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ABSTRACT Other alternative particle filters have been proposed to

; ; ; Ive the multi-target tracking problem. A particle filter
In this article, we address the problem of multiple targe 0 795 . )
tracking. Particle filter solutions must mainly cope withotw "gased on Probabilistic Multiple Hypothesis Tracker (PMHT)

problems: a high-dimensional problem and a data associglrategy has been proposed in [3]. It requires the estimatio

tion problem. We propose to solve both problems simulta-Of false alarm and association probabilities. The problem i

neously thanks to a particle filter based on a Gibbs sampléglved via a Gibbs sampler that estimates these densities,
that simulates both state space and association variabes, Prior to the computation of the particle weights. However
present two possible implementations of this solution thaf'€ PMHT approach which is based on an independence hy-
differ in their inner structure: the first one samples thedion pothesis generally leads to degraded performance compared
tional densities with a Hastings-Metropolis algorithm lghi © JPDA filters [11]. In [10], a new particle filter strategysha
the second one uses importance sampling. These algorithrﬂgen proposed to solve the association problem at a tractabl

are shown to be as efficient as JPDA particle filters, with ost. In this solution, association variables are sampied a
dramatic reduction of the computational cost. well as target states by means of a proposal distribution tha

permits to factorize the importance weights over the irivi
ual target associations and thus solve the dimensionat prob
1. INTRODUCTION lem. However this procedure involves additional resangplin

Multi-target tracking is a well-known problem that consist Steps for the cumulative weights, and must be repeated sev-
of sequentially estimating the states of several targets fr €ral times to avoid depletion problems in the final Monte
noisy data. It is encountered in many applications, for in-Carlo representation of the posterior density, thus legdin
stance aircraft tracking from radar measurements [5] dr foo 23ain to important computational costs. Another solutmn f
ball player tracking in a video sequence [9]. Solutions &f th the dimensional problem, described in [6], consists inaepl
problem using particle filters have been proposed in the pa#?d the importance sampling approach in the classical-parti
ten years [5’ 10, 6] Two prob'ems are genera”y faced: cle filter by a Monte Carlo Markov Chain (MCMC) method

e adimensional problem: the state vector gathers all targ%l' However this interesting solution does not deal wité th

states and its size increases with the number of targets. nomblnatonal problem.

this high-dimensional state space, particle filters tend t%i
become inefficient.

e a data association problem: data consist of a set of me
surements resulting from a thresholding procedure. Eac

measurement may correspond either to a target or 10 @ et conditionally to the othersThe first solution estizsa

false alarm. Conversely, a target may have been eithgfase conditional densities via a Hastings-Metropoli-alg

detected or missed. How to determine which targets havig, o, \ithin the Gibbs sampler: it therefore presents a full
been detected, and which measurement correspond

5 S fficMC structure. On the contrary, the second solution per-
each detected target: forms an importance sampling step within the Gibbs sampler
Although this second problem may not be faced in someén order to estimate the conditional densities. This hybrid
multitarget tracking applications, we will consider heie s structure permits to keep advantages of both MCMC and im-
uations where both dimensional and data association issugsrtance sampling algorithms.
arise. The Joint Probabilistic Data Association (JPDAgfilt This article is organised as follows: the multi-target
is a classical approach to tackle the data associationgmobl model is presented in section 2. The two proposed algorithms
[2]. It considers all possible associations between targetl  are derived in section 3. Finally we present simulations and
measurements, and solves the tracking problem by estimatonclusions in section 4.
ing the marginal posterior density of each target staterint
estingly, this approach also solves the dimensional proble 2. THE MULTI-TARGET MODEL
since it effectively resorts to one filter per target [10].vSe ] ] . )
eral JPDA particle filters have been proposed in the liteeatu In this section, we describe the multi-target model. Noge th
[3, 10, 1]. For a small number of targets and measurement4/e will assume throughout this article that the number of
this approach is very efficient. However, the number of postargetsMr is known and constant over time.
sible associations combinatorially grows with the numder o~ Let us denote by, the vector describing the state of
targets and measurements. For target tracking at low SNRe n'" target i € {1,Mr}) at time instank. Similarly, at
and a fixed detection probability, many false alarms occuthis time instant, the observations are provided by a set of
and the JPDA patrticle filter becomes intractable. My measurementézy j)jc(1m,}- A variable 6, can be in-

