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ABSTRACT

In this work we introduce a method for the detection of point
sources in images based on a /{-norm sparse approximation.
The method is inspired on astronomical image analysis but
is directly applicable to any kind of images. We introduce a
‘top-to-bottom’ detection algorithm that can greatly reduce
the computational burden of detection if the images are suf-
ficiently well-behaved, in the sense that sources are truly
sparse and the chances of source overlapping are small. We
test our ideas with simulated faint sources embedded in white
noise, comparing the results with the matched filter detector
for a number of detection thresholds. We show that the sparse
detection approach leads to better results in the ROC curve
than the matched filter detector. Moreover, with the sparse
approach it is possible to provide an objective stopping crite-
rion for the detection algorithm.

1. INTRODUCTION

Over the last few years, theoretical advances in sparse repre-
sentations have highlighted their potential to impact all fun-
damental areas of signal processing, from blind source sepa-
ration to feature extraction and classification, denoising, and
detection. In this context, finding a representation of a signal
as a linear combination of a small number of elements from
an over-complete set of vectors (dictionary) can clearly facil-
itate the detection, identification and separation problems.

An immediate application of these ideas lies in the field
of astronomy. Let us consider a digital image of deep space:
most of the pixels of the image are blank, whereas a small
fraction of it contain the interesting features of the image:
stars, faint nebulae and galaxies, globular clusters... In the
optical region of the electromagnetic spectrum, a typical as-
tronomical image is the perfect example of a sparse ma-
trix. The same applies to most of the other bands rele-
vant to astronomy, with significant exceptions such as the
microwave and sub-mm bands where pervasive astronom-
ical backgrounds appear in all pixels of the image. Even
in those cases, it is still possible to find sparse representa-
tions of some of the interesting astrophysical signals (for ex-
ample, point sources). Taking the previous considerations
into account, it is not surprising that in the last few years
sparse methodologies have started to be applied in many
fields of astronomy, including the detection of periodical
signals from sparse/incomplete sampled observations [22],
source detection in low-count Poisson noise [21], applica-
tions of compressed sensing to the design of interferometric
telescopes [6l 26], image inpainting [1l], point spread func-
tion reconstruction [20]], de-blurring [[L6] and many other ap-
plications.

In this work we are interested in the detection of point
sources —i.e. signals that have a compact support in a small
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region of the the space (or time) domain— in additive noise.
Two examples of interest in astronomy are the detection of
faint stars in deep sky images and the detection of extra-
galactic objects in Cosmic Microwave Background (CMB)
images. Specially in the later case, the point sources are em-
bedded in a noisy background that makes them very hard to
detect. Extragalactic point sources are the principal source
of contamination for the CMB at small angular scales [7].
On the other hand, the physical and statistical properties of
extragalactic sources at microwave frequencies are poorly
known [8]]. Therefore, in the last years a big effort has been
devoted to the development of signal processing techniques
specifically tailored for the detection of these objects in mi-
crowave astronomy [14].

A sparse approximation to the detection of point sources
in one-dimensional data streams was recently introduced
by [19]. In this work we extend these ideas to noisy two-
dimensional images, focusing in the widespread white noise
case. The structure of the paper is as follows: in section[2] we
will review the proposed sparse methodology, based on the /;
norm. We will also propose an algorithm that indicates how
to proceed in front of any particular image where the pres-
ence of point souces is suspected. In section 3] we will study
the performance of the proposed algorithm with simulations,
comparing it with the standard matched filter detector. Fi-
nally, in section ] we will draw our conclusions.

2. THE SPARSE METHODOLOGY
2.1 Data model

As usual, let us consider a set of data d(¥), where X indi-
cates the coordinates of an observation in the sky. Typically,
the data samples d are arranged in a two-dimensional image,
each pixel defined by a pair of coordinates (x!,x?). For con-
venience, it will be useful to rearrange the two dimensional
data matrix into a single column vector of lexicographically
ordered data, so that d is described by an N x 1 matrix, with
N the number of pixels of the image. The data contain a sig-
nal s linearly corrupted by a noise z:

d=s+z. €))]

In the previous equation, d, s and z are N x 1 matrices
of lexicographycally indexed elements. We shall assume that
the noise has zero mean and has correlation matrix & = [;]

& = (z7"). )

If the noise is statistically homogeneous and isotropic,
the element &;; of the correlation matrix depends only on the
distance between pixels i and j. If the noise is white, £ is a di-
agonal matrix. None of these two assumptions are necessary
for this discussion, but if they are verified the calculations
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are much simpler. Another assumption about the noise that
is not necessary, but can simplify calculus, is Gaussianity.

