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ABSTRACT
Recently, a variety of chaos-based cryptosystems have been
proposed. Some of these novel chaotic encryption schemes
are not very suitable for image encryption due to their density
function which is not uniformly distributed or due to their
small key space. In this paper, we propose a new scheme
for image encryption based on the use of a chaotic map
with large key space and Engle Continued Fractions (ECF)
map. The ECF-map is employed to generate a pseudo ran-
dom sequence which satisfies uniform distribution, zero co-
correlation and ideal nonlinearity to achieve higher level of
security. The proposed scheme is resistant to the known at-
tacks. Theoretic and numerical simulation analyses indicate
that our scheme is efficient and satisfies high security.

1. INTRODUCTION

Recently, cryptographic algorithms based on chaos sys-
tems [11, 24, 22, 23, 25] have been proposed with good cryp-
tographic properties. Chaos systems have many important
features such ergodicity, sensitivity to initial conditions, sen-
sitivity to control parameters and randomness [9]. These fea-
tures are very important in cryptography and they have sug-
gested some new and efficient ways to develop encryption
algorithms for secure digital image transmission over the In-
ternet and through public networks. In addition, a chaotic
system would have a large key space, for resistance to brute-
force attacks, and generates sequence with an uniform invari-
ant density function for resistance to statistic attacks. The
problem is not all chaotic systems can satisfy these charac-
teristics [10, 21]. For example, the logistic map is widely
used to design chaotic system. The known 1-Dimensional lo-
gistic map is defined as xn+1 = λxn(1− xn) where λ ∈ [0,4]
and xn ∈ [0,1]. Mi et al. [16] proposed a new chaotic en-
cryption scheme based on randomized arithmetic coding us-
ing the logistic map as the pseudo random bit generator. In
[13], Lian et al. proposed a new block cipher based on the
use of logistic map in the diffusion process. In [7], Kanso et
al. proposed a new cipher based on logistic maps for gen-
erating two pseudo random binary sequences. The logistic
map is weak in security because it does not satisfy uniform
distribution property and it has a small key space [1, 2]. Re-
cently, a new chaos-based image cryptosystems using piece-
wise linear chaotic map (PWLCM) has been proposed. The
PWLCM is a chaotic map which depends on the comput-
ing precision, and its phase space includes a linear structure.
Although a PWLCM has a non uniform distribution in fi-
nite computing precision and has weak security. In [12],

Li et al. demonstrated that the chaotic encryption scheme
proposed by Zhou et al. [27, 26], which is based on a kind
of computerized PWLCM realized in finite computing pre-
cision is not secure enough from strict cryptographic view-
point. Thus, find a secure and efficient cryptosystem moti-
vates us to propose a new scheme which consists of using
the standard map with large key space and the Engle Contin-
ued Fractions (ECF) map. The use of ECF-map increases the
complexity of a cryptosystem based only on one chaotic sys-
tem and thus makes difficulties in extraction of information
about it [18]. In addition, ECF-map conserves the cryptogra-
phy properties of the chaotic system; like sensibility to initial
conditions and control parameters non periodicity and ran-
domness; and add interesting statistical properties such uni-
form distribution density function and zero co-correlation.
The rest of this paper is organized as follows. In Section
2, we present the CF theory and describe the ECF-map and
some important features. Section 3 details our proposed al-
gorithm for image encryption. In Section 4, we analyze the
security of the proposed algorithm and we provide experi-
mental results to prove its performances through some well
known attacks. Finally, conclusions of this paper is discussed
in Section 5.

2. CONTINUED FRACTIONS

2.1 Regular Continued Fractions (RCF)
A continued fraction (CF) [14, 19, 20] refers to all expres-
sions of the form:

x = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

, (1)

where ai (i > 0) are the partial numerators, bi the partial de-
nominators, b0 is the integer part of the CF and x is a real
number. Note that the partial numerators and the partial de-
nominators can assume arbitrary real or complex values. CF
theory [8] has become used in various areas. For example,
they have been used for computing rational approximations
to real numbers and for solving various well known equa-
tions.

