
DETECTION OPTIMIZATION FOR THE DCT-DOMAIN IMAGE WATERMARKING
SYSTEM

Slobodan Djukanović and Igor Djurović

University of Montenegro/Electrical Engineering Department
Cetinjska 2, 81 000, Podgorica, Montenegro

phone: + (382) 20 245 839, fax: + (382) 20 245 873, email: {slobdj,igordj}@ac.me

ABSTRACT
This paper proposes a detection optimization for the DCT-
domain image watermarking system developed by Barni et
al. The visual masking introduced in this scheme causes
performance deterioration in the watermark detection. We
therefore modify the searched watermark, by using linear al-
gebra methods, taking into account the influence of the visual
masking on the watermark detection. The optimized detec-
tion outperforms the standard one for both non-attacked im-
ages and images subjected to a number of standard attacks.
In addition, it allows detection of very weak watermarks. The
optimization process requires a few percents of the original
DCT coefficients.

1. INTRODUCTION

Digital watermarking has tremendous importance nowadays
since for the first time in human history perfect replication
of intellectual works is possible. The cornerstone in the area
was the famous paper [1], in which a class of very powerful
spread spectrum watermarking systems is introduced. Nu-
merous alternative approaches have been developed, mainly
based on correlation techniques similar to that proposed in
[1]. These techniques are applied in time and space domain
[2, 3], spectral domain [4]–[7], or combined space-frequency
domains [8]. However, watermarking challenges have been
constantly growing. For example, many of proposed so-
phisticated attacks are able to remove embedded watermarks
without significant distortion to the multimedia data. More-
over, various applications put difficult requirements for the
watermarking techniques. For example, watermarking in
medical applications should be as low as possible in order
to avoid disturbances to sensitive information that medical
images contain [9].

In this paper, we propose a detection optimization
method for the watermarking technique proposed in [7],
where the watermark invisibility is improved by the visual
masking. This masking, however, deteriorates the water-
mark detection. We propose a way to optimize the detec-
tion considering the influence of the visual masking on the
performance of detector. The term optimization will refer to
a modification of watermark the detector searches for in or-
der to maximize the distance between the probability density
functions (PDFs) of the correlator output when the searched
watermark and the embedded one do not coincide and when
they do coincide. The distance maximization will be per-
formed by using linear algebra methods, and detector char-
acterized by maximal distance between these two PDFs will
be referred to as an optimal watermark detector, whereas de-
tector with no optimization performed will be referred to as
a standard watermark detector.

An overview of the DCT-domain watermarking tech-
nique is given in Section 2. In Section 3, we define the detec-
tion optimization method, whose performance is evaluated in
Section 4. Conclusions are drawn in Section 5.

2. THE DCT-DOMAIN WATERMARKING SYSTEM

The DCT of an N ×N greyscale image I, DI , and its inverse
are defined as follows:

DI (i, j) = DCT(I) =C (i, j)∑N−1
m,n=0 I (m,n)qmiqn j (1)

I (m,n) = IDCT(DI) = ∑N−1
i, j=0 C (i, j)DI (i, j)qmiqn j, (2)

where

qi j = cos
π (2i+1) j

2N
, (3)

and C is the N ×N matrix with

C (i, j) =

1/N i = 0 and j = 0
2/N i > 0 and j > 0√

2/N otherwise.

(4)

In [7], watermark W = {w1,w2, ...,wL} to be embedded
is an L samples long pseudo-random sequence, where wi,
i = 1,2, ...,L, are i.i.d. Gaussian variables with zero mean
and unity variance. The watermark is superimposed on a
fixed set of coefficients of DCT(I). The set is obtained by
reordering DCT(I) into the zigzag scan and taking the co-
efficients from the (P+1)th to the (P+L)th position, thus
forming a vector D= {dP+1,dP+2, ...,dP+L}. The first P co-
efficients are skipped so that the perceptual invisibility is at-
tained. The watermark W is embedded into the image I by
replacing DCT coefficients dP+i with

d′
P+i = dP+i +αwi |dP+i| , i = 1,2, ...,L, (5)

where α is a scaling parameter. The watermarked image I′

is obtained by calculating the IDCT of the DCT with the em-
bedded watermark.

