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ABSTRACT
We formulate, analyze, and solve a novel topic in detection
theory, here referred to as the unlucky broker problem. Sup-
pose you have a standard statistical test between two hy-
potheses, leading to the optimal Bayesian decision made by
exploiting a certain dataset. Later, suppose that part of the
data is lost, and we want to remake the test by using the sur-
viving data and the previous decision. What is the best we
can do?

Such problem, first considered in [1], is faced by standard
tools from detection theory. We afford the general form of
the optimal detectors, and discuss their operative modalities,
emphasizing the intriguing insights hidden in the solution.

1. INTRODUCTION

Suppose that a wireless sensor network is engaged in a bi-
nary detection task. Each node of the system collects mea-
surements about the state of the nature (H0 or H1) to be
discovered. A common fusion center receives the observa-
tions from the sensors and implements an optimal Bayesian
test, exploiting its knowledge of the a-priori probabilities of
the hypotheses. Later, the priors used in the test are revealed
to be inaccurate and a refined pair is made available. Unfor-
tunately, at that time, only a subset of the original data is still
available, along with the original decision. The unlucky bro-
ker problem is that of refining the original decision, taking
advantage of the new pair of priors and of the surviving data.

A further example, that reveals the origin of the name
unlucky broker, can be found in everyday life. Bernard is a
broker and his job is to recommend a portfolio assessment to
his customers. He relies on two data sets: one in the pub-
lic domain and another made of certain confidential informa-
tion he has received. To suggest the appropriate investments,
Bernard must decide between a positive or a negative mar-
ket trend, each characterized by an a-priori probability. He
makes his decision by minimizing the risk of making a wrong
prediction.

Just before visiting his customers, Bernard is informed
that his a priori information on the market trend were un-
reliable and he receives a refined version of them. At this
point, Bernard wants to revise his own decision to minimize
the risk in light of the new information he has available. Un-
fortunately, the unlucky Bernard has lost the files containing
the confidential information: his new decision must be based
only on the public domain data set and on his original deci-
sion.

In statistical terms, the scenario just considered can be
abstracted as in Fig. 1. A certain entity, we call it SA, ob-
serves the data (x,y) and implements an optimal Bayesian
test, exploiting the a-priori probabilities of the hypotheses,
π0A and π1A, yielding a decision δ (x,y) = 0,1 at (the best)
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Figure 1: Notional scheme of the unlucky broker problem.

Bayes risk level rA. Another entity, SB, which has a refined
version of priors, π0B and π1B, observes only a portion of the
original data (the vector x), receives from SA the binary value
δ (x,y) and makes the best Bayes decision δB(x,δ (x,y)) at a
Bayes risk rB.

In the described system architecture, we address the fol-
lowing basic questions. What is the best decision SB can
make, by exploiting the observation vector x and the binary
decision δ (x,y)? What about the behavior of the optimal
detector at site SB? Should SB simply retain the previous de-
cision δ , or should it ignore that, and use only the currently
available data set for a completely new decision? Or, what
else?

The notional scheme in Fig. 1 allows us to figure out that
a similar problem arises in decentralized detection with tan-
dem (serial) architecture; this topic is widely investigated in
the literature, see, e.g., [2–8]. In our case, however, the de-
cision δ does depend upon x, and this makes the problem
essentially different from that considered in the literature.

The paper is organized as follows. In the next section
the problem is formalized and the answers to the stated ques-
tions are given. Examples of applications are provided in
Sect. 3, while Sect. 4 concludes the paper. An extended ver-
sion of this work can be found in [1], where the focus on
the Neyman-Pearson setting. Since many general results are
similar, we refer the reader to [1] for many details and proofs
that are here omitted. On the other hand, the in-depth in-
vestigation of the Bayesian unlucky broker, not given in [1],
represents the original contribution of this work.
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2. STATEMENT OF THE PROBLEM & RESULTS

Let X = [X1,X2, . . . ,XNx ] and Y = [Y1,Y2, . . . ,YNy ] be two in-
dependent continuous-valued random vectors. With refer-
ence to Fig. 1, SA has to solve the following binary hypothesis
test:

H0 : Xi ∼ fX (x;H0), Yj ∼ fY (y;H0),
H1 : Xi ∼ fX (x;H1), Yj ∼ fY (y;H1),

(1)

where i and j span the entries of the observation vectors X
and Y, respectively. In the above, fX (x;H0) is the marginal
probability density function (pdf, for short) of the variable Xi,
under hypothesis H0. Similarly, fX (x;H1) is the pdf under
H1, while fY (y;H1) and fY (y;H0) are the corresponding
quantities for Yj. We assume that both X and Y have mutually
independent and identically distributed entries.

