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ABSTRACT 

Retinal image analysis is commonly used for the diagnosis 

and monitoring of diseases. In fundus photographs, bright 

lesions representing hard and soft exudates are the earliest 

signs of diabetic retinopathy. In this paper, an automated 

method for the detection of these exudates in retinal images 

is presented. Candidates are detected using a combination 

of coarse and fine segmentation. The coarse segmentation is 

based on a local variation operation to outline the bounda-

ries of all candidates which have clear borders. The fine 

segmentation is based on an adaptive thresholding and a 

new split-and-merge technique to segment all bright candi-

dates locally. Using a clinician’s reference for ground truth 

exudates were detected from a database with 89.7% sensitiv-

ity, 99.3% specificity and 99.4% accuracy. Due to its dis-

tinctive performance measures, the proposed method may be 

successfully applied to images of variable quality. 

 

Index Terms— Biomedical image processing, retinal im-

ages, exudate detection, local variation operator, split-and-

merge technique. 

1. INTRODUCTION 

Diabetic-related eye diseases are the commonest cause of 

vision defects and blindness in the world. Monitoring the 

health of the retina is important for those people with signs of 

diabetic retinopathy (DR). Exudates are lipid leaks from 

blood vessels of abnormal retinas and are one of the most 

prevalent lesions at the early stages of DR [1]. Colour fundus 

images are used to detect exudates in retinal images. Fig. 1 

shows a fundus image of an unhealthy retina with its main 

features and exudates. 

 Manual detection of exudates by ophthalmologists is labori-

ous as they have to spend a great deal of time in the analysis 

and diagnosis of retinal photographs. Automated screening 

techniques for exudate detection have great significance in 

saving cost, time and labour. Image processing techniques for 

exudate detection can help in extracting the location, size and 

severity grade of exudates in the retinal images.  

Several techniques for exudate detection have been proposed.  

Notable amongst these are those who utilised fuzzy C-means 

for segmentation in the different classification methods, such  

 
Fig. 1 – Retinal image with the main features and exudates. 

 

as Sopharak et al. [2]. They employed morphological tech-

niques for fine-tuning after the segmentation step and re-

ported results of 87.28% sensitivity, 99.2% specificity. How-

ever, this method sometimes detects artefacts wrongly as 

exudates especially those resembling exudates. Xiaohui et al.  

[3] applied a hierarchical support vector machine to classify 

bright non-lesion areas. Kande et al. [4] incorporated spatial 

neighbourhood information into the standard FCM clustering 

for exudate classification. Osareh et al. [5] used an artificial 

neural network to classify segmented regions in term of le-

sion based classification with 93% sensitivity and 94.1% 

specificity. This method works well in LUV colour space, but 

the accuracy in case of uneven illumination is low. 

Many other techniques have been proposed, such as Welfer et 

al. [6] who proposed a new method based on mathematical 

morphology for detecting exudates with sensitivity of 70.5% 

and specificity of 98.85%. However, the drawback of this 

approach is that it produces high misclassified portion for 

images that do not contain exudates. Sanchez et al. [7] pro-

posed a method based on mixture models to threshold images 

in order to separate exudates from background. This method 

obtained a sensitivity of 90.2%. However, a limitation of this 

approach is that it sometimes fails to detect faint exudates. 

Garcia et al. [8] investigated three neural network classifiers 

to detect hard exudates: multilayer perceptron, radial basis 

function and support vector machine. Using a lesion-based 

criterion, they achieved a mean sensitivity of 88.14%.  So-

pharak et al. [9] employed naive Bayes and support vector 

machine classifiers for feature selection and exudate classifi-

cation with 92.28% sensitivity and 98.41% accuracy, but 

both classifiers occasionally miss faint exudates. 
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This paper proposes an automated method for exudate detec-

tion in retinal images using a combination of segmentation 

procedures: coarse segmentation based on calculating the 

local variation for each pixel of the image and fine segmenta-

tion using an adaptive thresholding technique based on a new 

split-and-merge algorithm. Dynamic partitioning form (num-

ber and geometric shapes of partitions) are determined based 

on some features such as average intensities of the entire 

image and all sub-images, homogeneity in adjacent sub-

images, standard deviation values and distribution of illumi-

nation throughout the image. Morphological operation is 

applied on the coarse and fine detection results to obtain the 

final segmentation of exudates. We base our work on dy-

namic parameter values since they enable our method to deal 

effectively with variable image qualities. 