Regarding the signal, for the purposes of this work it is
the sum of a unknown number # of point sources:

ZA‘X B 7 I )

s(¥) =s(x',x?

where Ay, is the (positive) amplitude of the point source o
and (x),x2) are its a priori unknown coordinates. The point
sources are observed by a telescope characterized by a point
spread function (psf) ¢, therefore the actual observed signal
is

s(¥) =s(x',x? Z Aa (! —xgx® —x5). (4
In most CMB experiments, the psf ¢ is well described by
a Gaussian beam profile. We can change the coordinates in
both equations (3) and (@) to the same lexicographic indexes
and write in a more compact form:

5= ZAoc‘Poc- 5
a=1

Let ® be the N x n matrix whose columns are the lexico-
graphically ordered versions of n replicas of ¢, each shifted
to the source locations (x},x2) and A the n x 1 vector whose
elements are the amplitudes A,. Then equation (I)) becomes

2.2 Sparse least /,-norm approach

The matrix ® in (6) is a dictionary formed by the n column
vectors @q. In a typical astronomical image, the number of
resolved sources that can be detected is much smaller than
the number of pixels of the image, n << N. This leads natu-
rally to the notion of sparsity. Thus the problem of detecting
point sources embedded in additive noise can be formulated
as the search for a sparse solution to equation (6) with a pos-
itivity constrain (Aq > O for o =1,...,n).

In recent years, sparse problems have been in the spot-
light in mathematical literature [J5} 9} [10} [11} 13 14} [23| [25]].
The most frequently used approach to sparse problems con-
sists on the minimization of the norm [/, assuming a con-
straint on the goodness-of-fit. The /,-norm of a vector v is

Ivily = | Elval’]

Typical values of p include 0,1,2..., but even non-integer val-
ues can be used. Strictly speaking, the value of p that is
directly connected to the notion of sparsity is p = 0 (mini-
mizing the [y-norm is equivalent to minimizing the number n
of elements in the dictionary). However, in most cases p =0
leads to a non-convex problem that is very difficult to solve.
A possible solution is to consider the case p — 0, as it was
done in [19]]. Fortunately, in many cases it can be shown that
the case p = 1 leads to a solution that is very close to sparsity,
with a much lower mathematical and computational cost.

Regarding the goodness-of-fit part of the problem, it
takes the usual form

ge=(d—s) & (d—s).

l/p

(N

®)

Thus, the /,-norm takes the compact form

Lp.ﬁ: minA>0HAHp s.t. € <ON, ®
where & is a regularization parameter. As discussed in [19],
appropiate values for the regularization parameter are 6 ~ 1,
and for the purposes of our work we can safely take 6 =
1. However, for the sake of completeness in the following
discussion we will keep 0 in all the equations.

Following the work by [19], the problem (9) is equivalent
to the minimization of the constrained Lagrangian

ZL(A) = 3 (A’MA 2D'A) +Al|A[lh,  (10)
subject to the goodness-of-fit constraint
e=A"MA —-2D'A + f <N. 11)
In the previous equations,
M = ¢ lo, (12)
D = ®¢&d, (13)
f = déld (14)

Therefore, M is a n X n matrix, D is a n X 1 vector and f is
an scalar. Finally, in A is a Lagrangian multiplier that
must satisfy a positivity constraint, A > 0. The solution of
(T0) under the constraint (TT) leads to the equations:

Y MopAp +ApAl " =Dy, (15)
B

-1

x [f—~D'A—8N]. (16)

e

2.3 Solution for the /;-norm

The case p = 1 is a convex problem that leads to analytical
solutions. Let e be a vector of ones in R”, ' = (1,...,1).
Then the solutions of and for the case p = 1 are

A = M !'(D-2%e),
D'M'D+68N—f

eM-le

(r7)
1/2
A

(18)

2.4 A sparse [;-norm algorithm for the detection of point
sources

We would like to remark that solutions have little
utility if the number n of sources is not known. Fortunately,
the constraints on the positiveness of A and A can help us to
solve the problem.

A naive algorithm would start by considering all the N
pixels in the image, solving equations and and
checking if all the elements of A and A are positive. If, as is
expected, the conditions are not satisfied, then the algorithm
would repeat the same procedure with N — 1 points, check
again, then do it again with N — 2 pixels, and continue so on
until the constraints on A and A are satisfied.

There are two problems with this naive approach. The
first one is computational cost. Even for a moderate sized
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image, let us say a 256 x 256 pixels one, the size of ma-
trices & and M would be huge (in the considered example,
65536 x 65536 elements). Even considering all the possible
symmetries and simplifications of the problem (for example
white, homogeneous and isotropic noise, etc) the total num-
ber of operations would be prohibitive.