We propose in this article two filters that can solve both
mensional and association problems at a computational
cost linear in the number of targets and observations. These
Wo solutions resort to a Gibbs sampler [4] to break the high-
imensional structure of the state space by sampling each
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troduced to associate targeto the observation it generated; 3.1 Hastings-Metropolis-within-Gibbs particle filter
this association variable is defined as The Hastings-Metropolis algorithm (HMA) [7] is based on

. if the observatior j is generated a simple acceptation-reject principle. At each iteratian,
Bcn = I = by targetn with state vectoiy p; proposed samplgyn is drawn according to an instrumental
0 = iftargetnhas not been detected. law q(yknlyk —n, ¥Yk-1,21x) and is accepted with a probabil-

ity defined by the Hastings-Metropolis (HM) ratio, given by
State  vectors (Xn)ne{i,mr}, ~Measurement  vectors A -
(zcj)je(img and association variables Bn)ne(1my} g P(Fknl¥k—n:Z16)A(Yicp [Yk—n, Yi-1,Z1)
can be concatenated into vectais zx and 6 respectively. - n( i—1 S ’
. . Yin [¥k—n 214)A(Fkn| Yk —ns k-1, Z1:%)
With these notations, the" target statex , can be mod- _ ko " en
elled by the general state equation: wherey, I denotes the last accepted sample.

Xkn = fk(Xk-1,n, Vk-1n), (1) .
" ( " o) _ o 3.1.1 Computation of p(y.n|yk—n,Z1x)
where fi(+,-) represents the target dynamics at time instant '

k, andvyp is a (possibly non gaussian) noise vector. Sincésing Bayes law, we can write

measurements can be generated either by a real target or b, z11) 00 0(z z1. Z.

a false alarm, the observation model is two-fold: Bynlyn. 1'k)_ p(- ¥ Z1i-1) Pkl k- Z14-1);
o Ifthe measurement is generated by a target, it is modelle@here the proportionality factor, equal pozk|yk, —n, z1x-1),

by a standard measurement equation; disappears in the HM ratio since it doesn’'t depend on target
e If the measurement corresponds to a false alarm, it i§- Conditionally toyy, the target contributions can be sepa-
modelled by a uniform random variable [2, 10]. rated from false alarms ip(zx|yk, z1x-1):
This can be summarized as follows: 1 Mr
2 — { h(Xkn, k) if InE {1, M7} st 6n =] P(zk|yk, Z1k-1) = ymaxom i | | P(zk 64 Xka): (2)
’ Uy j otherwise q

. . “1;

wherehy(-,-) models the relationship between the target statévhere we assumed thatzy g, ,[xkq) = 7 if 6q=0. The

and the observatiomy, is a (possibly non gaussian) noise term ¥ MaX0M«—Mr) accounts for the case where there are
vector, anduy j is a uniform variable of probability density more measurements than targets: these measurements in ex-

p(ukj) = 1/7 over the observation window of voluné. cess are false alarms. Of course additional false alarse ari
for association$ q = 0.
3. GIBBS SAMPLER BASED PARTICLE FILTERS The densityp(yi nlyk —n:Z1_1) can be factorized as

The c;lassical parti_cle filter aims at estimating the obyecti P(¥kn|¥k —n»Z1k 1) = P(Xkn|Z1k 1) P(6knlB n)-  (3)
densityp(xk|z1k) via a set of particles. In multitarget track- o .

ing, this leads to the two aforementioned issues of high diHere the predictive densitp(xn|z1k-1) can be computed
mension and association. The JPDA particle filter solves thirom the set olN,, particlesx_, obtained at timé&— 1. In-
high dimensional problem by sampling the marginal densigeed, as particles,_, , are distributed according to the pos-
ties p(xyn|z1x) instead of the objective density(xk|z1x), terior densityp(x (. )

and solves the association problem by considering all possi YR Xk-1n/Z1k-1),
ble association§. However it faces a combinatorial growth '

of the number of possible associations with the number oP(knlz1k-1) = / P(xknlXk-1,n) P(Xk-1,n|21:%-1) BXic-1.n
targets and measurements. In this article, we consideradst
a particle filter that estimates the posterior denpityk|z1x)

of the completed variablg = [xy, 6. For clarity in the
calculations, we will decompose this variable in the form  Fipgjly, P(Bkn|6k _n) in (3) must be assigned a prior density.

