observation thatΦ6 approximates the stability property quite
closely, as shown in Fig. 1, motivated the selection ofΦ6 as the
most suitableSαSmeasurement matrix.

Φ
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Figure 2: Verification of Lipschitz condition forf (~w) = ‖Φ~w‖p
α

and for each matrixΦ3, Φ6, as a function of(α, L
N ) (α ∈ (1,2), L∈

{50, . . . ,250}, N = 1000, M = 250).

3. MINIMUM DISPERSION CS INVERSION

The development of the proposed iterativeSαS-CS method starts
by noting that for alpha-stable data, the Minimum Mean Squared
Error (MMSE) criterion is not valid and it should be replaced by
theMinimum Dispersion(MD) criterion since, unlike the variance,
the dispersion is finite and gives a good measure of the spread of
estimation errors around zero. This provides a natural justification
for the eligibility of `p norms withp < 1 in conjunction with aSαS
prior model. From (3) we also observe that the MD criterion can
be viewed as aleast `p-norm estimation errorcriterion since the
FLOM E{|X|p} can be estimated as the`p norm of the vectorX.

In the subsequent derivations the following conventions are
used: i)In: set withn indices corresponding to the “active” columns
of Φ in the current iteration, ii)ΦIn: submatrix ofΦ containing
only those columns with indices inIn (the same notation is used
for vectors, e.g.,~wIn), iii) ~wn−1

In : card(In)-dimensional vector cal-
culated in iterationn−1, that is, the elements in~wn−1

In which are not
in ~wn−1

In−1 are set to zero.
Similarly to previous greedy CS algorithms, the proposed ap-

proach minimizes an objective function depending on the norm of
the approximation error. However, in contrast to the majority of
them, which are based oǹ2 or `1 norms of the error, ourSαS-CS
method employs̀p norms (p < 1), approximating more closely the
ideal`0 case:

Jp(~w) =
N

∑
i=1
|wi |p , ~w∈ RN , 0≤ p≤ 1 . (13)
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In particular,Jp(·) is minimized in terms of the estimation error
r(~w) = ~g−Φ~w (for convenience we will also use the notation~r
instead ofr(~w)). For this purpose, a hybrid scheme ofdirectional
updatesis employed. Specifically, in then-th iteration the estimated
sparse vector is updated by calculating a direction~vn

In and a step-size
µn as follows

~wn
In = ~wn−1

In + µn~vn
In . (14)

Following a conjugate gradient approach, the step-sizeµn and the
updated residual are given by

µn =
(
~rnT

ΦIn~vn
In

)(
~vnT

In ΦT
InΦIn~vn

In

)−1 (15)

~rn = ~rn−1−µnΦIn~vn
In . (16)

A more computationally efficient sub-optimal direction is computed
by combining the current gradient and the previous direction only

~vn
In = [~∇Jp]In +bn~vn−1

In , (17)

wherebn is a step-size parameter and[~∇Jp] is the negative gradient
vector of the cost function with respect to~w

[~∇Jp] = ΦT |p|diag
(|r1|p−2, . . . , |rM |p−2)~r , (18)

where diag
(|r1|p−2, . . . , |rM |p−2

)
is the M ×M diagonal matrix

with elements the components of the residual vector~r =~g−Φ~w.
In order to calculate the step-sizebn, we introduce a statistical

pseudo-orthogonality condition between twoSαS random vectors.
First we note that if~X,~Y are two jointly Gaussian random vectors,
they are considered to be orthogonal if their covariance is equal to
zero. Since only the FLOMs are finite forSαS variables, then, if
~X, ~Y are two jointlySαS random vectors we consider them to be
orthogonal if the following “inner product” is zero:

(~X,~Y) = ‖~Y‖2−α
α [~X,~Y]α . (19)

Thus, the step-sizebn is computed by requiring the new direction to
be “orthogonal” to the previous one, that is,(~vn

In,~vn−1
In ) = 0, where

(~vn
In,~vn−1

In ) = ‖~vn−1
In ‖2−α

α [~vn
In,~vn−1

In ]α
(17),(6)

= ‖~vn−1
In ‖2−α

α

([
[~∇Jp]In,~vn−1

In

]
α +bn[~vn−1

In ,~vn−1
In

]
α

)
.