The second problem is more subtle, and it is related to
the decision of how to get out pixels from the sample in
each iteration. A seemingly natural option would be to start
from the lowest value pixel and proceed in ascending order,
but nothing tells us this is the most efficient path. Even if
this procedure would lead us to a solution (provided enough
CPU power and time), it is not proven that such a solution
is the one with a minimum number » of sources among the
possible solutions. Once the positivity conditions are met it
could be still possible to find solutions with smaller num-
ber of sources, or other configurations with the same number
of sources but better goodness-of-fit. In other words, going
‘upwards’ from a large to a smaller n does not necessarily
guarantee the sparsest solution.

A possible solution to overcome this problem is the use
of smart sampling algorithms specifically designed for the
case of unknown number of sources, such as the Reversible
Jump Markov Chain Monte Carlo method [13]]. In this work,
however, we propose a simpler algorithm inspired on the de-
tection procedure that is most commonly used in astronomy.

In typical astronomical images most point sources, or at
least the brighter ones, are found in ‘hot pixels’ of the im-
age or nearby. This is particularly true after the image is
convolved with a linear filter such as the matched filter or a
wavelet [see for example 24} 2| 18 [12]. A common practice
in astronomy is to filter the data in order to enhance the point
sources and then to identify regions above a certain thresh-
old (usually the celebrated 5S¢ level) as detections. Keeping
a sufficiently high threshold guarantees a high significance
of the detection. This methodology is well established and
has proven to be very succesful in CMB astronomy [[17, [15].
The main objection to thresholding is that the choice of the
threshold is arbitrary. However, we know that the brighter
peaks of the filtered image are an excellent guess of the loca-
tions of point sources. Since the /,-norm minimization leads
to the quantity D that is proportional to the matched filtered
image, our algorithm starts with the matched filter:

1. If the noise correlation matrix & is not known, estimate it
from the data. Calculate f.

2. Filter the image with the matched filter (I3).

3. Locate the local maxima of the filtered image and sort
them downwards from larger to smaller values.

4. Setn=1.

5. Take the positions and intensities of the first n peaks from
the ordered list of maxima and construct the correspond-
ing vector D and the matrix M.

6. Obtain estimates for A and A using equations and
(13).

7. Check the positivity constraint of A and A. If the con-
straint is not satisfied, make n = n+ 1 and go back to
step 5. If the constraint is satisfied, exit the algorithm.

If point sources are truly sparse (few in comparison with
the number of pixels of the image), bright enough (so that the
can be identified by peaks in the filtered image) and do not
overlap among themselves, the previous algorithm converges
to a solution of (9) in the sense that it finds the minimum

number of elements of the dictionary, located at the positions
of the local maxima of the filtered image, that satisfy the con-
strains of positivity and goodness-of-fit. Going downwards
from brighter to fainter pixels and increasing the number of
candidates by one at each step guarantees sparsity. More-
over, the algorithm tells us when to stop going down, thus
avoiding the arbitrarity of the thresholding method. Since
the iterations usually stop before the number n of candidates
becomes too large, the algorithm is fast and computation-
ally inexpensive. The overall computational burden is equiv-
alent to ~ ¢(n*) times the operations needed for a single
matched filter, where n is the number of sources detected by
the method.

3. TESTING THE ALGORITHM

In this section we will test the proposed /;-norm algorithm
with simulations, comparing it with the standard matched fil-
ter thresholding method. We will focus, as figure of merit, on
the receiver operating characteristic (ROC) curves for each
method. The ROC curve shows the fraction of true positives
(TPR) as a function of the fraction of false positives (FPR),
where

TPR — true positives

19)

true positives + false negatives
false positives

FPR = (20)

false positives + true negatives

True positives are identified as peaks accepted by our detec-
tion criterion that lie within a circle of 1 FWHM radius cen-
tered in the position of any of the simulated sources. False
positives are peaks accepted by our detection criterion that
have no counterpart among the simulated sources. A false
negative or ‘miss’ is a peak that has not satisfied our detec-
tion criterion but corresponds to one of the simulated sources,
whereas a true negative is a peak that has not satisfied our de-
tection criterion and is caused not by a simulated source, but
by the noise fluctuations instead.

We simulate white, uniform Gaussian noise. In
this case, the noise correlation matrix is diagonal, & =
diag(c?,...,0?). For simplicity, we set ¢ = 1 (in arbitrary
units) and then & is just the identity N x N matrix. In order
to lighten as much as possible the computational burden of
the test, we simulate small images: N = 64 x 64 = 1024 pix-
els. Over each noise realization we place four identical point
sources, arranged in a square with fixed corners in order to
avoid any possibility of overlap between the sources. The
point sources have Gaussian profile with a width of 2 pix-
els (FWHM=4.71 pixels) and identical amplitudes Ay = 1
(in the same arbitrary units of the noise map), therefore the
sources have a SNR=Ap/c = 1. We perform 1000 of these
simulations, changing the noise realization each time.

