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ABSTRACT

The identification of signal components in electroencephalographic
(EEG) data is a major task in neuroscience. The interest to this
area has regained new interest due to the possibilities of multi-
dimensional signal processing. In this contribution we analyze
event-related multi-channel EEG recordings on the basis of the
time-varying spectrum for each channel. To identify the signal com-
ponents it is a common approach to use parallel factor (PARAFAC)
analysis. However, the PARAFAC model cannot cope with compo-
nents appearing time-shifted over the different channels. Further-
more, it is not possible to track PARAFAC components over time.
We show how to overcome these problems by using the PARAFAC2
decomposition, which renders it an attractive approach for process-
ing EEG data with highly dynamic (moving) sources. Additionally,
we introduce the concept of PARAFAC2 component amplitudes,
which resolve the scaling ambiguity in the PARAFAC2 model and
can be used to judge the relevance of the components.

1. INTRODUCTION

In this contribution we focus on analyzing measured electroen-
cephalographic (EEG) data to identify the components of activity.
This analysis can also be used to detect and localize epileptic seizure
onset zones on the scalp as well as projections of cognitive pro-
cessing like speech or auditory handling. Unfortunately, different
sources in the brain can produce the same EEG pattern, which ren-
ders them in general non-separable. Source localization algorithms,
such as LORETA [15] or dipole fitting methods can resolve this am-
biguity by imposing additional assumptions. For further improve-
ments of these methods, preprocessing in form of subspace decom-
positions, e.g., principle component analysis (PCA), independent
component analysis (ICA), singular value decomposition (SVD), or
beamforming algorithms [10] have been applied. However, these
methods cannot exploit the multi-dimensional nature of the EEG
data. Moreover, to obtain matrix decompositions like PCA or ICA,
physically unsatisfiable assumptions like orthogonality or indepen-
dence have to be imposed. Therefore, tensor decompositions are
a more promising approach to handle EEG signals. Especially the
well known parallel factor (PARAFAC) analysis is widely used in
recent literature, because it is essentially unique under mild con-
ditions [2] without any artificial constraints, such as orthogonality.
In the last years PARAFAC was applied to EEG signals, e.g., for
estimating sources of cognitive processing [13], for the analysis of
event-related potentials (ERP) [14], and for epileptic seizure local-
ization [18].

In order to resolve the temporal evolution as well as the fre-
quency content of the EEG recordings, a time-frequency analysis
(TFA) is applied for each channel. Therefore, the data is analyzed
over three dimensions, i.e., time, frequency, and space (channels).
Different TFA algorithms have been studied for the analysis of EEG
signals [7]. The most common method is the continuous wavelet
transformation (CWT). However, wavelet analysis may not provide

adequate time and frequency resolution for EEG data. In [19] it was
shown that the reduced interference distribution (RID) [5] is partic-
ularly useful for the TFA of EEG data and its subsequent multi-way
component analysis, since it provides an improved time-frequency
resolution.

The common approaches for the three-way component analy-
sis of EEG data to date are based on the PARAFAC model. How-
ever, this model is not able to resolve moving EEG components
which appear time-shifted over the different channels. Therefore,
the PARAFAC component analysis is only useful in case of static
sources. In this contribution we introduce the PARAFAC2 decom-
position [9] for the space-time-frequency analysis of EEG data. The
PARAFAC2 model supports time-shifted component signals. Fur-
thermore, we show how the PARAFAC2 model can be adopted
in order to track the different EEG components over time. The
PARAFAC2 model is rarely used up to now, i.e., in [3] it is ap-
plied to chemometric data including retention time-shifts, and [1]
uses it for the time-space-window analysis of EEG and electrocar-
diographic (ECG) recordings. The PARAFAC2 model is essentially
unique up to scaling and permutation. In order to resolve the scaling
ambiguity, we introduce the least squares PARAFAC2 component
amplitudes which can be used to judge the influence of the individ-
ual components.

This paper is organized as follows: In Section 2 we clarify the
notation and define the operators and symbols that are used. In Sec-
tion 3 we discuss the signal processing steps to analyze EEG sig-
nals. Thereby, the Sections 3.1 and 3.2 present the methods for the
measurement preprocessing and the time-frequency analysis. Sub-
sequently, Section 3.3 describes the three-way component analysis
of the different time-frequency distributions using PARAFAC2. In
Section 4 we present the results of the event-related EEG analy-
sis based on measurements, before drawing the conclusions in Sec-
tion 5.