By equating the last expression with zero and noting that‖~vn−1
In ‖α 6=

0 and[~vn−1
In ,~vn−1

In ]α = γα
~vn−1

In
, the step-sizebn is given by

bn =−E{[
~∇Jp]In .∗ (~vn−1

In )<p−1>}
E{|~vn−1

In |p} , (20)

where the expectations are estimated by taking the mean of the cor-
responding vectors and “.∗” denotes element-by-element multipli-
cation between two vectors.

3.1 Basis selection rule

The performance of a CS algorithm is affected significantly by
the appropriate selection of the sparsest subset of basis vectors
(columns ofΦ) that best represents the data~g. For instance, MP
selects iteratively the column ofΦ resulting in the largest (in ab-
solute magnitude) inner product with the current approximation er-
ror~rn. In the proposedSαS-CS algorithm, we select the optimal
set of basis functions,In, by introducing the following “distance
measure” between twoSαS random vectors~X,~Y ∈ RN, based on
FLOMs (with 0 < p < α):

dα (~X,~Y) = ‖~X−~Y‖α =





(
E{|~X−~Y|p}

)1/p

C(p,α) , 1≤ α ≤ 2(
E{|~X−~Y|p}

)α/p

C(p,α) , 0 < α < 1

(21)

where|~X−~Y|p , (|x1− y1|p, . . . , |xN− yN|p). In particular, an in-
dex i is added inIn if the “distance” between thei-th basis vector,
~φi , and the current residual,~rn, is below a certain threshold

In = In−1∪{i | dα (~φi ,~r
n)≤ ξ ·min

j
(dα (~φ j ,~r

n))} , (22)

with ξ > 1 (usually it sufficesξ ≈ (1+ δ ) with δ being close to
zero). Notice that whenξ = 1 the basis selection rule reduces to the
completely greedy approach, where a single optimal basis vector
is selected in each iteration. The algorithm terminates whether a
predefined maximum number of iterations is reached, or when the
relative decrease of the residual`p-norm falls bellow a threshold

‖~rn‖p
`p
−‖~rn−1‖p

`p

‖~rn−1‖p
`p

< ε , ε ¿ 1 .

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposedSαS-
CS algorithm by comparing it with state-of-the-art norm-based CS
methods. Of course there are quite many CS methods in the recent
literature with which we could compare, however, the scope of this
study is to highlight the advantages of theSαSmodel in developing
CS reconstruction algorithms and to exhibit its superiority against
some of the most recent norm-based iterative CS methods. Hence,
we compared the performance with several CS techniques, which
employ`2, `1, or `p (p≤ 1) norms, but hereafter we present the re-
sults with respect to the main competitors of the proposedSαS-CS
method only, namely, the LASSO with a non-negativity constraint
(nnLasso), the smoothed̀0 (SL0), and the stagewise weak conju-
gate gradient pursuit (SWCGP)2.

As an alternative to the usual signal-to-noise ratio, which is not
valid in theSαS case due to the lack of finite second-order statis-
tics, the so-calledFractional-order SNR(FSNR) is employed as a
signal distortion measure. When the signal and noise components
are jointlySαS(αg = αη ) the FSNR takes the following form:

FSNR= 10log10

( E{|~g|p}
E{|~η |p}

)
= p ·10log10

(
γg/γη

)
, (23)

whereγg, γη are the signal and noise dispersion, respectively.
Under the non-negativity assumption for the sparse vector, first

we generate vectors~x of lengthN = 512with L ∈ {5, . . . ,20} non-
zero components, whose values are drawn from aSαSdistribution,
placed in randomly chosen positions. Then, the non-negative vector
to be reconstructed is~w = abs(~x) , (|x1|, . . . , |xN|). The value ofα
varies in[1.1,2], while the dispersionγw is chosen from[0.1,1]. Ac-
cording to the results of section 2.1, the entries of the measurement
matrix Φ are standardSαSsamples, and then its columns are nor-
malized to unit covariation norm. The noise dispersionγη is deter-
mined via (23) for a given pair(αw,γw) and an FSNR value (in dB).
We also note that the subsequent results are represented as an aver-
age over100Monte-Carlo runs. Besides, the parameterξ involved
in the basis selection rule is set to1.005 in order to accelerate the
SαS-CS approach by permitting the simultaneous selection of more
than one basis vectors in each iteration. The reconstruction quality
is measured via the relative reconstruction SNR (rSNR), which is
defined as follows:rSNR= 10log10