2. METHODOLOGY  

The proposed method, which is free from user intervention, 

is designed to detect exudates in retinal images automatically.  

It uses a split-and-merge algorithm based on image features 

and a statistical hypothesis. This method includes four main 

stages; first the green component of the colour image is pre-

processed to normalise and smooth the image and then 

eliminate the optic disk (Section 2.1). The second stage is 

coarse exudate detection using a local variation operator fol-

lowed by classification making use of non-exudate features 

(Section 2.2).  The third stage is fine exudate detection using 

an adaptive thresholding technique with dynamic image par-

titioning. Optimal partitioning is based on a split-and-merge 

algorithm (Section 2.3). The final stage is a combination of 

the two segmentation results using a morphological operation 

to obtain the final detection of exudates (Section 2.4). 

 

2.1 Pre-processing and Optic Disk Elimination  
Differences in luminosity, contrast, and brightness inside 

particular retinal image and among different retinal images 

make it difficult to extract retinal features and distinguish 

exudates from other bright features in images. So shade cor-

rection and noise removal are crucial tasks to prepare images 

for post-processing. To correct uneven illumination of im-

ages, a morphological top-hat operator with disk-shaped 

structuring element and fixed radius of 25 pixels was applied 

to the green component of the colour image. To reduce noise, 

a 3×3 median filter is applied to the shade corrected image.  

The bright optic disk can appear with similar features as exu-

dates, and it is often identified incorrectly as an exudate; so it 

is essential to eliminate it before exudate detection steps. For 

this purpose, the method described in [10] has been followed 

to determine the centre and the radius information of the op-

tic disk. In this method, a circular region of interest is found 

by isolating the brightest region of the image using morpho-

logical operations, and then the Hough transform is used to 

detect the main circular feature within the positive horizontal 

gradient image in this region of interest. The optic disk is 

masked by a disk with intensity value equal to the average 

intensity of the image. The input and output of the pre-

processing and optic disk elimination steps are illustrated in 

Fig. 2. 

  
Fig. 2 – An image before and after the pre-processing opera-

tions, (a) green channel image, (b) pre-processed image.  

 

2.2 Coarse Exudate Detection 
Most of the images have non-uniform illumination. Fortu-

nately most of the light reflection regions and artefacts do not 

have clear boundaries, while most exudates are characterised 

by having clear outlines in different degrees depending on 

the DR grade. One way to make use of this feature is to cal-

culate the local variation for each pixel to get a standard de-

viation image. This image shows the main characterisation of 

the closely distributed clusters of exudates. Before applying 

the local variation operator, the high contrast blood vessels 

must be eliminated. Thus a morphological closing operator 

(ψ) was applied to the pre-processed image (G1) with disk-

shaped structuring element (ς1) of radius 6 pixels. The result-

ing image is denoted by G2 as below: 
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The image resulting from the local variation operator is de-

noted by G3 as below:                            
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where x is a set of all pixels in a sub-window w(x), N is the 

number of pixels in w(x), µ(x) is the mean value of G2(i) and 

i ϵ w(x). The selection of window size is relied on the pre-

ferred compromise between the sensitivity and precision per-

formance measures. So as the window size is larger the small 

exudates are more difficult to be detected leading to low sen-

sitivity. Based on the experimental tests, we found that a 

window size of 9 × 9 gives good results.                 