2. NOTATION

To facilitate the distinction between scalars, vectors, matrices, and
higher-order tensors, we use the following notation: scalars are
denoted by lower-case italic letters (a, b, ...), vectors by boldface
lower-case italic letters (a, b, ...), matrices by boldface upper-case
letters (A, B, ...), and tensors are denoted as upper-case, boldface,
calligraphic letters (A, B, ...). This notation is consistently used for
lower-order parts of a given structure, unless stated otherwise. For
example A ∈ R

I1×I2×···×IN represents an N -dimensional tensor
of size In along mode n. Its elements are referenced by ai1,i2,...,iN

for in = 1, 2, . . . In and n = 1, 2, . . . , N . For matrices we use the
superscripts T, H, −1, + for transposition, Hermitian transposition,
matrix inverse, and Moore-Penrose pseudo-inverse, respectively.

The tensor operations we use are consistent with [12]. The
higher-order norm of a tensor A, symbolized by ‖A‖H, is defined
as the square root of the sum of the squared magnitude of all el-
ements in A. The n-mode vectors of a tensor A are obtained
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by varying the n-th index in of the tensor elements ai1,i2,...,iN

within its range (1, 2, . . . , In) while keeping all the other in-
dices fixed. The matrix unfolding of the tensor A, denoted by
[A](n) ∈ R

In×I1·...·In−1·In+1·...·IN contains all the n-mode vec-
tors of the tensor A. The k-th frontal slice of a third order tensor
X ∈ R

I1×I2×I3 is addressed by [X ]:,:,k ∈ R
I1×I2 , where k can

reach the values 1 . . . I3. The operator vec{X } aligns all elements
of the tensor X into a column vector. The n-mode product of a
tensor A ∈ R

I1×···×IN and a matrix U ∈ R
Jn×In is denoted as

(A ×n U ) ∈ R
I1×···×Jn×···×IN . It is obtained by multiplying all

n-mode vectors of A from the left hand side by the matrix U . The
outer product of an N -dimensional tensor A and a K-dimensional
tensor B, denoted by (A ◦ B), is a (N + K)-dimensional tensor
whose elements are given by (A ◦ B)i1,...,iN ,j1,...jK = ai1,...,iN ·
bj1,...jK . An N -dimensional tensor A ∈ R

I1×···×IN is of rank one
if and only if it can be written as the outer product between N non-
zero vectors c(n) ∈ R

Mn , such that A = c(1) ◦ . . . ◦ c(N). The
three-dimensional identity tensor I3,d is defined as

I3,d =
d∑

n=1

en,d ◦ en,d ◦ en,d ∈ R
d×d×d , (1)

where en,d represents the n-th column of a d × d identity matrix
(also termed the n-th pinning vector of size d).

3. SIGNAL PROCESSING STEPS

The processing of EEG data is a very challenging task due to the dif-
ficult nature of these signals, e.g., they are non-stationary and suffer
from very low signal to noise ratios. Moreover, they are affected by
correlated noise with unknown distribution and artifacts originat-
ing from eye blinks, eye movements, and muscle activity as well as
from diverse technical distortions. Therefore, a suitable preprocess-
ing has to be applied in the form of filters, reference EEG channels,
and averaging over several trials. Afterwards, the time-frequency
analysis is applied to each channel individually, in order to resolve
the temporal evolution as well as the frequency content of the EEG
data. This is done by applying the Reduced Interference Distribu-
tion (RID) [5], since it provides an improved time and frequency
resolution. The components of the resulting three-dimensional sig-
nal, which changes in frequency, space (channels), and time, are
extracted via PARAFAC2 analysis (see Figure 1).

Measured
EEG data

Prepro-
cessing

Time-frequency
analysis

PARAFAC2
analysis

Figure 1: Signal processing steps for the identification of signal
components in event-related EEG data. After the measurements and
an appropriate preprocessing, the time-frequency analysis is per-
formed. The resulting three-way data is then analyzed using the
PARAFAC2 decomposition.