The optimal Bayes strategy (see, e.g., [9–11]) for (1) is

δ (x,y) =
{

1, L(x,y)≥ γ,
0, L(x,y)< γ,

where

L(x,y) =
Nx

∑
i=1

ln
fX (xi;H1)

fX (xi;H0)
+

Ny

∑
j=1

ln
fY (y j;H1)

fY (y j;H0)

= Lx(x)+Ly(y) (2)

is the log-likelihood ratio between H0 and H1, and the
threshold γ is defined as

γ = ln
π0A(C10 −C00)

π1A(C01 −C11)
, (3)

where Ci j is the cost incurred by choosing the hypothe-
sis Hi when H j is true and π1A = 1 − π0A. Let us con-
sider an uniform cost assignment, that is Ci j = 0 if i = j
and Ci j = 1 if i ̸= j. Thus, the threshold in (3) becomes
γ = lnπ0A/(1−π0A), and the Bayes risk rA is [10]

rA = π0APf +(1−π0A)(1−Pd), (4)

where Pf and Pd are the false alarm and detection probabili-
ties of the optimal Bayes test based upon (X,Y), respectively.

Now, SB — that models our unlucky broker — has avail-
able only the vector x and the decision δ (x,y), a binary vari-
able, coming from SA. The corresponding detection statistic
can thus be written as the ratio [10]

T (x,δ ) = ln
P(x,δ ;H1)

P(x,δ ;H0)
, (5)

where P(x,δ ;H0) and P(x,δ ;H1) are the joint densities of
the pair (X,δ (X,Y)) under H0 and H1, respectively. Let
Pf y(z) and Pdy(z) be, respectively, the false alarm and de-
tection probabilities of an optimal Bayesian test based only
upon y. By defining the random variable Lx = Lx(X), whose
realization is lx, and introducing the functions

t1(lx) = lx + ln
Pdy(γ − lx)
Pf y(γ − lx)

,

t0(lx) = lx + ln
1−Pdy(γ − lx)
1−Pf y(γ − lx)

,
(6)

the decision statistic in (5) can be rewritten (with slight abuse
of notation) as

T (lx,δ ) = δ t1(lx)+(1−δ ) t0(lx), (7)

as it can be easily checked by examining the two cases δ =
0,1.

The optimal decision rule for SB is, clearly,

δB(x,δ (x,y)) =
{

1, T (lx,δ )≥ γB,
0, T (lx,δ )< γB,

(8)

where γB = lnπ0B/(1−π0B) is the new threshold set by using
the refined version of the priors. The corresponding Bayes
risk is

rB = π0BPf ,B +(1−π0B)(1−Pd,B), (9)

where Pf ,B and Pd,B are the associated detection and false
alarm probabilities.

All the above has been obtained by direct application of
the standard tools from detection theory. More interesting
are the following results and their implications. First, let u(·)
denote the unit step function: u(x) = 1 for x ≥ 0, and u(x) =
0 otherwise. In the following we will omit the arguments
of δB(x,δ (x,y)) and δ (x,y) for notational simplicity. The
behavior of the detector SB is summarized in the following
results, whose proofs can be found in [1].

THEOREM. The unlucky broker’s optimal decision rule is

δB =

{
δ u(t1(lx)− γB) , for π0B > π0A,
(1−δ ) u(t0(lx)− γB)+δ , for π0B ≤ π0A.

(10)

•
COROLLARY. Suppose that the functions t1(lx) and t0(lx)
defined in (6) are invertible and strictly increasing, and let

s1 = t−1
1 (γB), s0 = t−1

0 (γB). (11)

Then the unlucky broker’s optimal decision rule becomes

δB =

{
δ u(lx − s1) , for π0B > π0A,
(1−δ ) u(lx − s0)+δ , for π0B ≤ π0A.

