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ABSTRACT
We investigate the use of greedy sparse approximation for facilitat-
ing the time-domain analysis of room impulse responses (RIRs),
specifically locating the times and amplitudes of arrivals to not
long after the upper bound of the “mixing time,” i.e., the time af-
ter which there exists in theory the same number of sound rays per
unit volume throughout the room. We compare the performance
of two methods of greedy sparse approximation — matching pur-
suit (MP) and orthogonal MP (OMP) — for estimating arrival times
and amplitudes. By using RIRs generated from a stochastic model,
we quantify the performance of each estimator using dynamic time
warping to optimally pair estimated and true arrivals. We find OMP
significantly outperforms MP in estimating both the arrival times
and amplitudes, and having fewer erroneous and duplicated arrivals.

1. INTRODUCTION

One measures a room impulse response (RIR) in order to quantita-
tively study the acoustical characteristics of the room [1]. To mea-
sure an RIR in practice, one emits a wideband source, e.g., spark
gun, into a room, and measure local changes in pressure at specific
locations with receivers, e.g., microphones. We can model a RIR in
the high frequency domain by representing sound as rays that leave
a source at the speed of sound, and undergo reflections at bound-
aries before arriving at each receiver. An arrival in this model is
a sound ray emitted by the source that has undergone at least one
reflection during its journey to the position of the receiver. A rela-
tionship between the expected number arrivals received t seconds
after excitation is embodied in the relationship [1]

µA(t) =
4πc3

3V
t3 (1)

where V is the volume of the room in cubic meters, and c is the
speed of sound in meters per second. We wish to accurately de-
tect arrivals (both their times and amplitudes) in RIRs to study the
acoustical characteristics of the room, for instances its volume, its
coloration, etc.

Given a measured RIR r(t) assumed to be a superposition of ar-
rivals, we wish to find the time and amplitude of each arrival. This
problem has been addressed by a few methods within the field of
room acoustics. One approach uses an adaptive thresholding tech-
nique [2], which requires empirically testing a range of variables
to make the detection algorithm give results assumed to be reason-
able. Furthermore, this approach [2] essentially detects local time-
domain peaks in the RIR, and then equates those to arrivals. A
different approach [3, 4] uses a method of greedy sparse approxi-
mation to first decompose the RIR as a linear combination of the
estimated direct sound, and then to detect arrivals in a domain more
sparse than the original RIR. However, this approach is sensitive to
the parameters of the sparse approximation algorithm [3].

In this paper, we quantitatively look at the performance of
two estimators of arrival times and amplitudes in RIRs created us-
ing methods of greedy sparse approximation [5]: matching pursuit

(MP), and orthogonal MP (OMP). For our tests, we generate data
using a stochastic model of RIRs [6] — that has previously been
validated using various acoustical criteria [3,7] — with a variety of
source-receiver distances, and noise conditions. We calculate the
errors in arrival time estimation using a dynamic time warping ap-
proach to optimally match the detected arrivals to the true arrivals
with respect to three path policies having the same cost. In this
way, since we have a ground truth, and because we know the direct
sound, we find the best possible performance to be expected for de-
tecting arrivals from real RIRs using these two greedy methods for
sparse approximation. Our results conclusively show that OMP pro-
vides a much better estimator of arrival times and amplitudes than
does MP.

We emphasize that we are interested in detecting arrivals to not
long after the mixing time of a room, which is the time after which a
dynamical system, e.g., a concert hall, is mixed. In other words, the
mixing time is the time it takes for all sound rays in a room to have
the same probability to reach any phase point of the phase space at
any time. In room acoustics, the mixing time defines the time region
when the early arrivals transition to the late reverberation [4]. We
use a heuristic formulation of the mixing time as the time when we
expect at any location 10 arrivals within 24 ms, which is described
by the relation [8]:

Tmix ≈
√

V ms. (2)

In this work, we limit ourselves to estimating arrival times not long
after the mixing time because that is when the number of arrivals
is becoming so large that estimates will likely be poor using greedy
sparse approximation [3, 4].