3.1 Measurement Description and Preprocessing
The EEG signal is recorded from a 23 year old, healthy and
right-handed woman. The position of the 64 EEG electrodes is
based on the international 10-10-system [4] with earlobe references
[(A1 + A2)/2]. The sampling frequency is chosen to 1000 sps
(samples per second). For the preprocessing of the raw signal, the
following off-line, digital, zero-phase filters are applied: a 7 Hz
high-pass, a 135 Hz low-pass, and a band-stop filter between 45
and 55 Hz. Thereby, all filters showed a stop-band suppression of
at least 60 dB. For the investigation of event-related potentials, we
record EEG data triggered by a visual stimulus. The subject sits in
front of a hemispherical perimeter. The stimulus is a 20 ms cen-
tral light flash from a white LED to the right eye. The triggered
EEG responses to this stimulus are averaged over 1600 trials for all
channels (see Figure 2).
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Figure 2: The course of the visual evoked potentials, averaged over
1600 trials and distributed over 64 channels according to the 10-10-
system [4]. The visual stimulus is a 20 ms light flash coming from
a white LED which is mounted in the central field of the right eye.
The occipital channels show the response (P100 and P200) earlier
than the frontal ones.

3.2 Time-Frequency Analysis
A powerful approach to time-frequency analysis is given by the
family of quadratic time-frequency distributions (TFD), which are
based on the temporal correlation function (TCF) qx(t, τ ) of the
signal x(t) defined as [7]

qx(t, τ ) = x(t +
τ

2
)x∗(t − τ

2
) . (2)

The Wigner-Ville distribution (WVD) Wx(t, f) of x(t) is defined
as the Fourier transform of the TCF with respect to the lag variable
τ [20, 17]

Wx(t, f) =

∞∫
−∞

qx(t, τ )e−j2πfτdτ . (3)

The ambiguity function Ax(θ, τ ) is defined as the inverse Fourier
transform of the TCF with respect to the time t [7]

Ax(θ, τ ) =

∞∫
−∞

qx(t, τ )ej2πθtdt . (4)

Thus, the ambiguity function and the WVD are related by the two-
dimensional Fourier transform. The main drawback of the time-
frequency analysis based on the TCF is that it produces cross terms
in Wx(t, f) as well as in Ax(θ, τ ). However, the time and fre-
quency resolution can be adjusted separately. In 1966 Cohen intro-
duced an overall class of TFDs based on the WVD which allow the
use of kernel functions for reducing cross terms [6]. This group of
TFDs Px(t, f) is defined as

Px(t, f) =

∞∫
−∞

∞∫
−∞

Ax(θ, τ )Θ(θ, τ )e−j2πθt−j2πτfdθdτ , (5)

where Θ(θ, τ ) is the kernel function. A large number of TFDs have
been proposed, each differing only in the choice of Θ(θ, τ ). These
kernel functions can be used to suppress the effect of the cross terms
on the TFD. Choi and Williams [5] introduced the reduced interfer-
ence distribution (RID), which is a TFD based on the exponential
kernel function

Θ(θ, τ ) = e−
θ2τ2

σ , (6)
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where σ > 0 is a scaling factor which influences the cross term sup-
pression. The RID has been proven to be especially useful for the
analysis of EEG data [19], also in connection with the subsequent
tensor decomposition (Figure 1).

3.3 Three-Way Component Analysis
After the time-frequency analysis the EEG data is represented by a
time-varying frequency distribution for every channel. This three-
way data can be expressed in form of a tensor

X ∈ R
NF×NT×NC , (7)

where NF and NT are the number of samples in frequency and
time, and NC is the number of channels, respectively. In order to
separate the signal components in this tensor, it is common to use
a multi-dimensional extension of the singular value decomposition
that is known as the PARAFAC decomposition [8]. Thereby, the
tensor is decomposed into a minimal sum of rank one components.
In the absence of noise, the PARAFAC model for the tensor (7) can
be represented as

X =
d∑

n=1

Y (n) =
d∑

n=1

an ◦ bn ◦ cn , (8)

where the vectors an ∈ R
NF , bn ∈ R

NT , and cn ∈ R
NC ,

represent the frequency, time, and channel signatures of the n-th
PARAFAC component. Moreover, d represents the number of sig-
nal components (PARAFAC model order). Since each PARAFAC
component Y (n) is constructed from the outer product of the chan-
nel, time and frequency signature, it represents a component sig-
nal with a rank-one time-frequency distribution. Furthermore, the
component signal can vary over the different channels only by a
scalar factor ck,n, which is the k-th element of the channel signa-
ture cn. Therefore, the k-th frontal slice [Y (n)]:,:,k ∈ R

