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ABSTRACT
This paper proposes a novel iterative data-adaptive spec-
tral estimation technique for blood velocity estimation us-
ing medical ultrasound scanners. The technique makes no
assumption on the sampling pattern of the slow-time or the
fast-time samples, allowing for duplex mode transmissions
where B-mode images are interleaved with the Doppler emis-
sions. Furthermore, the technique is shown, using both sim-
plified and more realistic Field II simulations, to outperform
current state-of-the-art techniques, allowing for accurate esti-
mation of the blood velocity spectrum using only 30% of the
transmissions, thereby allowing for the examination of two
separate vessel regions while retaining an adequate updating
rate of the B-mode images. In addition, the proposed method
also allows for more flexible transmission patterns, as well as
exhibits fewer spectral artifacts as compared to earlier tech-
niques.

1. INTRODUCTION

In medical ultrasound systems, spectral Doppler is a pow-
erful tool for non-invasive estimation of velocities in blood
vessels (see, e.g., [1] and the references therein). The data
for the estimation is created by focusing the ultrasound trans-
ducer array along a single direction and sampling data at the
depth of interest. The velocity of the moving blood can be es-
timated by illuminating the same image line repeatedly, and
hereby follow the motion of the blood. Taking out a sin-
gle sample from each pulse emission produces a slow-time
signal sampled at the pulse repetition frequency, fpr f , which
yields a sinusoidal signal with a frequency of

fp =
2vz

c
fc, (1)

where vz is the blood velocity along the ultrasound direction,
c = 1540 m/s is the speed of propagation, and fc the emit-
ted ultrasound (center) frequency (typically 3-10 MHz) [1].
A common way of estimating the blood velocity at a spe-
cific depth is to estimate the power spectral density (psd)
of the sampled signal. Displaying the psd as a function of
time, a so-called sono- or spectrogram, visualizes changes
in the blood velocity distribution over time. Traditionally,
in ultrasound imaging, the psd is estimated using the peri-
odogram or an averaged periodogram, also known as Welch’s
method [2]. However, as is well-known, this approach suf-
fers from low resolution and/or high leakage, and to achieve
sufficient spectral resolution, the duration of the observation
window must be long. This means that a large number of
transmissions has to be used, which reduces the temporal
resolution and makes it difficult to see details in the rapid

acceleration phases of the cardiac cycle. Furthermore, it is
generally also necessary to acquire B-mode images, allow-
ing the operator to navigate and choose the region in which
the blood velocity should be estimated. As the same system
is used for both the velocity estimation and for forming B-
mode images, these two transmissions are interleaved. Since
it is desirable to update the B-mode images frequently to al-
low the operator to find and track the vessel position, it is
necessary to reduce the number of Doppler transmissions.

In [3], some of the authors introduced the data-adaptive
Capon- and APES-based blood velocity spectral estimation
techniques, herein termed the Blood Power spectral Capon
(BPC) and the Blood APES (BAPES) techniques. These
techniques exploit the availability of additional fast-time
measurements from neighboring depths to improve the es-
timators’ performance, as well as make use of the recent de-
velopment in high-resolution data adaptive spectral estima-
tion techniques. A simple reformulation of BPC along the
lines of [4] would also allow for an amplitude spectral Capon
approach, which we here term the Blood Capon (B-Capon)
approach. As shown in [3], these methods offer substantial
improvements over the traditionally used Welch’s method,
allowing for an accurate estimation of the blood spectrum
on drastically fewer slow-time samples as compared to the
Welch’s method. These results have also been confirmed in
thorough in vivo studies [5, 6].