2. ARRIVAL ESTIMATION BY
GREEDY SPARSE APPROXIMATION

We can model ideally the arrivals at one location a distance d ≥ 0
meters from the source by

h(t) = A0δ (t−d/c)+
∞∑

k=1

Akδ (t−Tk) (3)

where A = {Ak : R→ R}k∈N and T = {Tk ≥ Tk−1 > d/c : R→
R}k∈N are non-stationary and dependent random processes describ-
ing the behaviors of arrival amplitudes and times, respectively. The
value A2

0 ∝ d−2 scales the energy of the direct sound, or the unre-
flected source signal. Since real sources are band-limited signals,
we can synthesize an RIR by convolving h(t) with a band-limited
excitation d(t):

r(t) = (h?d)(t)+n(t). (4)

where n(t) is stationary and independently distributed zero mean
white noise with power σ

2
n ≥ 0. (Note that in this synthesis we

do not consider any filtering of sound rays by the boundaries of
the room.) If d(t) = δ (t − τ) and σ

2
n = 0 in (4), we can trivially

determine the arrival amplitudes A and times T from r(t) since all
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i ti Ti ti Ti ti Ti
1 141 141 141 141 141 141
2 2015 2016 2015 2016 2015 2016
3 2967 2155 2015 2155 – 2155
4 3004 2966 DTW

=⇒
2967 2966 PAIR

=⇒
2967 2966

5 3128 3128 3004 2966 3004 –
6 4049 3895 3128 3128 3128 3128
7 4049 4049 3895 – 3895
8 4049 4049 4049 4049

Table 1: Example of how we generate unique pairings of true {Ti}
and estimated {ti} arrival times. The times at left are paired opti-
mally (center) by dynamic time warping with respect to the absolute
time difference (16). We remove repetitions to enforce pairings to
be unique or absent (right).

we need to do is find the times and values where r(t)> 0. Otherwise
we must use a different method, such as localized thresholding [2],
or greedy sparse approximation [3, 4].

Let us define a dictionary D that contains all translations of the
estimated direct sound d̃(t); and define the amplitude compensated
RIR as

r̂(t) ∆
=eβ tr(t) (5)

for some specified β ≥ 0, assuming the excitation occurs at t = 0.
With this scaling we attempt to compensate the natural exponential
decay of power in the signal so that we can focus on finding arrivals
throughout the RIR independent of their powers. We wish to ex-
press r̂(t), which we write as the vector r, as a linear combination
of n elements from D:

r=

n∑
i=1

aibi +e(n) =B(n)a(n)+e(n) (6)

where each bi ∈ D is a translation of d̃(t), B(n) = [b1|b2| · · · |bn],
ai is a weight and the ith element of a(n), and e(n) is the nth-order
error signal (residual). We define the nth-order representation of r
as the set of elementsRn =

{
B(n),a(n),e(n)

}
.

Matching pursuit (MP) [5] is a greedy iterative descent ap-
proach to sparse approximation that updatesRn by

Rn+1 =

B(n+1) = [B(n)|bn+1],

a(n+1) = [aT (n),bT
n+1e(n)/||bn+1||22]

T ,
e(n+1) = r−B(n+1)a(n+1)

 (7)

using the atom selection criterion

bn+1
∆
= arg max

d∈D
|dTe(n)|/||d||2. (8)

An alternative to MP is Orthogonal MP (OMP) [5], which retains
the atom selection criterion of MP, but updates the representation
by

Rn+1 =


B(n+1) = [B(n)|bn],

a(n+1) =B†(n+1)r,
e(n+1) = r−B(n+1)a(n+1)

 (9)

where B†(n) ∆
=[BT (n)B(n)]−1BT (n) is the psuedoinverse of

B(n). This optimization guarantees that the nth-order residual will
be orthogonal to the nth-order representation basis B(n).