2.2 Engel Continued Fractions (ECF)
Hartono et al. [6] introduce a new CF expansion, called
Engel continued fraction (ECF) expansion.

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 1504



Let the Engel continued fraction (ECF) map TE : [0,1]→
[0,1) be given by:

TE(x) =

{
1
b 1

x c
( 1

x −b
1
x c) if x 6= 0

0 if x = 0
. (2)

For any x ∈ [0,1), the ECF-map generates a new and
unique CF of x of the form:

x =
1

b1 + b1

b2+ b2

b3+
...+ bn−1

bn+
...

, bn ∈ N, bn ≤ bn+1. (3)

Let x ∈ [0,1), and define:{
b1 = b1(x) = b 1

x c
bn = bn(x) = b1(T n−1

E (x)), n≥ 2, T n−1
E (x) 6= 0

.

(4)
From definition of TE it follows that:

x = 1
b1+b1TE (x)

= 1
b1+ b1

b2+
b2

b3+
...+ bn−1

bn+bnT n
E (x)

,
(5)

where T 0
E (x) = x and T n

E (x) = TE(T n−1
E (x)) for n≥ 1.

Note that any x∈ [0,1) have a unique ECF representation.
We paid most attention to the following sequence:

Zi(x) = bi(x)T i
E(x), i≥ 1. (6)

The sequence {Zi(x)}n
i=1 ∈ [0,1) and uniformly dis-

tributed for almost all values x (for a proof see [6]). The
ECF-map has an underlying dynamical system which is er-
godic, and their ergodic properties follow from those of the
RCF-map [5]. So, the ECF-map generates a random and un-
predictable sequence {Zi(x)}n

i=1 with uniform distribution.
These properties which are very useful in cryptography mo-
tivate us to propose a new scheme for image encryption based
on ECF-map.

3. THE PROPOSED ENCRYPTION ALGORITHM

The proposed symmetric image encryption algorithm utilizes
chaotic standard map [17] and the ECF-map.

The 2-D map function known as the standard map is de-
fined by: {

x1, j = x1, j + p0sin(x2, j)
x2, j = x2, j + x1, j

, (7)

where x1, j and x2, j are taken modulo 2π . The secret key in
the proposed encryption technique is a set of three floating
value numbers and one integer (x1,0,x2,0, p0,N0), where X0 =
{x1,0,x2,0} ∈ [0,2π) is the initial value set, P = {p0} is the
control parameters set and can have any real value greater
than 18.0 as described in [17] and N0 is the number of initial
iteration times of the chaotic map. We suggest to use the
standard map because it has a good chaotic properties and
it has large key space which is near to 157 bits [17] with

a precision of 10−14, the key which is sufficient enough to
resist the brute-force attack. So, for generating chaotic key
stream using the chaotic standard and ECF maps, we propose
to apply the following steps.

Assuming that the pixels of the plain-image are scanned
from left to right and from top to down to get a set S =
{S1, · · ·SN}. The corresponding encrypted image is repre-
sented by the set C = {C1, . . . ,CN}. Each element of these
two set is an 8-bit value representing the gray level of pixel.
N is the total number of image pixels and M is the color level
and for a 256 gray-scale image M = 256.

Assume that fM(x) = i, if x ∈ Ii, i ∈ {0, · · · ,M−1} where
I0, · · · , IM−1 denote M consecutive part intervals of I = [0,1).
The operation procedures of the proposed chaos-based image
cryptosystem are described as follows:
• Step 1: We propose to use the 2-D chaotic standard map

with X0 = {xi,0}n
i=1 and P = {pi}n

i=1 are respectively the
set of the initial values and the set of the control param-
eters of the chosen chaotic system. We propose to iterate
the chaotic map for N0 times, where N0 is an element of
the key.