(12)

•
The above theorem and its corollary allow us to identify

the modus operandi of the optimal detector solving the un-
lucky broker problem. The behavior of the unlucky broker
(entity SB) is summarized as follows.
• When there is no refinement of the a-priori probabilities

(π0B = π0A), the best solution for the unlucky broker is,
clearly, to retain the original decision. It can be shown
that this result is indeed embodied in the statement of the
previous Theorem.

• When π0B > π0A, an original decision δ = 0 (in favor of
H0) is always retained by SB, while a decision δ = 1 (i.e.,
for H1) needs a double check: it is kept only if the func-
tion t1(lx) is larger than, or equal to, the new threshold
γB.

• Conversely, in the case π0B < π0A, a decision in favor of
H1 is always retained, while a decision in favor of H0 is
retained only if t0(lx) is less than γB.
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• In summary, when the refined prior tells that, say, H0 is
becoming more likely (π0B > π0A), the unlucky broker
should accordingly tip the balance toward the null hy-
pothesis. The optimal way to do this is to change some
of the decisions in favor of H1, based upon a suitable de-
tection statistic of the available data set x. The situation
clearly reverses when π0B < π0A.

Also, the above Theorem and its Corollary imply the fol-
lowing. Whenever the functions t1(lx) and t0(lx) are invert-
ible and strictly increasing, the required double check results
in comparing lx(x) to a single threshold. Otherwise stated,
given that the original decision is δ = 1 (when π0B > π0A) or
δ = 0 (when π0B ≤ π0A), the optimal test for SB behaves as
a (likelihood) single threshold test, based upon the available
data set x.

In the general case covered by the Theorem, instead, the
double check may involve much more tricky log-likelihood
comparisons: it requires checking whether lx(x) belongs to
some arbitrarily shaped subset of the real line, not necessarily
simply connected. This may in fact amount to compare lx(x)
to multiple thresholds.

Before ending this section, we report the analytical ex-
pressions for system performances evaluation. The Bayes
risk rB can be evaluated by resorting to eq. (10). In [1] we
show that when π0B > π0A, we have

Pd,B = Pd −
∫

t1(lx)<γB

Pdy(γ − lx) fLx(lx;H1)dlx,

Pf ,B = Pf −
∫

t1(lx)<γB

Pf y(γ − lx) fLx(lx;H0)dlx, (13)

where fLx(lx;H1) is the pdf of the random variable Lx under
the alternative hypothesis. In the opposite case of π0B ≤ π0A,
we get

Pd,B = Pd +
∫

t0(lx)≥γB

[1−Pdy(γ − lx)] fLx(lx;H1)dlx,

Pf ,B = Pf +
∫

t0(lx)≥γB

[1−Pf y(γ − lx)] fLx(lx;H0)dlx.

3. EXAMPLES

In this section, the above theoretical framework is applied to
two specific decision problems. We start by considering a
classical Gaussian shift-in-mean hypothesis test

H0 : Xi,Yj ∼ N (0,σ2),
H1 : Xi,Yj ∼ N (µ,σ2).

(14)

The upper plot in Fig. 2 shows the Bayes risk as a function
of the refined prior π0B, when π0A = 0.3, for three different
systems. We consider the optimal Bayes detector having ac-
cess to the full data set (x,y) and the detector SB that exploits
the pair (x,δ ). For comparison purposes, we also show the
risk pertaining to a detector which always retains the original
decision, ignoring thus the availability of a refined prior. The
error probabilities of this latter would clearly coincide with
Pf and 1−Pd , yielding a linear behavior with π0B. We can
observe that the curves get in contact when the refined pri-
ors are equal to those used in the original test. Furthermore,
a precise ordering relationship exists: SA uniformly outper-
forms SB, which in turn uniformly outperforms the “blind”
system which ignores the refined prior availability.
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Figure 2: Bayes risk (upper plot) and probabilities Pf ,B, 1−Pd,B
(lower plot) versus a-priori probability π0B for the Gaussian shift-
in-mean problem with Nx = Ny = 2, σ = 1, µ = 1 and π0A = 0.3.

The lower plot in Fig. 2 depicts the behavior of the proba-
bilities Pf ,B, 1−Pd,B as functions of the refined prior π0B and
allows us to describe more in detail what happens in terms
of Bayes risk. In the considered example, the original a pri-
ori probability is π0A = 0.3, giving γ = −0.85. If the priors
selected by the broker (entity SB) coincide with these initial
values, the best that one can do is to retain the original de-
cision, ignoring the surviving data. Accordingly, Pf ,B = Pf ,
Pd,B = Pd , and the curves in the upper plot of Fig. 2 get in
contact just for π0A = π0B = 0.3, when the priors are actually
not refined at all.