NF×NT for
k = 1 . . . NC of each component tensor Y (n) is given by

[Y (n)]:,:,k = an · ck,n · bT
n . (9)

For the analysis of moving EEG sources, it is crucial to allow that
the component signals can appear time-shifted over the channels.
Therefore, we have to adopt the PARAFAC components Y (n) such
that the time signature bn can vary over the channel indices k =
1 . . . NC. This yields the following PARAFAC2 [9] component

[Z (n)]:,:,k = an · ck,n · tTn,k , (10)

where the vector tk,n ∈ R
NT is the time signature for the k-th

channel (k = 1 . . . NC). By introducing the component matrices
A = [a1, a2, . . . , ar] ∈ R

NF×r, Tk = [tk,1, tk,2, . . . , tk,r] ∈
R

NT×r, as well as the vector of channel signatures sk =
[ck,1, ck,2, . . . , ck,r]

T the decomposition of the tensor X reads as

[X ]:,:,k = A · diag{sk} · Tk . (11)

Here, r is the number of PARAFAC2 components (PARAFAC2
model order). The decomposition model (11) is not essentially
unique without an additional constraint introduced by [9]

T T
k · Tk = H ∈ R

r×r . (12)

This constraint together with the model equation (11) yields the
PARAFAC2 decomposition. Please note that equation (12) con-
strains the sample cross-correlation matrix H between the time sig-
natures of the different PARAFAC2 components to be constant over
the channel index k = 1 . . . NC. Thereby, relative time-shifts from
channel to channel between the time signatures of each PARAFAC2
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Figure 3: Reconstruction error for the PARAFAC and the
PARAFAC2 model for different number of sources in a time win-
dow from 121 ms to 240 ms. The PARAFAC reconstruction error
does not decrease with increasing model order, which indicates that
the model does not fit to the data. The PARAFAC2 model is able to
explain the VEP data with adequate number of signal components.

component are allowed. However, these relative time-shifts have to
remain constant for all components.

The direct fitting algorithm for the computation of the
PARAFAC2 model used within this contribution was introduced by
[11]. It is based on the fact that the model equations (11) and (12)
can be transformed into a PARAFAC decomposition of the tensor
W ∈ R

NF×r×NC , which is given by

[W ]:,:,k = [X ]:,:,k · Pk = A · diag{sk} · DT , (13)

where Pk is a matrix of size NT × r with orthogonal columns, and
D is of size r × r. The matrix Pk can be computed via alternating
least squares (ALS) iterations using the singular value decomposi-
tion (SVD) of

D · diag{sk} · AT · [X ]:,:,k = Uk · Σk · V T
k (14)

Pk = Vk · UT
k (15)

The time signatures of the PARAFAC2 decomposition of X are
then given by

Tk = Pk · D . (16)

Please note that for the solution of (13) an arbitrary PARAFAC al-
gorithm can be used. For the computation of the PARAFAC de-
composition the most common methods to date are based on itera-
tive alternating least squares algorithms. However, these algorithms
may require many iterations and are not guaranteed to converge to
the global minimum. In this contribution we use the recently de-
veloped closed-form PARAFAC algorithm [16], which outperforms
the iterative approaches.

3.3.1 Closed-Form PARAFAC

The closed-form PARAFAC algorithm is based on the higher order
singular value decomposition (HOSVD) of the tensor W which is
defined as [12]

W = Q ×1 U1 ×2 U2 ×3 U3 , (17)

where Q ∈ R
NF×r×NC is the full core tensor of same size as

W . The unitary matrices U1 ∈ R
NF×NF , U2 ∈ R

r×r and
U3 ∈ R

NC×NC provide an orthonormal basis for the 1-mode, 2-
mode, and 3-mode vector spaces of W , respectively. Thus, the
HOSVD can easily be obtained from the matrix singular value de-
composition of the n-mode matrix unfoldings of W [12]. In the
non-degenerate case (r ≤ min{NF, NC}) the HOSVD of the ten-
sor W can be truncated to

W = Q[s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 , (18)
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where Q[s] ∈ R
r×r×r and where U