In order to remove the objects in the standard deviation im-

age, which have low local variation, automatic thresholding 

was applied using Otsu’s thresholding method [11]. A mor-

phological dilation operator (D), with a disk-shaped structur-

ing element (ς2) of radius 3 pixels, was applied on the seg-

mented image to ensure that the majority of neighbouring 

pixels are included in the candidate region. Then a morpho-

logical clear border operator (C) was applied to suppress 

structures that are lighter than their surrounding and con-

nected to the image border. The coarse exudate detection 

result is denoted by G4 as below:  
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where T is the thresholding operator with automatic level (α). 

In order to classify non-exudates and then exclude them, the 

coarse segmented objects were discriminated using features,  
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Fig. 3 – The coarse segmentation operation (a) pre-processed 

image with closing operator, (b) coarse segmented image. 

 

such as major axis length, minor axis length, area and solid-

ity. These properties were utilised in such a way that some 

relations between them or some limits in their values were 

used to classify features of non-exudates. The properties 

might belong to long and narrow objects which are formed 

due to bright vessels that had not been successfully removed.  

The operations of this step converted the shade corrected 

image to a binary image. This binary image is considered as 

the coarse white regions that outline the boundaries of all 

bright candidates which have clear borders. Fig. 3 shows the 

input and output images of the coarse segmentation step.   

 

2.3    Fine Exudate Detection 
Image binarisation using a global thresholding performs fast 

segmentation, but mostly results in undesired binary results 

especially when the input images are uneven or of poor qual-

ity. Consequently, adaptive local thresholding methods are 

used to get better segmentation results. However these meth-

ods have the disadvantage of slow running speed due to the 

re-computing operation of threshold value to each local re-

gion. In this paper the fine exudate detection is based on a 

combination of global and local thresholding. Local thresh-

olding is applied to non-uniform background images by par-

titioning the image into dynamic number of geometric shapes 

(square and/or rectangle) of sub-images. The number and 

geometric shapes of the sub-images depend on image uni-

formity and the distribution of shade and bright locations 

throughout the image. Global thresholding is then applied to 

each uniform sub-image using histogram-based thresholding.           

This stage consists of two steps: the first step is to investigate 

the optimal number and directions of image partitioning us-

ing a split-and-merge algorithm. The second stage is to apply 

global thresholding on each individual sub-image separately 

with appropriate threshold value using a histogram-based 

thresholding.         

 

2.3.1     Split-and-Merge Algorithm 
Region-based segmentation algorithms can be classified into 

pure merging, pure splitting and split-and-merge schemes 

[12]. In the first scheme the image is divided into small re-

gions which are then merged to form larger regions based on 

homogeneity criteria. The pure split algorithms view the en-

tire image as an initial segmentation and then successively 

split each segment into quarters until a homogeneity state is 

reached. The split-and-merge scheme is based on partitioning 

the image into square sub-regions until homogeneity is veri-

fied. Then a merging process is applied to neighbouring sub-

regions that satisfy some uniformity criterion. 

In the proposed method we apply a split-and-merge tech-

nique, where the image is divided into square and/or rectan-

gular partitions based on image features and a statistical hy-

pothesis. In order to obtain the best number of partitions (as 

small as possible) for homogeneous sub-regions, the method 

traces the distribution of illumination throughout the image 

to separate shady and bright locations according to their lev-

els and areas. In this stage the green channel component im-

age is used after optic disk elimination, blood vessels remov-

ing, dark background surrounding the retina excluding and 

smoothing but without shade correction. The main disadvan-

tage of applying shade correction is that the retinal image 

may sometimes have large abnormal areas which may lead to 

unexpected change in shading. The following steps describe 

briefly the split-and-merge procedures. 

1. Average intensity: calculate the average intensity of the 

entire image described above.  

2.Image Partitioning: select two variables n1=1, …, 6 and   

n2 = 1, …, 6 to be used in dividing the image into K different 

partitioning forms, where K=n1×n2. These 36 partitioning 

forms sometimes have same number and geometric shapes of 

sub-regions but with different locations on the entire image.      