Recently, researchers have examined spectral estimation
techniques that allow for irregular sampling schemes, so
that B-mode images can be acquired in between the regu-
lar Doppler transmissions. As it is crucial to maintain the
Nyquist frequency, one has to be careful when considering
interleaved acquisition techniques. For example, if every sec-
ond Doppler transmission is replaced by a B-mode image
acquisition, the Nyquist limit is halved, reducing the veloc-
ity range by a factor of two. In [7], one of us proposed a
correlation-based technique for spectral estimation, allowing
for random sampling schemes; however, the method requires
large sets of data and in sampling schemes with few Doppler
emissions, alias occurs. Moreover, in [8], the missing sam-
ples, i.e., samples where a B-mode image was acquired in-
stead, were reconstructed using a filter bank technique, so
that a spectrogram can be estimated from a full set of data.
The technique, however, reduces the velocity range in pro-
portion to the number of missing samples.

Recently, the case of periodically gapped (PG) measure-
ments was investigated in [9], and the B-Capon and BAPES
methods were extended along the lines of [10]; these meth-
ods are here termed the BPG-Capon and the BPG-APES
techniques. However, the methods in [9] are restricted to
the case of periodically gapped sampling of the slow-time
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data and will not work for more general irregular sampling
schemes.

Typically, to allow for an adequate updating frequency
of the B-mode images, about 40% of all the transmissions
should be the broad-band pulses used to form the B-mode
images. Furthermore, it would be beneficial if the remain-
ing measurements could be arranged such that two differ-
ent regions of interest could be examined simultaneously, for
instance, allowing the medical doctor to compare the blood
velocities before and after a region of stenosis in the blood
vessels. These requirements, along with the desire to be
able to form arbitrary sampling patterns, e.g., to allow for
more or less detailed estimates in various regions, necessi-
tate the development of improved techniques able to estimate
the blood spectral density from arbitrary sampled and often
sparse slow-time data.

In this paper, making use of recent work in MIMO radar
systems [11–13], we propose a data-adaptive iterative blood
velocity spectral estimator that allows for an arbitrary sam-
pling of the slow-time measurement. Using both simpli-
fied and realistic Field II [14] simulation data, we show that
the presented method allows for a reliable estimation of the
blood velocity spectrum using only 30% of the available
measurements, thus allowing for the velocity estimation at
two different regions of interest, while still updating the B-
mode images at an adequate pace.

Some words on notation: In the following, (·)T and (·)∗
denote the transpose and the Hermitian, or conjugate trans-
pose, respectively. Moreover, diag(x) and IN denote a diag-
onal matrix formed with the vector x along the diagonal and
the identity matrix of size N×N, respectively.

2. PRELIMINARIES

The slow-time data acquired by the spectral Doppler at depth
k, corresponding to emission n, is commonly modeled as [1,
3]

xk(n) = αvze
jφk+ jψvz n +wk(n), (2)

where αvz is the (complex-valued) amplitude of the sinu-
soidal signal at frequency ψvz , which is directly related to
the blood velocity vz as

ψvz =−
2ωc

c fpr f
vz =−2vz

c
ωcTpr f , (3)

where ωc = 2π fc, and Tpr f is the time between pulse repeti-
tions. Furthermore, φ is the demodulating frequency, relating
the fast-time samples at each depth, defined as

φ =
ωc

fs
, (4)

where fs is the sampling frequency, and wk(n) denotes a
residual term consisting of all signals at velocities different
from vz as well as additive noise. From (2) and (3), we see
that the psd with respect to ψvz is equivalent to the blood ve-
locity distribution at the examined location, so the problem
of estimating the blood velocity can be seen to be equiva-

lent to the estimation of
∣∣αvz

∣∣2 for each velocity of inter-
est. We will herein make no assumptions on the slow-time
sampling pattern, nor the fast-time pattern, thus allowing for
an arbitrary sampling scheme. The slow-time samples are
therefore denoted n = n1, . . . ,nN , and the fast-time samples
k = k1, . . . ,kK .