[s]
1 , U

[s]
2 and U

[s]
3 are of size

(NF × r), (r × r), and (NC × r), respectively. By defining the
matrix C = [c1, . . . cr] ∈ R

NC×r we can rewrite the PARAFAC
model (8) in terms of the identity tensor I3,r

W = I3,r ×1 A ×2 D ×3 C . (19)

Comparing the equations (18) and (19) indicates that there is a
link between the PARAFAC model and the HOSVD. To exploit
this connection we define the transformation matrices T1 ∈ R

r×r,
T2 ∈ R

r×r, and T3 ∈ R
r×r such that

A = U
[s]
1 · T1 , D = U

[s]
2 · T2 , C = U

[s]
3 · T3 . (20)

Inserting these equations into (19) and comparing it with (18) yields

Q[s] ×1 T −1
1 ×2 T −1

2 ×3 T −1
3 = I3,r . (21)

Therefore, the closed-form PARAFAC algorithm estimates the
transformation matrices that diagonalize the truncated core tensor
Q[s] to the identity tensor I3,r . In [16] it is shown that this can be
accomplished very efficiently by means of joint matrix diagonaliza-
tions, also in the degenerate case. The resulting closed-form algo-
rithm outperforms iterative approaches especially in critical scenar-
ios, since it does not require alternating least squares iterations. By
considering different criteria for the choice of the final component
estimates, it provides the opportunity to obtain a tradeoff between
accuracy and computational complexity.

3.3.2 Scaling ambiguity in PARAFAC2

The PARAFAC2 model equation (11) can be reformulated in terms
of component tensors as

X =

r∑
n=1

Z (n) =

r∑
n=1

an ◦ (Fn · diag{cn}) , (22)

where Fn = [t1,n, t2,n, . . . , tNC,n] is the matrix of time signatures
for the n-th PARAFAC2 component of size NT × NC. Similarly
to the PARAFAC decomposition, the PARAFAC2 decomposition
in (22) together with (12) is essentially unique up to scaling and
permutation. In order to resolve the scaling ambiguity and to judge
the influence of the components, we extend the idea of least squares
PARAFAC component amplitudes [19] to the PARAFAC2 model.
To this end we introduce the following normalization.

a′
n =

an

‖an‖F
, t′k,n =

tk,n

‖tk,n‖F
, c′

n =
cn

‖cn‖F
, (23)

for n = 1 . . . r and k = 1 . . . NC. Here ‖·‖F denotes the Frobenius
norm. Please note that these normalization leads to ‖a′

n ◦ (F ′
n ·

diag{c′
n})‖H = 1 with F ′

n = [t′1,n, t′2,n, . . . , t′NC,n]. Next we
introduce the PARAFAC2 component amplitudes γn by

X ≈
r∑

n=1

γn · a′
n ◦ (F ′

n · diag{c′
n}) =

r∑
n=1

γn · Z(n)′ . (24)

To determine all amplitudes jointly we rewrite this equation by ap-
plying the vec operator to

vec{X } = [vec{Z (1)′}, vec{Z (2)′}, . . . , vec{Z (r)′}] ·γ , (25)

where the vector γ = [γ1, . . . , γr]
T contains all component ampli-

tudes. The least squares solution for the set of linear equations (25)
is given by

γ =
[
vec{Z (1)′}, vec{Z (2)′}, . . . , vec{Z (r)′}

]+

vec{X } . (26)

In practical applications the PARAFAC2 model often does not ex-
actly fit the data, and no apriori knowledge can be used to resolve
the scaling and permutation ambiguity. In these cases we suggest to
judge the influence of the components based on the magnitudes of
the component amplitudes γn.

PARAFAC2 205 ms

PARAFAC2 160 ms

PARAFAC 121 – 240 ms

Figure 4: PARAFAC and PARAFAC2 signal components for the
TFA based on the reduced interference distribution. The analysis
window reaches from 121 to 240 ms. The PARAFAC2 analysis
clearly indicates that there is an occipital component over the right
visual cortex as well as a short component at 205 ms over the mo-
toric center (electrodes C3 / C4). The temporal location of the com-
ponents is resolved only by the PARAFAC2 analysis.