Finally, given an nth-order representation Rn of an amplitude
compensated RIR r̂(t), we can estimate n arrival times and ampli-
tudes with the sets [3, 4]

T̃n
∆
={τ(bi) : bi ∈B(n), i = 1, . . . ,n} (10)

Ãn
∆
={[a(n)]i : i = 1, . . . ,n} (11)
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Figure 1: Best path (thick black) matching a set of 65 true and 178
estimated arrival times. Contours denote distance surface.

where τ(bi) gives the time translation of the estimated direct sound
in bi from the dictionary D, and [a(n)]i is the ith element of a(n).
Note that with both MP (7) and OMP in (9) the amplitudes can
be negative and positive, and thus allow for modeling arrivals as
inversions of the direct sound.

Given the sets of sorted estimated and true arrival times and
amplitudes produced by either method of sparse approximation

T̃n = {t1, t2, . . . , tn : tm+1 ≥ tm} (12)

Ãn = {a1e−β t1 ,a2e−β t2 , . . . ,ane−β tn} (13)
T = {T1,T2, . . . ,TN : Tm+1 ≥ Tm} (14)
A= {A1,A2, . . . ,AN} (15)

we now define a measure with which we gauge the quality of the es-
timations. Note that we rescale the estimated amplitudes by apply-
ing the inverse of (5). We first find the optimal pairing of members
from each set of arrival times by performing dynamic time warp-
ing with three simple path policies, each carrying the same cost: 1)
(1,0), i.e., skip true arrival; 2) (0,1), i.e., skip estimated arrival; and
3) (1,1), i.e., match estimated with true arrival. We use the distance
measure defined as the absolute time difference:

D(ti,Tj)
∆
= |ti−Tj|. (16)

This process returns the best path through the two sets of arrival
times, an example of which is shown by Fig. 1. From the pairings of
these times, we then enforce unique pairs such that each estimated
arrival time is uniquely paired to one true arrival time, or none at all;
and similarly, that each true arrival time is paired to one estimated
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Figure 2: Number of arrivals in [0,1.5Tmix] for each realization of
each source-receiver distance. Squares denote means.
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(a) MP, SNR = 100 dB
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(b) OMP, SNR = 100 dB
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(c) MP, SNR = 30 dB
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(d) OMP, SNR = 30 dB
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Figure 3: Mean percentages of true arrivals missing from those estimated, and of estimated arrivals that are erroneous or duplicated, as a
function of decomposition iteration, or model order, for both MP and OMP. Time region analyzed is [0,1.5Tmix].

arrival time, or none at all. We demonstrate this process in Table 1
for an RIR with 7 true arrivals in which we have estimated 6 arrivals.
The right portion of this table shows the best pairing with respect
to the distance measure (16). Here we see that two of the seven
true arrival times are missing from the six estimated arrival times,
and one of the six arrival times is either a repetition or an erroneous
arrival. From these pairings, we can calculate, for instance: the
percentage of true arrivals missing from those estimated (which for
the example in Table 1 is 2/7); and the percentage of erroneous and
replicated arrivals in those estimated (1/6 in the same example).

3. COMPUTER SIMULATIONS

We now describe how we synthesize RIRs to generate testing data
with known arrival times and amplitudes, and then present the re-
sults of several simulations using MP and OMP for estimating the
arrivals in this synthetic data.