Now, let us choose π0B ̸= 0.3, but sufficiently close to
that. Assume, for instance, π0B = 0.4, implying γb =−0.41.
In this case we have π0B > π0A, so we must compare (see the
Theorem in Sect. 2) t1(lx) to γB. It can be shown that the func-
tion t1(lx), plotted in Fig. 3, crosses the threshold γB when
lx = −4.6, and we can compute the unlucky broker’s detec-
tion probability thanks to the first of eqs. (13). By numeri-
cally integration, we find that the integral term in the first of
eqs. (13) is much smaller (≈ 10−7) than the detection prob-
ability Pd (0.92 in the example) and, accordingly, 1−Pd,B is
almost equal to 1−Pd . Similarly, we have Pf ,B ≈ Pf (0.28 in
the example). This basically means that, in a neighborhood
of π0A, the original decision is very often retained (δB ≈ δ ).
Looking at Fig. 2, this immediately explains the similarity
between the performance of SB and that of the system which
always retains the decision δ , in the range where π0B is suf-
ficiently close to π0A.

Figure 4 shows, instead, what happens when π0B = 0.7,
implying γB = 0.85. The intersection between t1(lx) and
γB occurs when lx = 0.4. The integral term in the first of
eqs. (13) is now comparable (≈ 0.27) to Pd , and 1 − Pd,B
grows as shown in Fig. 2. In a similar manner, we find that
the integral term in the second of eqs. (13) is comparable
(≈ 0.16) to Pf , and Pf ,B decreases as shown in the lower plot
of Fig. 2.

We can conclude that for small variations of the priors
around the original values, the unlucky broker changes the
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Figure 3: Function t1(lx) (upper plot) and final decisions in the
plane (lx,δ ) (lower plot) when γB =−0.41. This refers to the Gaus-
sian example.

Figure 4: Function t1(lx) (upper plot) and final decisions in the
plane (lx,δ ) (lower plot) when γB = 0.85. This refers to the Gaus-
sian example.

original decision with probability much smaller than the false
alarm and detection probabilities of the original decisions.
Hence, in this range, the Bayes risk of the broker is almost
linear. A physical interpretation is that in this interval the
unlucky broker essentially exploits only the information pro-
vided by the original decision.

From the upper plot of Fig. 4 we see that the function
t1(lx) for the case study we are considering is strictly increas-
ing, as formally proved in [1]. The same result holds for the
function t0(lx). Thus, we are in the setting of the Corollary
in Sect. 2, and we can state that the optimal solution to the
unlucky broker problem is provided by a detector that com-
pares the log-likelihood to a single threshold. This is what
one usually expects by a detector.

The lower plot in Fig. 4 is to be interpreted as follows. In
the white regions the final decision is in favor of H0, while
in the grey region a decision in favor of H1 is taken. We
see that if the original decision (given on the vertical axis) is

Figure 5: Function t1(lx) (upper plot) and final decisions in the
plane (lx,δ ) (lower plot), for the example involving the balanced
mixture of Gaussians; values of the parameters are detailed in the
main text. As for the previous figures, the grey (resp. white) regions
in the lower plot mean that δB = 1 (resp. δB = 0).

δ = 0, no matter what lx is, the final decision will be δB =
0. On the other hand, a decision δ = 1 is retained only if
lx is large enough. Finally, we can observe that if the two
thresholds approach each other, then the original decisions
are always retained. Summarizing, when the functions t1(lx)
and t0(lx) are invertible and strictly increasing, the optimal
detector solving the unlucky broker problem works like a log-
likelihood threshold test.

For the observation model (14), proving when the func-
tions t1(lx) and t0(lx) defined in (6) are strictly monotone is
by no means trivial. Nonetheless, aside from mathematical
difficulties, the reader might guess that the monotone prop-
erty may hold very in general. Instead, the unlucky bro-
ker problem does not lead, in general, to a simple single-
threshold detector. Usually, the behavior is more complex,
since typically the functions t1(lx) and t0(lx) defined in (6)
are not monotone. As an example, consider the following
detection problem.