Q

1 .
Wp 2 p(xk,n‘xlk—l,n)'
|

V= [yll’yEZ’ o 7y[MT]T with yin = [X[n’ ek’n]T. We propose to use the following prior, inspired from [10]:
Sampling the completed variabjg with importance sam- 1-Pb ',f j=0
pling as in standard particle filter leads to degraded perfor . 0 if 3g€ {1, Mr}—n:
mance compared to JPDA particle filter [10]. We propose P(6kn= j|6-n) = bq=17#0 (4)
here to use a Gibbs sampler [7] in order to draw samples ac- P otherwise
cording to the posterior distributiop(yk|z1k). More pre- My, —n

cisely, our Gibbs sampler works by sampling the entrie
Ykn according to the conditional densitip&yi n|yk —n, z1x).
where yy _n = [yllv""yln—l’ylwlv“"ylMT}T' This
one-target-at-a-time feature permits to break the higlt.1.2 Choice of theinstrumental law
dimensionality of the problem. However, the ConditionalWe choose here an instrumental law that factorizes between
densitiesp(yknlyk —n,z1x) are themselves difficult to sam- he stat dth iati iable:

ple directly and we must resort to simulation techniques. wéhe state and the association variable:

propose two solutions for the simulation of these condélon  q(ykn|yk —n: Yk-1,21k) = Ad(Xkn|Yk—n, Yk-1,Z1k)

densities. The first one is based on a Hastings-Metropolis X (6 n|Xin: Yk —n» Yk—1,21k)-
algorithm, and the second one on importance sampling. (5)

Swith My,—n the number of remaining measurements not as-
signed by variablegy _, andPs the detection probability.
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For the target state, we choose an instrumental distributioAlgorithm 1 Metropolis-within-Gibbs algorithm (HMWG)

derived from the target dynamics, expressed as:
1 q
Q(Xk.n|Yk,fn»Yk71,Z1:k) = No z p(Xk,n|Xk_1‘n)~
P °q :

This choice consists in choosing randomly one particleén th
set(xif_l’n)ie_{lﬁ,\,p} and_ propagating it according_ to the state
equation. Itis the equivalent for the HMA to the instruménta
law used in standard patrticle filter when the instrumental la

1: fori=1toNpdo

2:  draw arandom permutationof the target sef1, Mt }
3: forn=1toMy do

4 Propagation: draw a candidate partigg, = ~

1 N
N, % pn(y')\n|xg_1’/\n);

Draw a candidate associatiéR,, according to the
distributionq(6 5, |6k —a,» Xk);

is provided by the state equation. Besides it presents #a gr & ComputeQy », (v, 6k ,) from (7);
advantage of simplifying with the densipfxy|z14_1)inthe 7 Compute the HM ratiar as expressed in (8);
HM ratio, thus lightening the ratio calculation. Note fiyall & Draw a uniform variable of0, 1]: u~ %o y;
that this choice leads to an independent HMA; this particula 9: ifu<=athen
class of HMA has strong convergence properties [8]. 10: Accept:xL’/\n = Y')\n;

As for the association variable, we choose an instrumenizi: else . ,
tal distribution that takes into account the current observ 12: Reject:x; A= XL_Aln ;
tion, so that most probable associations will be favoretiént 3. end if ’ '
sampling. Using Bayes, we can write 14:  end for

15: end for

A(Bn| XK ns Yk —n Yk—1,21k) 0 P(2k|yk: Z1k-1)
X PG n| Xk ns Yk, —ns Yi—1,Z1k—1)-

In this expressionp(zk|yk,z1x-1) is given by (2), whereas
P(Bcn|xicn, Yk —n, Yk-1,21%-1) = P(Bkn|6c—n) is provided
by (4). The instrumental distribution for the associatianiv
able can then straightforwardly be computed as:

A(Bcn = j[XKkns Yk —ns Yk-1,21k) =
1 (1-m)

1 (1-m) if j=0
¥ Qun(Xk, G —n) . :
0 f3g€{LMr}—n:  (6)
6k.q = 7é 0
P Pz j[xk) otherwise

Mu,—n Qk,n(xk, 6k,—n)

with the normalization coefficier@y n(xx, 6 —n) given by:

1-P B Yk
)=-—_2 S Ix0). (7
ka(xkvek-, n) o T Mu,—n = p(zk7J|Xk) (7)
16k n

3.1.3 HM-within-Gibbs algorithm (HMWG)

sampling instead of considering all possible associations
The computation cost becomes linear in the number of tar-
gets (targets are sampled individually) and in the number of
measurements (from the computationQf,). On the dark

side, it looses the variance reduction feature of the impor-
tance sampling, and requires a burn-in period before the gen
erated Markov chain converges to its stationary distrdsuti