For each simulation we apply a matched filter and we
look for peaks above a certain threshold, thus obtaining the
number of detections for that threshold. The intensity of the
peak (after the appropiate renormalization) is taken as the es-
timation of the source amplitude. We also check how many
of these detections are true and how many are spurious. In or-
der to decide whether a candidate is a true or spurious detec-
tion, we apply a proximity criterion: if the candidate lies in a
circle whose radius is r = FWHM//2, centered at the true po-
sition of one of the four sources we introduced in the image,
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Figure 1: ROC curves for 1000 simulated images. The
dashed line shows the TPR as a function of FPR for the
matched filter. The solid line shows the same curve for our
proposed algorithm. The solid cross indicates the final result
for our proposed algorithm.

we consider the candidate as a valid detection. Otherwise,
it is considered a spurious detection. Since the results are
dependent of the threshold, we calculate the number of true
and spurious detections for a number of different threshold
values, ranging from ¢ = 0 to = 2 (always in our arbitrary
units). This way we can construct the ROC curve for the se-
lected detection method. In order to have enough statistics,
we construct the curve not for a single realization, but for the
sum of the 1000 simulations.

We repeat the same for our /;-norm top-to-bottom detec-
tion algorithm. The difference is that the algorithm fixes by
itself the threshold where it must stop. Therefore, it gives a
single number of true (true positive) and spurious (false pos-
itive) detections, instead of a curve depending on the thresh-
old as in the case of the matched filter. In order to facilitate
the graphical comparison with the matched filter, we can ob-
tain the rest of points of the ROC curve by artificially stop-
ping the algorithm at higher intensity thresholds. For this
plot we use the same intensity thresholds we tested with the
matched filter. Please note once more that these thresholds
are artificial in our /;-norm scheme and have been used only
for illustrative purposes.

Figure [I] shows the ROC curves for 1000 simulations
with Gaussian white noise. The dashed line indicates the
results obtained with the matched filter plus thresholding.
Each point of the curve corresponds to a different threshold
(higher thresholds to the left of the diagram). The dashed
curve continues to grow to the right of the diagram, but the
plot has been cut for the sake of clarity. The solid line in-
dicates the results obtained with our sparse /;-norm method.
Strictly speaking, the algorithm gives only one point of the
diagram: this is indicated by a solid cross (+) at the end of
the solid curve. In order to better compare with the matched
filter, higher thresholds are selected artificially in order to
complete the curve.

Figure |I| must be interpreted in the following way: the
dashed curve runs below the continuos line. This means that
for any fixed number of true detections, our sparse method

leads to a lower number of false detections. In other words,
the sparse method is not only able to determine by itself when
to stop, but also controls the number of false positives better
than simple thresholding.

4. CONCLUSIONS

In this work we have introduced a method for the detection of
point sources in images based on a /;-norm sparse approxi-
mation. The detection of pointlike objects is a common prob-
lem in Astronomy, being a typical example the detection of
stars, far galaxies and/or galaxy clusters in deep space obser-
vations. Although in this paper we have used as an example
the case of astronomic image processing, the method we in-
troduce can be applied to any kind of images where pointlike
signals are present.

In a typical astronomical image, the number of resolved
sources that can be detected is much smaller than the number
of pixels. This leads naturally to the notion of sparsity. In a
sparse model, the relevant signal can be described in terms of
a small number of elements of a dictionary. In our case, the
dictionary is formed by shifted replicas of the point source
characteristic point spread function, that is, its spatial tem-
plate, that we assume that is constant across the image.

For this work, we have considered a minimization of the
/{-norm assuming a constraint on the goodness-of-fit plus a
positivity constraint on the intensity of the sources. We have
chosen the /; norm because the associated sparse problem
is convex. Moreover, the /{-norm problem allows us to ob-
tain analytical formulas. We have obtained the expressions
that solve the problem and we have proposed a very sim-
ple and intuitive algorithm that proceeds downwards from
the brightest to the faintest image peaks for the detection of
point sources in Gaussian noise. An important feature of the
algorithm is that it provides an objective criterion in order to
decide where to stop the search for new sources.

We have tested our algorithm in 1000 simulations with
Gaussian white noise, introducing toy point sources and
comparing the performance of our proposed algorithm with
the performance of the standard matched filter detector. We
have obtained the numbers of detections and false positives
for the two methods and constructed the corresponding ROC
curves. Strictly speaking, our downwards sparse detection
algorithm gives only one point of the diagram; in order to
complete the ROC curve, higher detection thresholds have
been selected artificially. Our results show that the proposed
algorithm leads to a better ratio between true and false posi-
tives for the case of white Gaussian noise. The more general
case of color noise will be addressed in a future work.
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