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ABSTRACT

We present a generic and an efficient multimodulus fam-
ily of blind equalization algorithm for use in the higher-
order quadrature amplitude modulation based digital com-
munication systems. The proposed algorithm is memoryless
Bussgang-type and is based on a stochastic gradient descent
of a constrained convex cost function. We show it to be ca-
pable of blindly equalizing the channel and recovering the
carrier phase simultaneously. We also provide the dynamic
convergence analysis of the proposed adaptive algorithm.

1. INTRODUCTION

We consider a baseband linear time-invariant single-input-
single-output discrete-time system. We assume that the
transmitted sequence {an} is independently and identically-
distributed (i.i.d.), and takes values of square-quadrature am-
plitude modulation (QAM) symbols A . The received signal
is expressed as: xn = h

T
an + ϑn, where an is data vector,

h is the impulse response (vector) of symbol-rate moving-
average channel, and ϑn is additive white Gaussian noise.
The output of N-tap equalizer is: yn = w

H
n xn, where wn =

[wn,0, · · · ,wn,N−1]
T

is the vector of equalizer’s coefficients

and xn = [xn, · · · ,xn−N+1]
T

is the channel observation vec-

tor; the superscripts T and H denote transpose and conjugate-
transpose, respectively.

The idea behind the Bussgang blind equalization (BE) al-
gorithm is to minimize (or maximize), through the choice of
the equalizer filter coefficientsw, a certain cost-function de-
pending on the equalizer output yn such that yn provides an
estimate of the source signal an ∈A up to some inherent in-
determinacies, yn = α an′ ,n

′= n−τ with α = |α|eιγ ∈C, τ ∈
Z where |α| and τ represent an arbitrary gain and delay, re-
spectively. The phase γ represents an isomorphic rotation of
the symbol constellation. A Bussgang BE algorithm tries to
solve the following problem:

w = argmin
w

J, with J = E[J (yn)] (1)

where the cost J is an expression for higher-order statistics of
yn and J (yn) is a real-valued function. The equalization is
accomplished when equalized sequence yn acquires an iden-
tical distribution as that of the channel input an [1]. If the
minimization is realized by stochastic gradient-based adap-
tive method, then the updating rule is

wn+1 =wn− µ

(
∂J

∂wn

)∗
=wn + µΦ(yn)

∗
xn,

with Φ(yn)≡−
∂J

∂y∗n
.

(2)

where µ > 0 is a small positive adaptation step-size.1 The
complex-valued error-function Φ(yn) can be understood as
an estimate of the difference between the desired and the ac-
tual equalizer outputs.

Existing gradient descent-based Bussgang BE algorithms
differ mainly by the particular cost function used. They
all adopt non-convex cost functions that can become mul-
timodal for finite equalizer parameterizations and hence do
not preclude the possibility of a non-open eye solution. Con-
trariwise, gradient descent of convex cost functions implies
unimodal convergence and therefore avoids the local min-
ima problem [2]. The second major issue is to resolve the
phase ambiguity. Ideally the adaptation scheme should pro-
vide both equalization (removal of intersymbol interference
(ISI) except for a gain factor) and carrier phase-recovery (to
rotate the output constellation to the correct orientation be-
fore quantization) simultaneously.

In this paper, we study a family of memoryless BE algo-
rithms that is based on the stochastic gradient descent adap-
tive optimization of a constrained and approximated convex
cost-function. In Section 2, we introduce the cost-function
and resulting algorithm. In Section 3, we provide the dy-
namic convergence expressions of the proposed algorithm.
In Sections 4 and 5, we provide, respectively, computer sim-
ulations and conclusions. In the sequel, we will use notations
ℜ[·] (or subscript R) and ℑ[·] (or subscript I) to represent the
real- and imaginary-parts of the enclosed complex entity, re-
spectively. A subscript L will be used to denote either R or
I.