3. Standard deviation: for every one of the 36 partitioning 

forms, calculate the average intensities of all sub-images, and 

then the standard deviation based on average intensity of the 

entire image. Hence, we will have 36 values of standard de-

viation (σK, for K= 1, …, 36) for the 36 partitioning forms. 

4. Optimal partitioning: it is divided into two steps: 

Step1: Primitive partitioning: starting from the smallest 

number of partitions (n1=1, n2=1) ascending to the highest 

number of partitions (n1=6, n2=6), compare the standard de-

viation of each form with the maximum. A partitioning form 

with standard deviation equal to or greater than ninety per-

cent of the maximum is selected empirically as the primitive 

partitioning form as below:  

                                   (max))selected( 9.0 kk σσ ≥                       

Step 2: Merging homogeneous sub-images: in order to per-

form optimal adaptive thresholding and reduce processing 

time of segmentation, the number of uniform sub-regions 

should be as small as possible. Thus it is essential to investi-

gate homogeneity of adjacent sub-regions to remerge them 

and get the optimal partitioning form. Homogeneity of any 

two sub-regions, say X with elements (x1, x2,…, xm) and Y 

with (y1, y2,…, yn), is assessed by testing X and Y under an 

assumption of equality in their standard deviation σX and σY. 

As a rough rule we can empirically consider the condition of 

equal standard deviation met if ratio of that larger to the 

smaller sub-region is less than 2. A statistical pooled t-test 

procedure is performed to decide the homogeneity of the 

adjacent sub-regions, where the hypothesis Ho: X=Y (refers to 

the homogeneity state) is supposed. The significance level 

(β) is decided (we decided it to be 5%), and then values of 

degree of freedom (df) and test statistic (t) are calculated 

based on the information of adjacent sub-regions. The pre-

ceding parameters are used in the statistical tα-table to esti-

mate the probability of observing a value (p-value) which 

determines the final decision. If p ≤ β,  Ho is rejected, other-

wise the hypothesis is right. 
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2.3.2. Histogram-based Thresholding 

Histogram-based thresholding may give imprecise result 

when the amount of overlap of the feature distribution in the 

histogram is large. Two methods have been used to rectify 

this problem [12]: first by applying the histogram-based 

thresholding to uniform local sub-images, and second by 

recursive application of the global method to increasingly 

fine-gained regions. In our method the uniform illumination 

locality is achieved by partitioning the image into uniform 

sub-images. Hence uniform illumination images are easy to 

be segmented as their histograms will be bi-modal distribu-

tion and the pixel intensities are clustered around two groups.  

Based on the result of optimal image partitioning gained in 

the preceding section, histogram-based thresholding was 

applied to the locations of sub-images of the smoothed green 

component channel (G5) to obtain the fine segmentation of 

the image. Let a partition (P) of the image be defined as a 

subset of G5 with respect to uniform lighting criterion. Hence 

running a global thresholding (T) throughout the image with 

variable threshold values (α) depending on the individuality 

of each sub-image can be represented by G6 as below: 
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 The input and output of the fine segmentation is shown in 

Fig. 4. 

     
                         (a)                                           (b)                              

Fig. 4–The operation of fine segmentation  (a) pre-processed 

green component image, (b) fine segmented image. 
 

2.4    Final Detection of Exudates 

Due to light reflection and bright vessels, the segmentation 

result often contains some non-exudates. Thus a combination 

of the coarse and fine images is used to improve the results. 

The final segmented image (G7) is accomplished by applying 

a logical intersection operator on the coarse and fine segmen-

tation results as below: 
 

                                   647 GGG I=  
 

The coarse segmented image classifies pixels of the fine 

segmented image in such a way that candidates which have 

clear border can only be segmented as final exudates.  Fig. 5 

shows the inputs and output of the combination stage. 
 

   
Fig. 5 – The results of the three stages (a) coarse segmenta-

tion (b) fine segmentation (c) final detection of exudates.  

3.    RESULTS AND DISCUSSION 

Many experiments have been performed on normal and ab-

normal retinal images to test and validate our method. 