We will now rewrite the signal in (2), describing it as
the sum of the contributions from each frequency grid point
{ψm,vz}M

m=1,

xk(n) = e jφk
M

∑
m=1

α(k)
m,vze

jψm,vz n + ek(n), (5)

where n = n1, . . . ,nN and ek(n) is zero mean white complex
Gaussian noise with variance η . This means that any possi-
ble noise coloring is modeled by the first term in (5), i.e., the
signal part. Due to the smoothness of the blood flow profile,
the blood spectral amplitude at various fast-time positions,

i.e., over a range of depths, α(k)
m,vz , k = k1, . . . ,kK , will be al-

most constant as long as the fast-time range is limited to be
within the emitted pulse length. Moreover, since φ is known,
we can proceed to demodulate xk(n) to simplify the follow-
ing calculations, introducing

zk(n) = e− jφkxk(n), (6)

or, in a more compact form:

zk = Aα(k)
vz + ek, (7)

where

zk = [zk(n1) · · · zk(nN)]
T , (8)

α(k)
vz =

[
α(k)

1,vz
· · · α(k)

M,vz

]T
, (9)

A = [a1 · · · aM] , (10)

am =
[
e jψm,vz n1 · · · e jψm,vz nN

]T
, (11)

and where ek is defined similarly to zk. From the estimate of

the amplitudes at depth k, α̂(k)
m,vz , one may, due to the smooth-

ness of the blood flow profile, form an estimate of the central
amplitude by simply averaging the neighboring amplitude es-
timates:

α̂m,vz =
1

K

kK

∑
k=k1

α̂(k)
m,vz . (12)

It now remains to find α̂(k)
m,vz , m = 1, . . . ,M, for which we

propose the Blood Iterative Adaptive Approach (BIAA) al-
gorithm.

3. THE BIAA ALGORITHM

Exploiting the similarities to the work in [11–13], we proceed

to derive the BIAA algorithm. Noting that
∣∣∣α(k)

m,vz

∣∣∣2 forms a

measure of the blood spectral density at velocity vz, it is clear
that the covariance matrix of the data zk can be expressed as

R(k)
BIAA =

M

∑
m=1

∣∣∣α(k)
m,vz

∣∣∣2 ama∗m +ηIN = AP(k)
BIAAA∗+ηIN , (13)

where

P(k)
BIAA = diag

([
p(1,k)BIAA · · · p(M,k)

BIAA

])
, (14)

p(m,k)
BIAA =

∣∣∣α(k)
m,vz

∣∣∣2 . (15)

349



It should be noted that the amplitudes at neighboring depths
are approximately the same, suggesting that one should form
the estimate using the mean of the covariance matrices:

RBIAA =
1

K

kK

∑
k=k1

R(k)
BIAA =

1

K
A

[
kK

∑
k=k1

P(k)
BIAA

]
A∗+ηIN . (16)

The interference covariance matrix, i.e., the contribution
from all points on the frequency grid except ψm,vz , can now
be defined as

Qp = RBIAA−
∣∣αm,vz

∣∣2 ama∗m. (17)

In order to find an estimate of α(k)
m,vz , we consider the general

linear estimator

α̂(k)
m,vz = h∗mzk. (18)

Then, the weight vector hm can be found by solving the fol-
lowing constrained minimization

min
hm

h∗mQmhm s.t. h∗mam = 1, (19)

i.e., the mth weight vector is designed as a linear estima-
tor that minimizes the output from all grid points other than
ψm,vz , while passing the component with the frequency of
interest undistorted. As is readily seen, (19) is equivalent to

min
hm

h∗m
(

Qm +
∣∣αm,vz

∣∣2 ama∗m
)

︸ ︷︷ ︸
RBIAA

hm s.t. h∗mam = 1, (20)

to which the minimizer is found as (see, e.g., [2])

ĥm =
R−1

BIAAam

a∗mR−1
BIAAam

. (21)

An estimate of the amplitude at ψm,vz can thus be found by
inserting (21) in (18), yielding

α̂(k)
m,vz =

a∗mR−1
BIAAzk

a∗mR−1
BIAAam

, (22)

and an estimate over all depths can be found from (12).
It now remains to find an estimate of the noise variance