In the watermark detection, we calculate the correlation

z =
1
L ∑L

i=1 d∗
P+iwi, (6)

where W = {w1,w2, ...,wL} is the searched watermark and
D∗ =

{
d∗

P+1,d
∗
P+2, ...,d

∗
P+L

}
is the vector of the DCT coef-

ficients of possibly corrupted image I∗. The correlation z
can be used for deciding whether a given mark is present by
comparing z to a predefined threshold, or as the basis of dis-
tinction between a set of known marks by calculating z for all
marks and declaring a mark with the largest z to be the one
present in the image [7].
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The mean and variance of z satisfy [7]

µz =

{
0 if W ̸=W or no mark is present
αµ|d| if W =W

(7)

σ2
z ≈ σ2

d /L, (8)

where µ|d|=E [|dP+i|] and σ2
d =Var [dP+i]. E [·] and Var [·]

respectively denote the expectation and variance operators.
Approximation (8) is valid for α2 ≪ 1. The detector there-
fore yields two Gaussian random variables, z1 and z2, with
the same variance σ2

z and means 0 and αµ|d|, respectively.
The distance between the PDF curves of z1 and z2,

kz = µz/σz, (9)

provides the measure of goodness of the watermark detector.
Any increase in kz can significantly reduce the error probabil-
ity in the watermark detection. The error probability can be
approximated as Pe = 0.5erfc(µz2/(2

√
2σz2)), where erfc(x)

is the complementary error function [7]. For instance, an in-
crease of µz2/σz2 from 3 to 4 decreases Pe from 6.68% to
2.28%.

The watermark invisibility can be additionally improved
by visually masking the watermarked image I′ given by

I′′ (i, j) = [1−R(i, j)] I (i, j)+R(i, j) I′ (i, j) , (10)

where R(i, j) equals the normalized variance calculated
within the H × H block centered at the (i, j) pixel of I
[7]. Spatial regions with high variance give R(i, j) ≈ 1 and
therefore I′′ (i, j) ≈ I′ (i, j), whereas uniform regions give
R(i, j)≈ 0 and I′′ (i, j)≈ I (i, j).

A downside to the visual masking is the influence of the
matrix R on the watermarked DCT coefficients, and, in turn,
on the watermark detection. Optimization of the watermark
detection, taking into account the influence of R on detec-
tor’s performance, is the subject of the rest of the paper.

3. WATERMARK DETECTION OPTIMIZATION

3.1 Watermarking and visual masking in matrix form
According to (5), the watermark embedding is

D′
I (i, j) = DI (i, j)+αW (i, j)B(i, j) |DI (i, j)|

= DI (i, j)+X (i, j) . (11)

In order to make (11) equivalent to the embedding form (5),
an N×N matrix B is introduced to ensure that the watermark
is embedded only into the proper DCT coefficients. The ma-
trix B is therefore defined as

B(i, j)=
{

1 watermark is embedded into DI (i, j)
0 otherwise. (12)

The N ×N watermark matrix W satisfies

E [W (i, j)] = 0 (13)

E [W (i, j)W (k, l)] = σ2
W δ (i− k, j− l) (14)

E [W (i, j)DI (i, j)] = 0, (15)

where δ (m,n) is the 2D Dirac delta function. The N ×N
matrix X is introduced to shorten the notation and the value
of X (i, j) is clear from (11). Now the watermark embedding
in matrix form reads

D′
I =DI +αW •B• |DI |=DI +X, (16)

where • is the Hadamard (entrywise) product operator. The
watermarked image I′ is obtained as

I′ (m,n) = IDCT
(
D′

I
)
= I (m,n)+X ′ (m,n) , (17)

where X ′ (m,n) = IDCT(X).
The visual masking (10) in matrix form is given as

I′′ = (1−R)• I+R• I′ = I+R•X′, (18)
where 1 represents the N ×N all-ones matrix.

The correlation z, as defined by (6), equals

z =
1
L

N−1

∑
m,n=0

DI′′ (m,n)W (m,n)B(m,n) , (19)

where

DI′′ (m,n) = DCT
(
I′′
)
= DI (m,n)+DRX (m,n) (20)

and

DRX (m,n) = DCT
(
R•X′)

=C (m,n)∑N−1
i, j=0 R(i, j)X ′ (i, j)qimq jn

= αC (m,n)∑N−1
i, j=0 R(i, j)qimq jn

×∑N−1
u,v=0 C (u,v)W (u,v)B(u,v) |DI (u,v)|qiuq jv. (21)

The matrix B in (19) enforces the correlation to be limited
only to the DCT coefficients the watermark is originally em-
bedded into.