3.1 RIR Test Data Synthesis
We synthesize a set of 180 RIRs from realizations of a stochastic
process that models the arrivals and their amplitudes at one receiver
location for a room of a given volume, mean absorption coefficient,
and reverberation time [6]. It has been shown that the number of
arrivals in a time of duration ∆ ≥ 0 at a time t > 0 after the excita-
tion can be modeled as a non-stationary Poisson process where the
probability of k ≥ 0 arrivals is given by [6]

P[N(t,∆)−N(t,0) = k] =
[λ (t,∆)∆]ke−λ (t,∆)∆

k!
(17)

(and zero for k < 0), and with Poisson parameter given by

λ (t,∆) = µA(t +∆)−µA(t) =
4πc3

3V
(∆3 +3t2

∆+3t∆2) (18)

using the mean number of arrivals in (1). We model the magnitude
of an arrival as a random process, with parameters that are related

to the room volume, mean absorption coefficient, and reverberation
time. The sign of the arrival amplitude is a discrete binary random
variable distributed on ±1 with equal probability mass [9]. This
stochastic model of RIRs has been validated on a set of 8 concert
halls by comparing sets of room acoustical indices [3, 7]. With this
stochastic model, we generate 20 realizations of h(t) in (3) for each
of nine source-receiver distances ({1,6,11, . . . ,41} m) for a room
with V = 15000 m3, reverberation time RT = 1.5 s, and mean ab-
sorption coefficient α = 0.3, at a sampling rate of 48 kHz. We gen-
erate each RIR r(t) in (4) by setting d(t) (and d̃(t)) to be the direct
sound recorded from a pistol shot, and then adding white Gaussian
noise at a specific power. The distribution of the numbers of arrivals
within [0,1.5Tmix] for each of these realizations are shown in Fig.
2. We generate each amplitude compensated RIR by using β = 4.8,
set such that (5) appears to roughly compensate the natural power
decay of each RIR.

3.2 Estimation Results
In Fig. 3 we show the results of using MP and OMP for estimat-
ing arrival times with respect to the mean percentage of true arrivals
missing from, and the number of erroneous and replicated arrivals,
in those estimated. For each source-receiver distance we average
the results from all 20 realizations. We see that for both MP and
OMP, our estimations miss fewer arrivals as we push the model or-
der in (6) higher, but our detected arrivals begin to include more
erroneous and repeated arrivals. It is clear that both of these figures
of merit are jointly minimized at higher model orders for OMP than
for MP at a high SNR: between orders 135 and 155 for OMP, and
between orders 120 and 137 for MP. These orders do not change
significantly even with low SNR (tested to 15 dB — which is low
considering that the standardized SNR for measuring room acous-
tics characteristics is at least 30 dB), demonstrating the noise robust-
ness of this approach to greedy sparse approximation. However, it
is clear that of the two estimations OMP provides the best results
in terms of capturing true arrivals, and suppressing erroneous and
repeated arrivals.

Figure 4 shows the estimations of the arrivals (both in time and
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(a) MP, SR-distance = 1m, SNR = 60 dB
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(b) OMP, SR-distance = 1m, SNR = 60 dB
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(c) MP, SR-distance = 21m, SNR = 60 dB
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(d) OMP, SR-distance = 21m, SNR = 60 dB
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Figure 4: Comparisons of true and estimated arrival times (abscissa) and relative amplitudes (ordinate) using MP and OMP for two source-
receiver distances. Time and amplitude of direct sound is not shown.

amplitude) in two RIRs at different source-receiver distances (SR-
distance) using MP and OMP at 60 dB SNR. Note that we show
the estimated relative amplitudes of each arrival as well (below the
center line is negative amplitude). In Fig. 4(a) we see that MP
detects numerous arrivals around 80 ms where there exists two true
arrivals that are nearly overlapping. We see this same behavior at
several times after the mixing time. Figure 4(b) shows for the same
RIR that this behavior has nearly disappeared in the estimates found
by OMP. Additionally, the amplitudes of all arrivals are estimated
much better. We see the same results in Fig. 4(c-d) for an RIR
synthesized for a source-receiver distance of 21m.