η . Reminiscent of [15], we propose a method that computes
the variance for each slow-time and fast-time sample, and
then averages these estimates. Let ηn,k denote the variance of
fast-time sample k at slow-time n. The steering vector corre-

sponding to η1/2
n,k is then the nth column of IN , here denoted

vn. Consequently, an estimate of ηn,k is given by [15]

η̂n,k =

∣∣∣∣∣ v∗nR−1
BIAAzk

v∗nR−1
BIAAvn

∣∣∣∣∣
2

, (23)

and the noise variance estimate can be computed as

η̂BIAA =
1

NK

nN

∑
n=n1

kK

∑
k=k1

η̂n,k. (24)

As RBIAA depends on αm,vz (or, rather, α(k)
m,vz), BIAA must be

implemented as an iterative algorithm. Herein, we suggest

Table 1: Outline of the BIAA algorithm

Initialize:
zk(n) = e− jφkxk(n),

α̂(k)
m,vz = a∗mzk/N,

η̂ = 10−9,

Step 1: p(m,k)
BIAA =

∣∣∣α̂(k)
m,vz

∣∣∣2,

Step 2:
P(k)

BIAA = diag
([

p(1,k)BIAA · · · p(M,k)
BIAA

])
,

PBIAA = 1
K

kK
∑

k=k1

P(k)
BIAA,

RBIAA = 1
K APBIAAA∗+ η̂BIAAI,

Step 3: α̂(k)
m,vz =

a∗mR−1
BIAAzk

a∗mR−1
BIAAam

,

Step 4: η̂n,k =

∣∣∣∣ v∗nR−1
BIAAzk

v∗nR−1
BIAAvn

∣∣∣∣2,

η̂BIAA = 1
NK

nN
∑

n=n1

kK
∑

k=k1

η̂n,k.

Step 5: Repeat Step 1–4 until practical convergence.

Finalize: α̂m,vz =
1
K

kK
∑

k=k1

α̂(k)
m,vz .

to use the least squares (LS) estimate as initialization for the
amplitudes:

α̂(k)
m,vz = a∗mzk/N. (25)

The noise variance estimate can be initialized setting it to
a small number, e.g., 10−9. The BIAA spectral estimators
are thus found by iterating the estimation of RBIAA in (16),
and the estimation of the amplitudes in (22), until a suitable
stopping criterion is met. The amplitude estimate is then ob-
tained through (12). See Table 1 for an outline of the BIAA
algorithm.

Herein, we iterate until the estimates have practically
converged, i.e., the difference between the amplitude es-
timates between two consecutive iterations is smaller than
some preset threshold ε , which generally requires no more
than 10-15 iterations. We note that in [15], the IAA algo-
rithm has been shown to converge locally. All indications
suggest that a similar result would hold also for BIAA.

We also note that it would be possible to form the BIAA
amplitude estimate using the mean of the data over the

depths, i.e., using z̄ = 1
K ∑kK

k=k1
zk, or by computing the am-

plitude estimates for depth k using R(k)
BIAA and not R(l)

BIAA,
k �= l. However, the latter approach is not recommended as
this would require the computation of K covariance matrices
together with their inverse. Empirical studies also show that
the BIAA algorithm herein proposed outperforms the version
using the mean of the data.

4. NUMERICAL RESULTS

We now proceed to evaluating the performance of the pro-
posed algorithm, first by the use of a simplified signal, where
the mean squared error (MSE) of the velocity estimate from
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Table 2: Parameters for transducer and femoral flow simula-
tion

Transducer center frequency fc 5 MHz
Pulse cycles M 4
Speed of sound c 1540 m/s
Pitch of transducer element w 0.338 mm
Height of transducer element he 5 mm
Kerf ke 0.0308 mm
Number of active elements Ne 128
Corresponding range gate size 123 mm
Sampling frequency fs 20 MHz
Pulse repetition frequency fpr f 15 kHz
Radius of vessel R 4.2 mm
Distance to vessel center Zves 38 mm
Angle between beam and flow 60◦

different estimation techniques are compared. We define the
MSE of an estimate x̂ as