3.2 Hybrid Importance-Sampling-Gibbs particle filter

We now present a hybrid algorithm that combines advantages
of both MCMC and importance sampling (I1S). Recall that the
HMA was previously used to draw particles according to the
conditional densitiep(yk n|yk —n,z1x). This HMA step can

be replaced by an IS step in order to draw weighted particles
representing the conditional densitigS/« n|yk,—n, Z1:x)-

IS can be used in two ways. We can use independent sets
of particles at each time step to estimate the objective den-
sity; then particles are generated using the same instrumen
tal distribution as the HMA, and weights are not propagated
through time. Or we can use sequential IS as in standard par-
ticle filter: particles are propagated through time, andrthe
weights computed recursively. Then the instrumental law

We can now derive the HM ratio. The previous choices makenust be chosen accordingly, and a resampling step must be
the computation very easy since quantities independent @fdded to deal with the possible degeneracy of the partitle se

targetn get simplified, as well as terms induced by the targe
dynamics. The final expression of the ratio is simply:

q = Qk,n(fik, ek,—n)

— 4Qk’n(XL713 ell(iln) I

(8)

where yx = [Xk, 6 is the candidate sample. The first
method we propose is summarized by Algorithm 1 and calle

HMWG. Note that in this algorithm, targets are considered in

a random ordeA over the target setl, Mt }. This common
strategy insures certain convergence properties.

Note that if systematic resampling is used, these two strate
gies are equivalent. We will detail now the second strategy.

3.2.1 Weight propagation

Similarly to the classical sequential IS particle filter,igigs
for particlesy, ,, can be recursively computed as:

P(2k|Yie 21k 1) P(Y kel Vi v Yk 10 Z1k-1)

d W i
Oow i :
k. k—1
" " q(Ykn‘y:(’,myL,yZlik)

In this expression, the density(z|yl,z1x 1) has already

The HMWG algorithm presents some interesting fea-been provided by (2). Besides we have:
tures: the inner HM structure requires no importance wsight O i
and therefore no intermediate resampling steps, unlike thep(yk,n_‘yk,—_n’yk.—l’zlik—l)

multi-target particle filter presented in [10]. The outebzs

= p(XL7n| 9|I(7nvy:(7_n7 yL_lv zl:k—l) p(eli(7n|YK,—n7 yL_lv zl:k—l)

sampler structure solves the association problem by MCMC= p(x ,[xi_1 ,) P(6} | 6 _,)-
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Algorithm 2 Hybrid algorithm 55000 el vacks

1: for i=1toNydo
2. draw a random permutatioh of the set of targets

55000 JPDAPF ——

{1 MT} % 45000 E 45000
)
3: forn=1toMt do .
4: Prediction:  draw particlex , according to
el 35000 35000
i | . 35000 45000 55000 35000 45000 55000
pn(xk,n|xk—1,n)’ X (m) x(m)
5: Draw associatiorf ,, according to the distribution 55000 — s5000 o

Ak A |6k 2, %)
6: ComputeQy x, (i, ba ) from (7) ;
7

£ 45000 i 45000

: Update weightsv'km according to (9); ”
8: end for
9: end for ) 35000 35000
. i ) Vvlk 35000 45000 55000 35000 45000 55000
10: Normalize weightsw} | = -5 ; x(m) xm)
’ Zj:kaA,n

11: Resample if necessary.
Figure 1: Example of a 5-target scenario. Upper left plot:

real tracks. Other plots: tracking estimators.

Here p(x| ,|x|_,,) is easily obtained from the state equa-

tion, while p(6, |6 ) can be expressed by prior (4). Xyn = [ka,yk,n,vﬁ’n,vi‘n]T representing the position and ve-
' locity in x andy directions. The state equation is given by
3.2.2 Choice of the instrumental law 1 T 1 0
: : e Xk,n = | ® Xk—1,nt Vk—1,n
As previously, we choose an instrumental law that verifies ’ {0 1} [0 1 ’ o

the factorization property (5). For the state of targethe  where® denotes a Kronecker produst,_1 ,, is an additive
instrumental distribution is provided by the state equatio  gaussian noise ari is the interval between two consecutive
S : S samples. Measurements are provided by a predetection step
Q(XL,n|Y|'<.7n7YL71aZ1:k) = p(XIk,n|Xi<71,n)' performed with a quadratic detector. The detection proba-
) S o bility is set toP = 0.95 and the false alarm probability is
This choice implies that each particle is propagated accorccomputed at a given SNR assuming a non fluctuant model
ing to the corresponding target dynamics. Itis formallyiequ (Swerling 0). Each detection provides an observation in the
valent to the distribution used in the HMA. For the associaform of a distance and an angle between the radar and the tar-
tion variable, we cho_ose the law provided t_)y _(6) Whlg:h Perget: zy | = [rk’j7¢k‘j]T_ If measurement has been produced
mits to draw sequentially samples of associatiigstaking by targetn, the observation equation can then be written as
into account the current observation as well as the associa-

. T
tions B¢ _p.