2. PROPOSED ALGORITHM

The cost-function based Bussgang BE algorithms have been
studied to be non-convex in nature [12]. The non-convexity
may lead to undesirable local minima resulting in insufficient
removal of channel distortion [2]. A convex cost-function
which has been specifically designed for square-QAM is that
of Kennedy and Ding [4], which suggested to minimize the
following:

max
{∣∣yR,n

∣∣}+ max
{∣∣yI,n

∣∣} = ‖{yR,n}‖∞ +‖{yI,n}‖∞ (3)

The convexity of cost (3) with respect to the equalizer coeffi-
cient vectorw follows from the triangle inequality under the
assumption that all input sequences are possible. The cost (3)
was minimized under a linear constraint ℜ[wn,κ ]+ℑ[wn,κ ] =

1Expression (2) exploits the fact that (for J ∈ R and yn = w
H
n xn):

(
∂J

∂w

)∗
=

(
∂J

∂y∗n

∂y∗n
∂w

)∗
=

(
∂J

∂y∗n

∂x
H
n w

∂w

)∗
=−Φ(yn)

∗
xn.
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1, where wn,κ is the anchored tap at κ th position (to avoid
all-zero situation). Due to the linearity of this constraint, the
convexity of (3) with respect to both the real and imaginary
parts of the equalizer coefficients is maintained, and global
convergence is therefore assured. However, (3) cannot be
exactly evaluated in practice with finite data length, the fol-
lowing approximation was used:

min
w

{
E

[∣∣yR,n

∣∣p+2
]
+E

[∣∣yI,n
∣∣p+2

]}
, (4a)

s.t. ℜ[wn,κ ]+ ℑ[wn,κ ] = 1, (large p) (4b)

Expression (4a) is based on the fact that, given a large p′, the
global minimum of the lp′ norm will be close to the global
minima of the l∞ norm. Using a polar representation, [4]
suggested to adapt wn,κ as follows:

ϖn+1 = ϖn + µ2

(
|yR,n

∣∣pyR,ncR + |yI,n
∣∣pyI,ncI

)

(cosϖn+1 + sinϖn+1)
2

(5a)

wn+1,κ =
exp(ιϖn+1)

cosϖn+1 + sinϖn+1

, (5b)

where (−π/4 < ϖn < 3π/4), cR = ℜ[xn−κ ]−ℑ[xn−κ ] and
cI = ℜ[xn−κ ]+ ℑ[xn−κ ]. For 0≤ (i 6= κ)≤ N−1, viz

wn+1,i = wn,i− µ1

[
|yR,n

∣∣pyR,n− ι|yI,n
∣∣pyI,n

]
xn−i (6)

where ι
.
=
√
−1 and µ1,µ2 > 0. We refer to (5)-(6) as

Kennedy-Ding algorithm (KDA). We found that, for 4/16-
QAM, the performance of KDA is largely improved if larger
p is selected. However, the residual ISI floor achieved by
KDA is either similar to or mostly much inferior to those
obtained from non-convex Bussgang BE algorithms, like the
conventional constant modulus algorithm (CMA) [5] and/or
multimodulus algorithm (MMA) [6]. For higher-order QAM
(≥ 64-QAM), the eye-opening is either achieved only by al-
lowing a very slow convergence or not achieved at all. So,
in spite of its global convergence behavior, its application is
found to be quite limited to small constellations.

We note that the tap-anchoring constraint (4b) can be ad-
justed within the cost-function (4a) leading to the relaxation
of the requirements of separate tap-anchoring and automatic
gain control. A possible constrained solution is

J = E
[
|yR,n|p+2 + |yI,n|p+2

]
+ λ

(
E
[
|yn|2

]
−Pa

)
(7)

where λ is Lagrangian multiplier and Pa = E
[
|an|2

]
, so the

equalizer average output energy is constrained to be equal
to that of the transmitted signal. The stochastic gradient-
descent realization gives the following update:

wn+1 =wn + µ
[(
R
p
R−|yR,n|p

)
yR,n− ι

(
R
p
I −|yI,n|p

)
yI,n

]
xn

(8)
where R

p
L = −2λ/(p+ 2) is a constant. We denote (8) as

pth-order constrained multimodulus algorithm, cMMA(p).
The term multimodulus was used because of its significant
similarity with the multimodulus algorithm reported in [6].

It is easy to show that (due to the constraint), cMMA(p)
does not require separate tap-anchoring and/or additional
AGC for true energy conservation, provided the constant
R
p
L (or equivalently λ ) is correctly evaluated. Notice that

cMMA(p) generalizes a number of existing algorithms.
Like, for p= 1 and 2, it becomes equivalent to the algorithms
appeared in [7] and [6], respectively.