3.2 Detection optimization - A whole watermark at once
The distance kz, according to (9), depends on E [z] when
W=W; the following analysis therefore assumes W=W.

The detection optimization will be done by multiplying
W, prior to the detection, by an N ×N matrix M, i.e.

WM=MW =MW, (22)
which, in turn, yields

z =
1
L

N−1

∑
m,n,k=0

DI′′ (m,n)M (m,k)W (k,n)B(m,n) . (23)

In this paper, instead of kz its squared value

Kz = k2
z = E2 [z]/Var [z] (24)

will be maximized. The optimization problem therefore re-
duces to finding a matrix M that maximizes Kz.

Let us start with E [z]. According to (23), (20) and (15),
we get

E [z] = ∑m,n,k E [DRX (m,n)W (k,n)]M (m,k)B(m,n) , (25)

where m, n and k run from 0 to N − 1. The scaling factor 1
L

has been dropped in (25) since 1
L2 appears in both the numer-

ator and denominator of Kz. Now, by substituting (21) into
(25), we have

E [z] =ασ2
W ∑m,n,k M (m,k)B(m,n)C (m,n)C (k,n)

×B(k,n) |DI (k,n)|∑i, j R(i, j)qikqimq2
jn

=ασ2
W ∑m,k M (m,k)∑i, j R(i, j)qikqim

×∑
n

CB (m,n)CB (k,n) |DI (k,n)|q2
jn, (26)
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where
CB =C•B (27)

and i and j also run from 0 to N − 1. By introducing the
N ×N matrix Θ with entries

Θ(k,m) =ασ 2
W ∑i, j R(i, j)qikqim

×∑n CB (k,n)CB (m,n) |DI (k,n)|q2
jn, (28)

E [z] reduces to

E [z] = ∑m,k M (m,k)Θ(k,m) . (29)

Define

MT
1 = [m1 m2 · · · mN ]1×N2 (30)

ΘT
1 =

[
θ T

1 θ T
2 · · · θ T

N
]

1×N2 , (31)

where (·)T represents the transpose operator, mi is the 1×N
vector (ith row of the matrix M) and θi is the N × 1 vector
(ith column of the matrix Θ) and i = 1,2, ...,N. Now it holds

E [z] =MT
1 Θ1. (32)

As for the variance Var[z], we will give only the final ma-
trix form due to the limited paper length1. It is

Var[z] =MT
1 (Ω1 +Φ1 +Λ1)M1, (33)

where the N2 ×N2 matrices Ω1, Φ1 and Λ1 are defined be-
low (relations (34), (37) and (40), respectively),

Ω1 =


ω11 ω12 · · · ω1N
ω21 ω22 · · · ω2N

...
...

. . .
...

ωN1 ωN2 · · · ωNN

 , (34)

where ωm1m2 is the N ×N matrix defined by

ωm1m2 = Ω(m1,m2) I, (35)

and I is the N ×N identity matrix and

Ω(m1,m2) = α2σ4
W ∑i1,i2, j1, j2

R(i1, j1)R(i2, j2)

×qi1m1 qi2m2 ∑n1
CB (m1,n1)CB (m2,n1)q j1n1q j2n1

×∑u,v C2
B (u,v)D2

I (u,v)qi1uqi2uq j1vq j2v, (36)

Φ1 = [ϕ11 · · ·ϕ1N ϕ21 · · ·ϕ2N · · ·ϕN1 · · ·ϕNN ] , (37)

where ϕi j is the N2 ×1 vector defined as

ϕi j = [Φ(1,1, i, j) , · · · ,Φ(1,N, i, j) ,Φ(2,1, i, j) , · · · ,
Φ(2,N, i, j) , · · · ,Φ(N,1, i, j) , · · · ,Φ(N,N, i, j)]T (38)

and
Φ(m1,k1,m2,k2) = α2σ4

W

×∑i1,i2, j1, j2
R(i1, j1)R(i2, j2)qi1m1 qi2m2qi1k2 qi2k1

×∑n1
CB (m1,n1)CB (k1,n1) |DI (k1,n1)|q j1n1q j2n1

×∑n2
CB (m2,n2)CB (k2,n2) |DI (k2,n2)|q j1n2q j2n2 . (39)

1Full derivation is available at request.