140 images from different databases were used as below:  

• 89 images from the DIARETDB1 database of resolution 

1500×1152 with their clinician marked images [13] were 

used to validate our method at the pixel level. 47 of these 

images contain exudates while the remaining 42 either con-

tain other type of lesions or are normal.   

• 17 images with hard exudates and their clinician ground 

truth images from the Messidor database [14] of resolution 

640×480 were used to validate the proposed method at the 

pixel level.  

• 34 normal images from the Drive database [15] with resolu-

tion of 565×584 were used to measure the accuracy of the 

proposed method based on its ability to distinguish between 

normal and abnormal images. 

Performance of the proposed method was assessed quantita-

tively by comparing the results with clinician hand-labelled 

data. Four types of pixels are considered in the method 

evaluation: True Positive (TP), False Positive (FP), False 

Negative (FN) and True Negative (TN). These quantities 

were computed with each individual processed image and 

utilized to measure the performance measures; sensitivity, 

specificity and accuracy. The proposed method was validated 

using 64 images (47 from DIARETDB1 and 17 from Messi-

dor databases) with their clinician hand-labelled images in 

the pixel level with 89.7%, 99.3%, 99.4% sensitivity, speci-

ficity and accuracy respectively. Seventy-six images without 

hard exudates (35 from Drive and 42 from DIARETDB1 

databases) were used to evaluate the proposed method at 

image-based classification, and the accuracy was 97.7%. 

Table 1 shows a comparison between the performance meas-

ures of the proposed method and some related works using 

DIARETDB1 database. Table 2 shows a comparison be-

tween the performance measures of the proposed method and 

some distinctive related works with different databases. 

  

Table 1 

Comparison of performance with DIARETDB1 databases.  

Reference                  Sens.%      Spec.%      Acc.%      Test set 

Kande et al [4]               86            98              ---           47   

Welfer et al [6]              70.48       98.84         ---            47                                                                                   

Proposed method           89.3         99.3         99.4           47  

Sens. = Sensitivity, Spec. = Specificity, Acc. = Accuracy. 

 

Table 2 

Comparison of performance with different databases. 

Reference                    Sens.%    Spec.%       Acc.%     Test set 

Osareh et al [5]            93            94.1            ---            67 

Garcia et al [8]             88.14       92.6           97             67 

Sopharak et al [9]        92.28       98.52         98.41        39   

Proposed method         89.7         99.3           99.4           64  

Sens. = Sensitivity, Spec. = Specificity, Acc. = Accuracy. 

 

 A comparison between the proposed method and the clini-

cian hand-labelled results is illustrated in Fig. 6. 
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Fig. 6 – Exudate detection resulted by (a) the proposed 

method (b) the clinician hand-labelled (ground truth). 

 

A comparison between the fine segmentation (shown in Fig. 

5(b)) and the final detection of exudates (shown in Fig. 5(c)) 

demonstrates that the proposed coarse segmentation has 

played an important role in refining the fine segmentation 

results. 

The ROC curve of our algorithm is shown in Fig. 7, and il-

lustrates a compromise between the desired pixels (TP) and 

undesired pixels (FP) by changing the parameters of thresh-

old and statistical significance levels.    

 

 
FP 

 

Fig. 7 ROC curve of the performance for various parameters. 

4.    CONCLUSIONS 

The proposed method is adapted to deal with different types 

and qualities of images through taking all image information 

into account. The performance of the proposed method was 

measured against clinician hand-labelled images. Compar-

ing with some recent related works, the proposed method 

indicates an improvement in the specificity and accuracy 

measures and reasonable sensitivity particularly with the 

high performance method in [9]. The performance results, 

demonstrated in this work, indicate that automated process-

ing methods that are based on split-and-merge algorithm can 

give very competitive results in exudate detection. The 

strength of the proposed method comes from using com-

puted parameters based on analysis of the image.  A limita-

tion in our work is that it occasionally fails to exclude some 

non-exudate objects particularly those that have similar fea-

tures to real exudates. 
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