2.1 Evaluation of Dispersion Constant

Here we discuss the evaluation of Lagrange multiplier λ in
(7). Since R

p
L = −2λ/(p+ 2), we can equivalently focus

on the evaluation of dispersion constants RL. The dispersion
constant is considered as the statistical gain of equalizer and
it contains embedded information about the true energy of
the transmitted signal. According to Bellini [1], the (disper-
sion) constant, which controls the equalizer amplification, is
chosen to give zero tap-gain increments when perfect equal-
ization is achieved, i.e., E[Φ(yn)

∗ xn−i] = 0.
Upon convergence, we can assume yn = an−τ +un, where

un constitutes the sum of additive noise (ϑn) through the filter
and it is zero-mean Gaussian; un is known as convolutional
noise. Ignoring the small correlation between yn and additive

noise ϑn−i, we get E

[
Φ(an−τ +un)

∗∑K−1
j=0 h jan− j−i

]
= 0.

We notice that the expected values in the sum are zero when-
ever n− τ 6= n− j− i; on the other hand, considering chan-
nel coefficients constant, we get E [Φ(an−τ +un)

∗an−τ ] = 0.
Since in cMMA(p), the Φ(·) is a decoupled function of i.i.d.
quadrature components, we only need to solve for one of the
quadrature components. So the evaluation of RL requires the
solution of E

[
aL(aL+v)

(
|aL+v|p−R

p
L

)]
= 0, where we use

v to denote either the in-phase or quadrature component of
un and its variance is σ2

v . For p = 1, we obtain

RL =

E

[
2aL(a

2
L + σ2

v )Q

(
−aL

σv

)
+

√
2

π
a2
Lσv exp

(
− a2

L

2σ2
v

)]

E
[
a2
L

]

(9)
Under the limit, σv tends to zero, (9) simplifies to the value
that appeared in [7], i.e., RL = E

[
|aL|3

]/
E
[
a2
L

]
. For p = 2,

we obtain
R2
L = 3σ2

v +
(
E
[
a4
L

]/
E
[
a2
L

])
(10)

Under the limit, σv→ 0, this result simplifies to the value that
appeared in [6], i.e., R2

L = E
[
a4
L

]/
E
[
a2
L

]
. Finally, assuming

v = 0, we obtain the value of RL (for a generic p) in a noise
free environment, viz

R
p
L = E

[
|aL|p+2

]/
E
[
a2
L

]
. (11)

From (11), for p = 1, we obtain RL = 2.8,5.9 and 11.95 for
16-, 64- and 256-QAM, respectively. For p = 2, we obtain
RL = 2.86,6.08 and 12.34 for 16-, 64- and 256-QAM, re-
spectively. Now we express the value of Lagrange multiplier
in a noise-free scenario: λ =−0.5(p+2)E

[
|aL|p+2

]/
E
[
a2
L

]
,

where the negative sign indicates that we need to maximize
output energy while minimizing the higher-order moments.

2.2 Automatic Phase-Recovery Capability

Suppose θ is a residual phase-offset error (in the absence of
noise and ISI), it gives yn = an′ exp(ιθ ). Keeping the four-
quadrant symmetry of square-QAM in mind, it is desirable
that the cost-function of cMMA(p) exhibits local minima
at θ = 0,π/2,π and 3π/2; similarly, local maxima are re-
quired to occur at θ = π/4,3π/4,5π/4, and 7π/4. Consider
cMMA(2), we can show that

J(θ ) =
1

4
E
[
a4
R +a4

I −6a2
Ra

2
I

]
cos(4θ )+ constant︸ ︷︷ ︸

w.r.t. θ

(12)
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Note that E
[
a4
R +a4

I −6a2
Ra

2
I

]
is a sort of kurtosis of square-

QAM and it is negative due to the sub-Gaussian nature of
QAM signals; consequently, the cost exhibits desired station-
ary points for p= 2. Similar evidence can be found easily for
higher values of p.