• Step 2: The n-Dimensional chaotic map is iterated con-
tinuously. For the jth iteration, the output of the chosen
chaotic map is a new set X j =

{
xi, j
}n

i=1.
• Step 3: Generally, most of the n-Dimensional chaotic

map generates a set X j with
∣∣xi, j
∣∣ ≤ 1, ∀i, j. So we pro-

pose to calculate:{
A = (∑n

i=1

∣∣xi, j
∣∣+ S j−1

256 )
y j = A−bAc

, (8)

with S0 is a secret value and |x| returns the absolute value
of x.

• Step 4: Finally the set S is encrypted and the encrypted
image set C = {C1, . . . ,CN} are calculated by the follow-
ing equation:

C j = S j⊕

{
fM(

n

∑
i=1

Zi(y j))modM

}
, (9)

where ⊕ represents the exclusive OR operation bit by bit
and Zi(y j) is calculated according to equation (6). The
standard and ECF maps are iterated until all elements in the
set S are encrypted to the corresponding encrypted set C. In
our scheme, the keystream depends on the initial conditions
set X0, to the control parameters set P and also the plain
image gray value set S. The majority of cryptosystems with
keystreams independent of plaintexts are vulnerable under
known plaintext attacks [21]. Thus, to enhance the security
of our encryption method, we propose to use the plain-image
pixels set S when producing keystreams. It should be noticed
that for the decipher algorithm we use the same procedure
used in the encipher process, but we should reverse the
sequences S j and C j used in step 4.

4. SECURITY ANALYSIS

In this section, we present some security analysis of the pro-
posed encryption algorithm, including the most important
ones like key sensitivity test, statistical analysis and differ-
ential analysis. Table 1 lists four different secret keys used in
the security analysis steps.
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Table 1: Keys used in security analysis.
k0 k1 k2 k3 k4

x0 5.87574682393162 5.87574682393161 5.87574682393162 5.87574682393162 5.87574682393162

y0 0.20543974869398 0.20543974869398 0.20543974869399 0.20543974869398 0.20543974869398

p0 90.41936758463719 90.41936758463719 90.41936758463719 90.41936758463720 90.41936758463719

N0 250 250 250 250 251

4.1 Statistical analysis
a) Histograms of encrypted images:

An ideal encryption algorithm should resist to statisti-
cal attacks [17]. So, we have analysed the histograms
of 100 plain images and their corresponding encrypted
images using different keys. The plain-image of Lena
and the encrypted image by using the secret key k0 are
shown in Fig. 1.a and 1.b respectively. Fig. 1.c and 1.d
show respectively the histogram of the original and the
encrypted image. These two histograms are significantly
different and from Fig. 1.d we can see the uniform distri-
bution of gray-scale of the encrypted image. In all other
cases of histogram analysis, we have found simular re-
sults. Hence, the proposed algorithm does not provide
any clue to employ any statistical analysis attack on the
encrypted images.

(a) (b)

(c) (d)

Figure 1: Histogram analysis of plain-image Lena and its
encrypted image obtained using the key k0.

b) Correlation of adjacent pixels:
For an ordinary image, each pixel is usually highly corre-
lated with its adjacent pixels either in horizontal, vertical
or diagonal directions. However, an efficient encryption
scheme should generate encrypted images with low cor-
relation between adjacent pixels [23]. For each pixel of
the image, a duplet (xi,yi) can be found where yi is the
adjacent pixel of xi and then the correlation γxy is:

γxy =
1
N ∑

N
i=1(xi−E(x))(yi−E(y))√

1
N ∑

N
i=1(xi−E(x))2

√
1
N ∑

N
i=1(yi−E(y))2

,

(10)
where N is the total number of duplets (xi,yi) obtained
from the image and E(x) = 1

N ∑
N
i=1 xi is the mean value of

x. Table 2 shows the three correlation coefficients of three

plain-images and those of the average values of various
correlation coefficients of their corresponding cipher im-
ages founded by using 100 different keys. Fig. 2 shows
the correlation distribution of two horizontally adjacent
pixels in the plain-image Lena and that in it encrypted
image produced by using k0. These correlation analysis
prove that our encryption algorithm satisfies zero corre-
lation.