B 7k j = {\/Xﬁn#-yﬁ,n, tan * (itn)] +ny j =h(xkn) +nkj,
3.2.3 The hybrid algorithm n

With these instrumental laws, the update equation for th
weights becomes:

Wwhereh(xyn) is a non linear function of the target state and
ny j is an additive gaussian noise.
We consider scenarios where targets are very close from
i i one another and are therefore located in the same cluster.
Wicn D Qi (i B —n)Whe-1.n ©) Benchmark performance is provided by the JPDA particle
P ; filter. A typical scenario with five close targets is presente
\évgﬁerzg(?ﬁ%(f'a’ gkgrrgplsrtig(;\:]earllit;t/)yc(SZ])s.taﬁtS :Egywrﬁ:?gtiearneori_n figure 1. Simulations are run for various SNR values, 1000
' ))\/Ionte Carlo simulations per SNR value and number of tar-

malized in order to get an estimate of the objective density. ts. Forth ke of . the th lqorith
Moreover, as the particle weights are propagated from tim@€'S- FOr the Sake of comparison, the thrée algorithms are ru

k-1 to timek, the particle cloud may degenerate, and a resamith the same number of particles, here 500 particles per tar
ple step must bg added if neces);aryg as in classical particiet: The HMWG particle filter uses part of this 500 particles
filter. which is not the case for the HVA. as a burn-in period, and the remain for estimation.

This second method is summarized by Algorithm 2.1t Performances measured in terms of mean square error

tween estimated and real positions and velocities, a&re pr
gathers advantages of both MCMC and IS approaches. TI#Ea L '

Gibbs sampler structure solves both high-dimensional anaentthed dlr'] f|g{yrﬁﬂ2. We Setﬁ tha:Lp%r;otggance ‘%fht.he. HnylG
association problems at a cost linear in the number of tarn' €0 ISI S'9 ytyv?)rse an de' HMVC\)I?Se-t IS 1S ptar tK
gets and measurements. The variance of the state estimat®gF2uSe less particles are used in 0 compute the

te estimator (burn-in period), and partly because the IS
reduced thanks to the IS step used to sample the target statg gorithm used in the JPDA patrticle filter reduces the vari-

4. SIMULATIONS. RESULTS AND CONCLUSIONS ance of the state estimator. However JPDA performqnce can

' ' be equalized or even outperformed by HMWG algorithm at
For the simulations, we consider a typical ground radar scea smaller computational cost by using more particles. Con-
nario: several targets move in tke/ plane at unknown con- versely, the proposed hybrid algorithm matches JPDA per-
stant velocity. Each target state is determined by a vectdormance for the same number of particles.
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Figure 2: Root Mean Square Error for the position (left) and

the velocity (right) for different numbers of targets.

A comparison of the three algorithms in terms of compu-
tational time versus SNR is presented in figure 3 for differen

2 targets 3 targets
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Figure 3: Run time vs SNR for different numbers of targets.

(1]

(2]

(3]

(4]

(5]

numbers of targets. In this regard, it is clear that the Gibbs

sampling dramatically improves the computational cost, pa
ticularly in two situations which both lead to a very large

number of associations: at low SNR, the two proposed algo-[6]
rithms present only a small increase in their computational
costs, due to the increase in the number of false alarms,

while the JPDA patrticle filter computational cost grows very

rapidly due to the combinatorial growth of the number of [7]

possible associations; similarly, for large numbers ajets,

we notice only a slight increase in the computational cost of 8]
the two proposed algorithms, while the JPDA computational
cost increases rapidly, once again because of the combinato
rial growth in the number of possible associations. Noté tha
the smallest SNR values have not been considered for th
scenarios with more targets because the JPDA particle filteﬁg]

becomes too costly for those SNR values.

As a conclusion, we have proposed two MCMC-based

particle filters that solve the association problem in neui

get tracking with a computational cost linear in the number10]

of targets and measurements. In particular, performance of
the proposed hybrid algorithm matches JPDA performance
at a much smaller cost. Finally, note that we assumed in this

article that the number of targets is known. In a forthcoming11]
work, we will therefore focus on more complex scenarios

where targets may enter or leave the observation area.
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