H0 : Xi and Yi ∼ N (0,σ2
0 ),

H1 : Xi and Yi ∼ 1
m ∑m

i=1 N (µi,σ2
1 ),

where the variables Xi’s and Yi’s are zero-mean Gaussian with
variance σ2

0 under the null hypothesis H0, while under the al-
ternative hypothesis they are identically distributed as a bal-
anced mixture of m Gaussian random variables with mean
values µ1,µ2, . . . ,µm, and common variance σ2

1 .
To get insights about the detector structure, let us con-

sider the above problem for Nx = Ny = 1, m = 20, σ2
0 = 2,

σ2
1 = 0.2, γ = 0.5, and the mean values µi’s selected as

equally spaced points in the range [−9,9]. In the upper plot
of Fig. 5, obtained numerically, the function t1(lx) is shown
and we see that it is no longer monotone.

This non-monotone behavior has a strong impact on the
decision rule, as it can be appreciated by looking at the lower
plot in Fig. 5. The figure shows the final decisions taken by
the detector, with π0B > π0A. The decisions are plotted on
the “plane” (lx,δ ): in the white regions the final decisions
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are for H0, while in the grey regions a final decision for H1
is made. As predicted by the theory, since π0B > π0A, all the
decisions δ = 0 are retained. However, the rule for retaining
the decisions δ = 1 is markedly different from that observed
in the previous case. Indeed, the grey region is no longer
simply connected, meaning that the detector structure does
not simply involve the comparison of the log-likelihood ratio
lx with a single threshold.

In general, therefore, the detection regions have a com-
plicated shape and the unlucky broker task cannot be reduced
to a single-threshold comparison. The behavior of t1(·) and
t0(·) that rules the optimal detector, indeed, implies multiply-
connected and irregularly-shaped optimal decision regions.

4. CONCLUSIONS

This paper introduces a novel topic in detection theory —
called the unlucky broker problem— with a broad range of
potential applications in different fields (sensor networks,
economics, medicine). We have a statistical test between
two hypotheses, exploiting a certain data set (x,y) and the
knowledge of the a priori probabilities of the hypotheses.
This leads to a decision δ obeying the Bayes optimality cri-
terion. Afterward, the priors used in the test are revealed to
be unreliable and a refined pair is made available. At this
point, however, vector y is lost and we can rely only on the
surviving data set x, the original decision δ , and the refined
version of the priors. Due to the statistical dependence be-
tween δ and x, the problem is markedly different from the
tandem decision systems studied in the literature. The main
results for the optimal Bayes test can be so summarized.
• When there is no refinement in the a priori probabili-

ties, namely the threshold used by the original detector
is equal to that exploited by the unlucky broker, the best
that we can do is to retain the original decision; the avail-
able data set is useless. Indeed, SA exploits the full data
set and, for a fixed pair of a-priori probabilities, it guar-
antees the best Bayes risk level.

• When there is an effective refinement, some decisions
can be safely retained, but others require a deeper anal-
ysis. As one might expect, we find that the sufficient
statistic for the final decision is the pair (δ ,Lx(x)), where
Lx(x) is the log-likelihood of vector x: both the origi-
nal decision δ , and the data x influence the final decision
δB, with data x playing their role only through the related
log-likelihood Lx(x). Any reader familiar with detection
theory would say: “So what? That x played its role only
through its likelihood Lx(x) comes with no surprise at
all.”
That reader would be right. But things must be proved
because intuition is not always infallible (this, in particu-
lar, applies to the present authors’ intuition). One contri-
bution is to rigorously prove the above result.

• One’s intuition perhaps might suggest that the final de-
tection structure amounts comparing Lx(x) to a suitable
threshold level — what is commonly called a single
threshold test.

This, however, is quite far from the truth. In general,
we show that, when the prior probability of H0 increases
(π0B > π0A), the unlucky broker should always retain a
decision δ = 0, while the decisions in favor of H1 are
changed only if Lx(x) belongs to some subset of the real
axis having (in general) a complicated structure, which is
characterized in the paper. Similar considerations apply
to the case π0B < π0A. Therefore, the found solution to
the Bayesian version of the unlucky broker problem does
not amount to a simple threshold test, and this is the main
result of the paper.
The present work can be extended in many directions.

These include (i) the extension to further detection stages
(multiple successive refinements); (ii) addressing the case
where surviving data are noisy; (iii) the study of simpler
single-threshold (hence non optimal) detection schemes.
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