MSE(x̂) = E
{
(x− x̂)2

}
, (26)

where E{·} is the expectation operator and x denotes the true
parameter value. We will evaluate the expression in (26) em-
pirically for different signal-to-noise ratios (SNR’s), defined
as SNR = σ2

s /η , with σ2
s denoting the signal energy. In the

following, all data is generated using K = 33 regularly spaced
fast-time samples, and each power spectrum consists of 500
equally spaced points in the interval ψvz ∈ [−0.5,0.5). We
examine the case of a sampling scheme with pattern [1 1 1
1 0 0 0 0 0 0 0 0 0], where 1 denotes an available sample
and 0 that the sample is missing, due to, e.g, B-mode im-
age acquisition or Doppler emission in another region. With
this sampling pattern, it would be possible to use five of the
empty sampling instances (38%) to acquire B-mode images,
and the remaining four to acquire Doppler transmissions in
another region. We used ten blocks of data, giving 130 sam-
pling instances with 40 available samples. For the simplified
simulations, we generated data using (5) with P= 1 sinusoid,
having a true velocity of 0.2 m/s and amplitude αvz = 1, and
with fc, fs, c, and fpr f according to Table 2. The data was
corrupted by zero mean white Gaussian circularly symmet-
ric noise with variance η . The algorithms were then com-
pared using the MSE of the estimated velocity. We com-
pared the BIAA algorithm with BPG-Capon and BPG-APES
from [9], having sample filter length Ñs = 3 and block fil-
ter length Ñc = 5. The result is displayed in Fig. 1, where we
see that BIAA outperforms the other methods for lower SNR,
whereas for higher SNR, all methods perform similarly.

We now proceed to a more realistic simulation, examin-
ing the same sampling pattern, but where we used the Field
II program [14] to generate flow data, using the Womersley
model [16] for pulsating flow from the femoral artery. The
specific parameters for the flow simulation are summarized
in Table 2. As customary, the stationary part of the signal
was removed by subtraction of the mean of the signal. For
signals taken in regions close to the vessel wall, this station-
ary part could be very strong, and would, if not removed,
easily obstruct the blood velocity signal. Moreover, all spec-
trograms were produced using a dynamic range of 40 dB.
The results can be seen in Fig. 2, where we also display a
reference spectrogram, generated from the full data by the
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Figure 1: MSE of velocity estimate in a simplified scenario,
with ten blocks of data, each with sampling pattern [1 1 1 1
0 0 0 0 0 0 0 0 0].

traditional Welch’s method (see, e.g., [3, 14]), so that each
vertical line is computed using 130 slow-time samples. We
compared the perforamance of the BIAA algorithm with that
of BPG-Capon, BPG-APES, and the autocorrelation spectro-
gram [7]. We see that the latter method fails, and that BPG-
Capon and BPG-APES give significant artifacts in the region
of high velocities. BIAA, on the other hand, shows less arti-
facts, still producing a clear spectrogram, closely resembling
the reference spectrogram.

5. CONCLUDING DISCUSSION

In this paper, we have proposed a new algorithm for the es-
timation of blood velocities in medical ultrasound systems.
The new algorithm can handle arbitrary sampling schemes of
the data, allowing not only for duplex mode where B-mode
images are interleaved with the Doppler emissions, but also
for modes where two regions of the blood vessels can be in-
terrograted simultaneously, still offering a sufficient B-mode
frame rate. In such scenarios, using realistic Field II data, the
proposed method was shown to provide a spectrogram con-
taining fewer artifacts than the current state-of-the-art tech-
niques. Simplified MSE simulations also confirmed the ac-
curacy of the BIAA algorithm.
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Figure 2: (a) Traditional spectrogram (no data missing),
(b) autocorrelation spectrogram, (c) BPG-Capon, (d) BPG-
APES, and (e) BIAA spectrograms, for data consisting of
ten blocks with pattern [1 1 1 1 0 0 0 0 0 0 0 0 0], with 33
fast-times samples.
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