Table 2: Correlation coefficients of adjacent pixels in three
plain images and the avarege values of various correlation
coefficients of their corresponding cipher images founded by
using 100 different scret keys.

plain-image encrypted images
Lena
horizontal 0.9411 -0.0003
vertical 0.9702 0.0014
diagonal 0.9153 0.0001
Boat
horizontal 0.9368 0.0012
vertical 0.9709 0.0026
diagonal 0.9293 -0.0002
House
horizontal 0.9736 -0.0005
vertical 0.9504 0.0004
diagonal 0.9246 0.0022

(a) (b)

Figure 2: Correlations of two horizontally adjacent pixels in
the plain-image Lena and in its encrypted image: a) Cor-
relation analysis of plain-image, b) Correlation analysis of
encrypted image.

4.2 Key sensitivity
According to the basic principle of cryptology, a cryptosys-
tem should be sensitive to the key. Thus, we propose the
following tests [15].
a) Assume that the encryption key used is k0, see Table 1.

First, a 256×256 Lena plain-image is encrypted by using
the test key and the resultant encrypted image is shown
in Fig.1.b. Next, the same plain image is encrypted with
four slightly different keys described in Table 1.
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We propose for each of the used secret keys, to conserve
at least three parts of k0 and to change the fourth one
by 10−14 (if it is a floating number) or by 1 (if it is an
integer). The encrypted images, produced by using dif-
ferent keys, are shown in Fig. 3.a, 3.c, 3.e and 3.g. Now,
the encrypted images produced by slightly different keys
are compared and the difference between images Fig. 1.b
and 3.a, Fig. 1.b and 3.c, Fig. 1.b and 3.e and Fig. 1.b
and 3.g are shown in Fig. 3.b, 3.d, 3.f and 3.h, respec-
tively. The NPCR (Number of Pixel Change Rate) and
the UACI (Unified Average Changing Intensity) [3, 4]
between various encrypted images produced by using
slightly different keys, are calculated and the results are
given in Table 3.

Table 3: Pixel difference between image encrypted by keys
with slightly difference.

test item test results between images
encrypted with tiny change in the key

k1 k2 k3 k4
NPCR (%) 99.60 99.56 99.57 99.60
UACI (%) 33.54 33.58 33.44 33.53

b) In addition, to test the key sensitivity of our encryption
algorithm, we propose to decrypt image using key with
a difference by 10−14 on x0, y0 and p0, and with only by
1 on N0. Fig. 4 clearly shows that an image encrypted
by the key k0 is not correctly decrypted by using a key
which is changed a little 10−14 or which has only one
difference by 1. Thus, having a perfect approximation of
the encryption secret key makes decryption impossible.
In addition, the histograms of the decrypted images with
a little change in the secret key have a random property.

5. CONCLUSIONS

In this paper, the ECF-map has been presented and then used
to design a new and secure symmetric chaos-based image
encryption scheme. This new scheme utilizes the chaotic
standard map and the ECF-map to generate keystreams with
both good chaotic and statistical properties. The use of the
ECF-map increases the resistance of the proposed scheme to
various attacks and especially to statistical and differential
attacks. The detailed numerical analysis demonstrates that
the proposed encryption algorithm is secure and its is very
suitable for image encryption.
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Figure 3: Key sensitivity analysis: a) Encrypted image with key k1, b) Difference between two encrypted images using k0 and
k1, c) Encrypted image with key k2, d) Difference between two encrypted images using k0 and k2, e) Encrypted image with
key k3, (f) difference between two encrypted images using k0 and k3, g) Encrypted image with key k4, h) Difference between
two encrypted images using k0 and k4.

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 4: Key sensitivity test: a) Decrypted image with key k1, b) Its histogram, c) Decrypted image with key k2, d) Its
histogram, e) Decrypted image with key k3, f) Its histogram, g) Decrypted image with key k4, h) Its histogram.
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