3. DYNAMIC CONVERGENCE ANALYSIS

We carry out the ODE analysis to gain some understanding
in the dynamic convergence behavior of the proposed equal-
izer. In the sequel, we use the notation [T]i j to denote the
element of matrix T in its ith row and jth column, and [t]i
to denote the ith element of array t. The covariance matrix
of regressor is R = E

[
xnx

H
n

]
= PaHH

H +PϑIN , where Pa
and Pϑ are respectively the average energies of the signal an
and additive noise ϑn; IN is identity matrix of order N andH
is the channel matrix [8]. Exploiting eigen-decomposition,
we get R = U

H
ΛU, where Λ is a diagonal matrix whose

diagonal elements are the eigenvalues of R, and U is an or-
thonormal matrix. Using U, the transformed update is given
as w̃n+1 = w̃n + µΦ(yn)

∗
x̃n, where w̃n ≡Uwn, x̃n ≡Uxn

and yn = w̃
H
n x̃n. The correlation matrix of w̃n is

[Cw̃]i j = E
[
w̃n,iw̃

∗
n, j

]
=

{
mn,im

∗
n, j i 6= j

Γn,i i = j
(13)

where mn ≡ E [w̃n] = [mn,0, · · · ,mn,N−1], Γn,i ≡ E
[
|w̃n,i|2

]
,

(i = 0, · · · ,N−1) and Γn = [Γn,0, · · · ,Γn,N−1]. We obtain

mn+1,i = mn,i + µE [Φ(yn)
∗x̃n−i] (14)

Γn+1,i = Γn,i+µ2
E
[
|Φ(yn)|2|x̃n−i|2

]
+2µE

[
ℜ
[
w̃∗n,iΦ(yn)

∗x̃n−i
]]

(15)
Defining ρ = diag [Λ] and η =Uh, we present an approxi-
mate expression for the instantaneous residual ISI (deduced
from [9, page: 858-9]):

ISIn ≈
var(yn|an,w̃n)−E

[
|∑i ϑn−iw̃∗n,i|2|w̃n

]

E[|an|2]

≈ ρT
Γn−PaηH

Cw̃η−Pϑ1
T
Γn

Pa|mH
n η |2

(16)

where 1 is an N-element column-vector of ones. Readers
can refer to [10] for detail on recursions (14) and (15) for a
generic Bussgang BE algorithm.

4. SIMULATION RESULTS

We study the performances in terms of (residual) ISI
convergence traces of KDA(p) and cMMA(p) with p =
1, · · · ,4. We consider the transmission of QAM signal over a
complex-valued voice-band telephonic channel already con-
sidered in [11]. This channel also introduces a phase shift
which causes a rotation in signal orientation by 43-44 de-
gree. The input-SNR was taken as 30 and 34 [dB] for 16- and
64-QAM, respectively. A seven-tap equalizer was used with
central single-spike initialization. The analytic and simulated
ISI traces for 16- and 64-QAM obtained from cMMA(p) are
depicted in Fig. 1-4. For KDA(p), we only depict simulation
based results. Note that each simulated trace is obtained as
an ensemble average of over 200 Monte-Carlo realizations
with independent generation of noise and data symbols.

In Fig. 1 and 3, note that the ISI convergence traces ob-
tained from ODE analysis and Monte-Carlo simulations are
in full agreement with each other. Secondly note that the ISI
mitigation performance of cMMA(p) is far better than that
of KDA(p) for both QAM sizes considered in our simula-
tion. In fact we have noticed that the cMMA(p) is capable
of giving consistent performance for QAM size as large as
1024. Also note that the cMMA(p) is providing a trade-off
between complexity and performance; with a larger p, we are
able to get a faster convergence at the cost of more computa-
tion.

In Fig. 2 and 4, the eye-opening behavior is illustrated
for cMMA(4)/KDA(4) for 16- and 64-QAM, respectively.
Observe that the cMMA(4) successfully removed the phase-
offset introduced by the channel leading to a clear eye-
opening and facilitating a possible switch-over to decision-
directed mode. On the other hand, the KDA(4) restored the
orientation only for 16-QAM and due to low energy of equal-
ized signal, a reliable switch-over to decision-directed mode
can be seen to be not possible (unless a automatic gain con-
trol mechanism is employed).

5. CONCLUSIONS

We have proposed a family of memoryless Bussgang-type
blind algorithms for joint equalization and carrier phase-
recovery of square-QAM signals over complex-valued trans-
mission channel. The main contribution resides in modify-
ing an existing approximation of convex cost-function lead-
ing to a new family of algorithms. Analysis of equalizer gain
evaluation and dynamic convergence behavior have been de-
scribed. The convergence analysis is also shown to be in
conformation with simulation results.
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