4. EXPERIMENTAL RESULTS

For the experimental validation of the component analysis algo-
rithm, we apply both the PARAFAC and the PARAFAC2 decompo-
sition on the measured visual evoked potentials (VEP) presented in
Figure 2. In this data-set a strong positive wave is observed around
100 ms and 200 ms. This P100 and P200 component is well known
in literature for this kind of VEP. However, both components ap-
pear slightly time-shifted on the different channels, e.g., they are
observed slightly earlier on the occipital parts. This clearly indi-
cates the presence of moving sources, which cannot be analyzed
via the PARAFAC decomposition. This is also reflected by the rel-
ative reconstruction error (27) of the PARAFAC model, which is
depicted in the upper part of Figure 3.

EP(d) =

‖X −
d∑

n=1

an ◦ bn ◦ cn‖H

‖X ‖H
. (27)

It is clearly recognized that the relative reconstruction error does not
decrease with increasing number of PARAFAC components (note
that for each model order the decompositions (8) and (11) are re-
computed). Therefore, the PARAFAC model is not able to explain
the measured data, since the time-shifts lead to a dramatic growth of
the model order. On the other hand, the PARAFAC2 model shows
a significant degradation in the relative reconstruction error (28) for
increasing number of PARAFAC2 components.

EP2(r) =

‖X −
r∑

n=1

an ◦ (Fn · diag{cn})‖H

‖X ‖H
. (28)

Using a model order of r = 3, PARAFAC2 is able to explain
more than 98% of the measured data. This clearly indicates that the
PARAFAC2 decomposition is able to resolve the signal components
of moving (time-shifted) EEG sources. Moreover, the PARAFAC2
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model allows us to track the signal components over the time. This
is achieved by combining the PARAFAC2 time signatures Fn and
the channel signatures cn to a matrix Gn = Fn · vec{cn} of size
NT × NF such that the PARAFAC2 model (22) becomes

X =

r∑
n=1

an ◦ (Fn · diag{cn}) =

r∑
n=1

an ◦ Gn . (29)

Therefore, each PARAFAC2 component can be interpreted as outer
product of a constant frequency signature an and a time-varying
channel signature Gn. Please note that this enables us to track
the channel signatures over time with the same resolution as the
original signal X (note that it is not necessary to compute the
PARAFAC2 model in overlapping time windows to achieve the
time tracking.). The time tracking of channel signatures is not pos-
sible with the PARAFAC component analysis. The time-varying
PARAFAC2 channel signature provide new insights into the com-
ponent analysis of EEG data, as demonstrated in Figure 4. The
upper part of this Figure shows three PARAFAC channel signatures
within a time window ranging from 120 ms to 240 ms. They show
a strong component on the right occipital parts of the scalp, as well
as some activities on the motoric center (C3 / C4 electrode). How-
ever, it is not possible to extract the exact temporal location of these
components. Moreover, we observed that distinct temporally sep-
arated sources mix up to one PARAFAC channel signature, since
the PARAFAC model has to describe the whole data window with
rank-one components. This effect can be seen in comparison with
the temporally exactly located PARAFAC2 channel signatures in
the middle (160 ms) and the lower part (205 ms) of Figure 4. At
160 ms the PARAFAC2 components indicate a clean component
originating from the visual cortex on the right occipital part of the
scalp, whereas the motoric components appear very shortly 45 ms
later over the motoric center (C3 / C4 electrode).

5. CONCLUSION

In this contribution we have derived a novel concept for the
component analysis of multi-channel EEG data by applying the
PARAFAC2 decomposition on the time-frequency distributions of
all channels. We have shown that the PARAFAC2 model is
able to cope with time-shifted signal components originating from
moving EEG sources. Therefore, the PARAFAC2 decomposition
clearly outperforms the commonly used PARAFAC decomposition
in case of highly dynamic signals. Additionally, we have demon-
strated how the PARAFAC2 model can be used to implement a
temporal tracking of the channel signatures for each component.
Thereby, the temporal resolution is the same as for the original
EEG signal, which provides new insights into the temporal evo-
lution of EEG components. In order to increase the robustness
of the direct fitting PARAFAC2 algorithm we use the recently de-
veloped closed-form PARAFAC algorithm for the computation of
the PARAFAC2 model. Moreover, we introduced the least squares
PARAFAC2 amplitudes in order to resolve the scaling ambiguities
of the PARAFAC2 model. Furthermore, we suggest to use these
amplitudes to judge the influence of the PARAFAC2 components.
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