Finally

Λ1 =


λ11 λ12 · · · λ1N
λ21 λ22 · · · λ2N

...
...

. . .
...

λN1 λN2 · · · λNN

 , (40)

where λi j is the N ×N matrix defined by

λi j = Λ(i, j) I

and

Λ(i, j) = σ2
W ∑n B(i,n)B( j,n)DI (i,n)DI ( j,n) . (41)

In (36), (39) and (41), all the summation variables run
from 0 to N −1.

The ratio Kz can be finally expressed as

Kz =
MT

1 Θ1Θ
T
1 M1

MT
1 (Ω1 +Φ1 +Λ1)M1

=
MT

1 ZM1

MT
1 YM1

, (42)

where the N2 ×N2 matrices Z and Y are clear from (42).
The final form of Kz may be viewed as the Rayleigh quotient
[10]. The matrices Ω1, Φ1 and Λ1 are symmetric implying
that Y and Y1/2 are also symmetric. We can therefore define
the N2 ×1 vector M̂1 =Y1/2M1 and express (42) as

Kz =
M̂T

1

[
(Y−1/2)T ZY−1/2

]
M̂1

M̂T
1 M̂1

. (43)

The Rayleigh quotient states that Kz reaches its maxi-
mum when M̂1 is an eigenvector of the N2 × N2 matrix
(Y−1/2)T ZY−1/2 that corresponds to its largest eigenvalue.
If we denote such a vector as M̂1max, the optimal detector is
obtained by rearranging the N2 ×1 optimal vector

M1opt =Y−1/2 M̂1max (44)

back into the N ×N matrix M according to (30). The detec-
tor that implements the modification of the watermark W by
such a matrix M will be referred to as the optimal detector,
as opposed to the standard detector obtained for M= I.

The previous analysis is computationally acceptable only
for smaller images. This is due to the fact that the intro-
duced optimization requires the calculation of eigenvalues
of an N2 ×N2 matrix, which for bigger N (e.g., N = 512)
far exceeds the capacity of commercial computers nowadays.
The proposed algorithm will be therefore modified in order
to make the processing of bigger images possible.

3.3 Detection optimization - A block optimization
By dividing the matrices DI′′ , W and B into adjacent non-
overlapping N1 ×N1 submatrices, the correlation (19) can be
rewritten as the sum of partial correlations zγρ , i.e.

z =
1
L

K−1

∑
γ,ρ=0

zγρ , (45)

where K is an integer satisfying K = N
N1

, and

zγρ = ∑N1−1
m,n=0 Dγρ

I′′ (m,n)W γρ (m,n)Bγρ (m,n) , (46)
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Figure 1: The N ×N matrix DI′′ is divided into the N1 ×N1
matrices Dγρ

I′′ ; γ and ρ run from 0 to K −1, and K = N
N1

.

where D
γρ
I′′ , Wγρ and Bγρ are the N1 ×N1 submatrices of

DI′′ , W and B, respectively, defined by

Dγρ
I′′ (m,n) = DI′′ (m+ γN1,n+ρN1)

W γρ (m,n) =W (m+ γN1,n+ρN1) (47)
Bγρ (m,n) = B(m+ γN1,n+ρN1) ,

where m and n run from 0 to N1 − 1. In Figure 1, DI′′ is
divided into the submatrices Dγρ

I′′ .

Instead of the optimization of the whole correlation at
once, the partial correlations zγρ will be now separately opti-
mized by using the approach developed in the previous sec-
tion. To this end, the matrix Wγρ is modified by an N1 ×N1
matrix M, which will be determined to maximize the ratio

Kγρ
z =

(
kγρ

z
)2

= E2 [zγρ ]/Var [zγρ ] . (48)

The optimization procedure is carried out for each γρ block
separately, excluding blocks with the all-zeros matrix Bγρ .
Since the final matrix form of Kγρ

z is very similar to the one
given by (42), we will omit it here.

3.4 Discussion
The matrices Θ1, Ω1, Φ1 and Λ1 depend on DCT(I). It can
be shown, however, that our analysis does not require all the
DCT coefficients, but only those the watermark is embedded
into. A closer look at these matrices reveals that they include
the term of the form CB (k,n)DI (k,n), which, due to (12)
and (27), implies that coefficients DI (k,n) the watermark is
not embedded into will not affect the value of Kz. For in-
stance, in (28) we have CB (k,n) |DI (k,n)|, in (36) there is
C2

B (u,v)D2
I (u,v) etc.