(‖~w‖2
`2

/‖~w− ~̂w‖2
`2

)
, with ~̂w

denoting the reconstructed sparse vector.
In the following, we compare the reconstruction performance

and the degree of sparsity achieved bySαS-CS, along with LASSO,
SL0 and SWCGP, forM = 120andFSNR= 10 dB. In particular, for
each pair(α,L) we perform a set of100Monte-Carlo runs, where

2For the implementation of the other CS methods we used the
MATLAB codes included in the packages:http://sparselab.
stanford.edu/ , http://www.acm.caltech.edu/l1magic ,
http://ee.sharif.ir/˜SLzero , http://www.see.ed.ac.
uk/˜tblumens/sparsify/sparsify.html .
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in each run the dispersionγw is chosen from[0.1,1] uniformly at
random. Fig. 3 shows the corresponding average rSNR values for
the four methods. We observe that for highly impulsive signals, that
is, for α → 1 the proposedSαS-CS method outperforms clearly all
the others. In addition,SαS-CS outperforms all the other methods
for a higher range ofα asL increases. This means that the capabil-
ity of the other CS methods in discriminating an increasing number
of non-negative components drawn from a heavy-tailedSαSdistri-
bution is reduced.

On the other hand, Fig. 4 shows the corresponding CS ratios.
The CS ratio, which is used as an index of sparsity, is defined as
follows:

CS ratio=
number of CS measurementsM

number of non-zero components of~̂w
, (24)

where the number of non-zero components of the estimated~̂w (spar-
sity) depends on the algorithm. The higher the CS ratio the higher
the sparsity is for a fixed value ofM. We can see that on aver-
age the proposedSαS-CS method results in much higher CS ratios,
or equivalently in much sparser solutions when compared with the
other CS techniques. In addition, we note that the slightly better
reconstruction performance of the SWCGP method whenα → 2
comes at the cost of a significant increase in the number of basis
functions (much smaller CS ratio), which must be employed to rep-
resent accurately a highly sparse signal. Besides, the CS ratio of the
SαS-CS method decreases as the number of non-zero components
increases andα → 2. In other words, as the underlying statistics
tend to a Gaussian distribution, theSαS-based algorithm requires
more basis functions to capture the inherent information content
which is related to second-order moments.
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Figure 3: Average rSNR forSαS-CS, LASSO, SL0 and SWCGP
as a function ofα with L ∈ {5,10,15,20} (N = 512, M = 120,
FSNR= 10 dB).

5. CONCLUSIONS AND FUTURE WORK

In this work, we described an iterative CS algorithm for the recon-
struction of highly sparse non-negative signals corrupted by heavy-
tailed noise. The highly sparse behavior was modelled directly with
a heavy-tailed distribution selected from the family ofSαSdistribu-
tions. The experimental results revealed an increased reconstruction
performance, while also achieving an increased sparsity, when com-
pared with other state-of-the-art iterative greedy CS algorithms.

As a future work, we are interested in exploiting theSαSmodel
for developing a CS algorithm in a purely Bayesian framework. We
expect that a probabilistic approach will provide further control on
the sparsity of the sparse vector and furthermore it will permit the
optimal design of future CS measurements with the goal of reducing
the uncertainty of the reconstructed signal, something which is not
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Figure 4: Average CS ratios forSαS-CS, LASSO, SL0 and SWCGP
as a function ofα with L ∈ {5,10,15,20} (N = 512, M = 120,
FSNR= 10 dB).

possible with a norm-based iterative approach. In addition, we will
extend theSαS-CS method in the case of non-jointlySαS signal
and noise components (αw 6= αη ).
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