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ABSTRACT
We discuss implementation of the unbiased finite impulse re-
sponse (FIR) filters. The transfer function and general block-
diagram are presented for the l-degree polynomial FIR filter
along with its fundamental properties in the z-transform do-
main. As a special results, we show a fundamental identity
that is uniquely featured to such filters and can serve as an
indicator of unbiasedness in filter design. For low-degree
gains, the transfer function is represented in simple closed
forms and compact block-diagrams. An example of applica-
tions is given for filtering of time errors in a crystal clock.

1. INTRODUCTION

Finite impulse response (FIR) estimators are commonly used
whenever a linear phase response is required. Among known
solutions, there is a special class of devices [1–3] intended
for unbiased FIR filtering of oversampled signals. When
such a filter is matched with the signal model, the group de-
lay reaches a minimum. Otherwise, it grows with, however,
lower rate than in the infinite impulse response (IIR) ones.
The payment is a high order of FIR structures.

Simple implementation of FIR structures has become
available after Heinonen and Neuvo designed the predictive
FIR filters with polynomial gains [4]. These filters have been
studied and used by many authors [5–9]. Later, Shmaliy
showed in [10] that Heinonen-Neuvo’s solution is unbiased
and the theory of unbiased FIR estimators has been devel-
oped in [3,10–13]. Most recently, in [14], it has been noticed
that the unbiased FIR filter becomes virtually optimal when
the number N of points in the average is large that makes it a
useful engineering solution in optimal filtering.

Following [10], the unbiased FIR filtering estimate x̂n|n of
an l-degree polynomial signal xn can be found in the convolu-
tion form at a current discrete time point n via measurement
yn obtained from n−N +1 to n as

x̂n|n =
N−1

∑
i=0

hliyn−i , (1)

where the l-degree polynomial FIR filter gain hln , hln(N) is
specified as

hln =
l

∑
m=0

amlnm (2)

with the coefficient aml , aml(N),

aml = (−1)m M(m+1)1

|D| , (3)

in which |D| , |D(N)| is the determinant and M(m+1)1 ,
M(m+1)1(N) is the minor of the (l + 1)× (l + 1) quadratic
matrix D , D(N),

D =




d0 d1 . . . dl
d1 d2 . . . dl+1
...

...
. . .

...
dl dl+1 . . . d2l


 , (4)

which generic component dv =
N−1
∑

i=0
iv, v ∈ [0,2l], is deter-

mined by the Bernoulli polynomials (see Appendix A in
[10]). The gain (2), existing from zero to N−1, has the fol-
lowing fundamental properties: the sum of its coefficients is

unity,
N−1
∑

n=0
hln = 1, and the moments are zeroth,

N−1

∑
n=0

hlnnu = 0 , 1 6 u 6 l . (5)

For low-degree polynomial signals, the unique ramp,
quadratic, and cubic gains were originally found in [10–12]
to be, respectively,

h1n =
2(2N−1)−6n

N(N +1)
, (6)

h2n =
3(3N2−3N +2)−18(2N−1)n+30n2

N(N +1)(N +2)
, (7)

h3n =

8(2N3−3N2 +7N−3)−20(6N2−6N
+5)n+120(2N−1)n2−140n3

N(N +1)(N +2)(N +3)
, (8)

and higher degree gains can be found similarly.
Below, we consider design and application of the unbi-

ased FIR filters with low-degree gains (6)–(8), by finding
closed-form transfer functions and compact block-diagrams.

2. TRANSFER FUNCTION OF THE UNBIASED FIR
FILTER

The transfer function of the discrete-time l-degree unbiased
FIR filter is specialized with the z-transform applied to the
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gain (2) as

Hl(z) =
N−1

∑
n=0

hlnz−n (9)

=
l

∑
m=0

alm

N−1

∑
n=0

nmz−n , (10)

where z = e jωT , ω is the angular frequency, T is the sampling
time, and alm is specified with (3). The following properties
of Hl(z) can be listed in addition to the inherent ones of 2π-
periodicity, symmetry of |Hl(z)|, and asymmetry of argHl(z).

2.1 Transfer Function at k = 0

By ω = 0, we have z = 1 and, referring to (10) and (5), obtain

Hl(z) = 1 (11)

for all l, meaning that the unbiased FIR filters is essentially
an LP filter.

2.2 Filter Gain at n = 0

By the inverse z-transform, the value of hln at n = 0 becomes

hl0 =
1

2π j

∮

C1

Hl(z)
z

dz (12a)

=
1

2π

2π∫

0

Hl(e jωT )d(ωT ) . (12b)

Because hl0 is positive, hl0 > 0, for all l and N > 2 [10], the
counterclockwise circular integration in (12a) always pro-
duces a positive imaginary value that gives us

∮

C1

Hl(z)
jz

dz = 2πhl0 > 0 . (13)

2.3 Transfer Function at ωT = π
With ωT = π , we have z−n = e− jπn = (−1)n and provide

Hl(z = e jπ) =−
l

∑
m=0

alm

2
[
(−1)NEm(N)−Em(0)

]
, (14)

where Em(x) is the Euler polynomial. For most widely used
the low-degree gains, 0 6 l 6 3, the Euler polynomials are
given with E0(x) = 1, E1(x) = x− 1

2 , E2(x) = x2 − x, and
E3(x) = x3− 3

2 x2 + 1
4 .