The watermark is usually embedded into a few percents
of the DCT coefficients. These coefficients should be sub-
mitted within the image header file and protected using some
of the standard cryptographic techniques. A user can read
the image file without any difficulties and only the copyright
protection checking involves the submitted coefficients.

Future research activities will include the modification of
the proposed method so that it uses statistical properties of
the DCT coefficients instead of their original values.

4. EXPERIMENTAL RESULTS

We will start with the evaluation of performance of the pro-
posed detector when the whole watermark is optimized at
once, as presented in Section 3.2. The Baboon and Boat
images with N = 32 are considered. This image size is of
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Figure 2: Normalized detector response for the standard and
optimal detectors.

no practical significance; rather, it will be used only to ver-
ify the validity of the underlying method. Therefore, none
of the attacks will be considered at this point. The embed-
ded watermark has zero mean and σ2

W = 1; it is embedded
starting from P = 300 and L = 300. The matrix R is calcu-
lated with H = 9, and the mean value of α , after weighting
by R(i, j) [7], is α = 0.3. In the watermark detection stage,
1000 watermarks are generated and the embedded one is at
position 100. Normalized detector responses for the standard
and optimal detectors are shown in Figure 2. For the numer-
ical comparison of these two detectors, the variance of the
normalized detector response, σ2

znor, is calculated and shown
on the corresponding plot, along with the distance kz. The
simulations were also carried out with other standard images
(Lena, Stream and bridge, Peppers, Man) and similar results
were obtained. The optimal detector outperforms the stan-
dard one, thus giving us the green light to test it on bigger
images.

Consider now the same images with N = 512. The same
form of watermark W is adopted, with P = 2000, L = 8000
and α = 0.1 (which corresponds to the peak signal-to-noise
ratio (PSNR) of 39.70dB) and the matrix R is calculated
with H = 9. We performed the detection optimization, with
N1 = 8, for the non-attacked images and for the images sub-
jected to a number of attacks listed in Table 1. The variances
σ2

znor of the normalized detector responses are shown in Table
1. The both detectors have successfully detected the embed-
ded watermark. The optimal detector, however, outperforms
the standard one in terms of σ2

znor for all the cases. The sim-
ulations were also performed with other standard images and
similar results were obtained.

Finally, we considered the case when the watermark is
very weak. The watermarking parameters are same as in
the previous example. No attacks will be considered herein;
rather, the possibility of the optimized detector to detect a
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Table 1: Variance σ2
znor of normalized detector responses

Baboon Boat
Stand. Opt. Stand. Opt.

No attack 0.021 0.004 0.030 0.005
JPEG compression (0%
smoothing and 10%
quality)

0.022 0.007 0.040 0.010

Histogram equalization 0.029 0.008 0.023 0.016
Histogram stretching 0.025 0.004 0.025 0.005
Low pass filtering (filter
5×5) 0.029 0.010 0.025 0.017

Median filtering (filter
5×5) 0.030 0.008 0.032 0.007

Dithering 0.025 0.006 0.026 0.006
Resize from 512 × 512
to 256×256 0.026 0.016 0.034 0.016

AWGN with the vari-
ance of 900 0.025 0.016 0.034 0.014

Multiple (five) water-
markings 0.017 0.010 0.011 0.010

very low watermark will be validated. To this end, we cal-
culated σ2

znor for the PSNR that changes from 30dB to 54dB
in increments of 2dB. The corresponding curves are shown
in Figure 3. With this setup, the highest PSNR value for
which the standard detector detects the embedded watermark
is 40dB (α = 0.1323) for Baboon and 42dB (α = 0.0736)
for Boat, whereas the optimal one still detects the water-
mark for PSNR = 52dB (α = 0.0331) for Baboon and 52dB
(α = 0.0234) for Boat.

5. CONCLUSION

In this paper, the problem of detection optimization for the
DCT-domain image watermarking system is investigated.
We optimized detection by modifying the searched wa-
termark in order to maximize the correlation between the
searched watermark and watermarked DCT coefficients. In
addition to the improvement over the standard detection for
both non-attacked and attacked images, the optimal detector
allows detection of much weaker watermarks. The additional
requirement of the optimization are the DCT coefficients the
watermark is embedded into.
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