3.3 Discussion

Essentially, the greedy sparse approximation methods MP and OMP
attempt to recover h(t) from r(t) in (4) by approximating its decon-

volution given an estimated direct sound d̃(t), and by making the
assumption that h(t) can be sparsely represented as a linear combi-
nation of a finite number of discrete translations of d̃(t). One might
attempt to perform a deconvolution by least squares minimization
of the norm residual, i.e.,

r=


d̃ 0 · · · 0
0 d̃ · · · 0

0 0
. . . 0

0 0 · · · d̃

a+n=Da+n (19)

=⇒ aLS = (DTD)−1DT r=D†r (20)

where d̃ is a column vector of the estimated direct sound, n is un-
known white Gaussian noise, and D is a full-column rank matrix
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(a) OMP w/o amplitude compensation (5), SNR = 100 dB
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(b) OMP w/o amplitude compensation (5), SNR = 60 dB
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Figure 5: Without amplitude compensation (5), the mean percentages of true arrivals missing from those estimated, and of estimated arrivals
that are erroneous or duplicated, as a function of decomposition iteration, or model order, for OMP. Time region analyzed is [0,1.5Tmix].

composed of all possible discrete translations of d̃. However, not
only will this solution be affected by noise (the degree to which
depends on the amount n points into the column space of D), the
solution will likely not be sparse since it only guarantees by con-
struction to minimize the error ||r−Da||2, e.g., the variance of the
estimated noise signal, and not the number of non-zero components
of a, i.e., its sparsity. In such a scenario, the resulting “activation
vector” aLS will not be nearly as sparse as 4. As a consequence then,
we would have to perform additional processing, such as threshold-
ing [2], to find and estimate the true arrivals using all the elements
of aLS that are not zero.

By using greedy sparse approximation for n-iterations, how-
ever, we obtain an n-sparse solution a(n) that, while not guaranteed
to minimize the error ||r−Da||2, is sparse by construction, and
thus removes the need to apply thresholding to find arrivals because
we can consider everything that is not zero to be an arrival. The as-
sumption here is that after n-iterations the greedy sparse approxima-
tion method has found n arrivals. Thus the thorny issue remains of
deciding when to stop the decomposition process, or in other words,
how to choose the best model order in (6). Previous work [4] has
looked at stopping the decomposition process using room acoustical
indices of the reconstructed RIR, and perceptual listening tests; but
these essentially consider the precision of the time-domain approx-
imation, and not the model of the underlying structure of the RIR.
Figure 3 tells us to stop the decomposition when the two curves are
at their joint minimum — but this requires knowledge of the true
arrivals. Regardless, our work here provides insight into only how
well greedy sparse approximation methods can detect arrivals in a
measured RIR — even when there is a significant amount of noise
— in the best case scenario, i.e., we know the direct sound, and that
there is no filtering at reflection boundaries.

4. CONCLUSION

We have investigated the differences between two methods of
greedy sparse approximation, specifically MP and OMP, in detect-
ing arrivals in RIRs and estimating their arrival times and ampli-
tudes, up to a time not long after the mixing time. We clearly see
that both methods are highly robust to SNR, but that OMP performs
significantly better than MP with respect to estimating both the time
and amplitude of each arrival in our set of simulated RIRs. This per-
formance difference is due to the ability of OMP to modify the am-
plitudes in the model each time it adds a new element, i.e., the use
of orthogonal projection in (9). In further experiments, we found
that preprocessing the RIRs with the amplitude compensation in (5)
appears to reduce the accuracy of arrival detection using OMP. We
see a much smaller percentages of replicated and missing arrivals
in Fig. 5 for two noise levels that those seen in Fig. 3, which uses
amplitude compensation before decomposition. This suggests that,
at least in our relatively synthetic experiements, we need not worry
about the effects of the natural decay of an RIR in the atom selec-
tion criterion of greedy approximation methods, e.g., (8) for MP

and OMP.
Our current work concerns the problem of order selection in

the model (6); comparing these greedy approaches to estimation
with those using other techniques, such as, localized time-domain
thresholding [2]; extracting the direct sound from the RIR itself; and
how to incorporate the filtering occurring at room boundaries into
the dictionary. We are also considering the impact on these results
of the “corrections” that are inherent to greedy sparse approxima-
tion methods [10].
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