2.4 Energy
If Hl(z) is the z transform of hln, then, by the Parceval theo-
rem and (5), one has

1
2π

2π∫

0

|Hl(e jωT )|2d(ωT ) =
N−1

∑
n=0

h2
ln

=
l

∑
j=0

a jl

N−1

∑
i=0

hlii j

= a0l = hl0 , (15)

Hβl(z)

Hγl(z) z
-N

xn
yn

Figure 1: A generalized block-diagram of the l-degree unbi-
ased FIR filter.

meaning that the gain energy in the transform domain is
equal to the value of hln at n = 0. Comparing (15) and (13),
one arrives at a noble identity

2π∫

0

Hl(e jωT )d(ωT ) =
2π∫

0

|Hl(e jωT )|2d(ωT ) , (16)

uniquely featured to the discrete-time unbiased FIR filters in
the transform domain.

2.5 Noise power gain

The noise power gain (NPG) gl , gl(N) is defined in [4] by
the energy of hln, characterizing noise amount in the output
of digital filters [15]. By Parceval’s theorem and (16), the
NPG can be evaluated in the following forms of

gl =
1

2π

2π∫

0

|Hl(e jωT )|2d(ωT ) (17a)

=
1

2π

2π∫

0

Hl(e jωT )d(ωT ) (17b)

= hl0 = a0l . (17c)

We notice that an analysis of gl for 0 6 l 6 3 in the time
domain is given in [10].

3. TRANSFER FUNCTIONS OF LOW-DEGREE FIR
FILTERS

Although the inner sum in (10) has no closed form for arbi-
trary m, it can be shown that the general form of Hl(z) is

Hl(z) =

l
∑

i=0
βiz−i + z−N

l
∑

i=0
γiz−i

1+
l+1
∑

i=1
αiz−i

. (18)

By assigning

Hβ l(z) =

(
l

∑
i=0

βiz−i

)
/

(
1+

l+1

∑
i=1

αiz−i

)
, (19)

Hγl(z) =

(
l

∑
i=0

γiz−i

)
/

(
1+

l+1

∑
i=1

αiz−i

)
, (20)

we go to the generalized block-diagram of the l-degree un-
biased FIR filter shown in Fig. 1. For low-degree gains,
0 6 l 6 3, the coefficients in (18) are listed in Table 1, where
a0l can be defined by letting n = 0 in (6)–(8). That allows us
to find the low-complexity block-diagrams for practical de-
sign of such filters with the ramp, quadratic, and cubic gains.
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Table 1: Transfer Function Coefficients of the Low-Degree
Unbiased FIR Filters

l

0 1 2 3

β0
1
N a01 a02 a03

β1 0 - 4
N - 18(N−1)

N(N+1) - 48(N2−2N+2)
N(N+1)(N+2)

β2 0 0 9
N

24(2N−3)
N(N+1)

β3 0 0 0 - 16
N

γ0 - 1
N

2
N - 3

N
4
N

γ1 0 - 2(N−2)
N(N+1)

6(N−3)
N(N+1) - 12(N−4)

N(N+1)

γ2 0 0 - 3(N−2)(N−3)
N(N+1)(N+2)

12(N−3)(N−4)
N(N+1)(N+2)

γ3 0 0 0 - 4(N−2)(N−3)(N−4)
N(N+1)(N+2)(N+3)

α1 -1 -2 -3 -4
α2 0 1 3 6
α3 0 0 -1 -4
α4 0 0 0 1

z
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-1

z
-N

yn

xn

2

–2

1

2

+

-
-

N

N

2/
01

Na

–1

N/2

Figure 2: Block-diagram of the ramp unbiased FIR filter.

3.1 Ramp Gain

The transfer function for the ramp FIR filter, l = 1, can be
found in the following compact form, if to use Table 1 and
provide the transformations in (18),

H1(z) =
2
N

a01N
2 −2z−1 + z−N

(
1− N−2

N+1 z−1
)

(1− z−1)2 . (21)

A simple analysis shows that the region of convergence
(ROC) in (21) is for all z and that the filter is both stable and
causal. Fig. 2 sketches the relevant block-diagram, which
structure is N-invariant, utilizing 6 multipliers, 4 adders, and
3 time-delays. The magnitude and phase responses of the
ramp unbiased FIR filter, case l = 1, are illustrated in Fig. 3
and Fig. 4, respectively. Figure 3a assures us that the unbi-
asedness is achieved by shifting and elevating the side lobes
of the uniform FIR filter, l = 0. The phase response of this
filter is linear in average (Fig. 4a). However, its function os-
cillates, similarly to the predictive FIR filters [5–7], making
the group delay also oscillating about a small constant value
(Fig. 4b).
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Figure 3: Magnitude response of the low-degree unbiased
FIR filters: (a) |Hl(e jωT )| for N = 20 and (b) Bode plot of
|Hl(e jωT )|2 in dB for N = 500.
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Figure 4: Phase characteristics of the low-degree unbiased
FIR filters for N = 20: (a) phase response argHl(e jωT ) and
(b) group delay d [argHl(e jωT )]/d(ωT ).
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H2(z) =
3
N

a02N
3 − 6(N−1)

N+1 z−1 +3z−2− z−N
[
1− 2(N−3)

N+1 z−1 + (N−2)(N−3)
(N+1)(N+2) z−2

]

(1− z−1)3 . (22)

H3(z) =
a03N

4 − 12(N2−2N+2)
(N+1)(N+2) z−1 + 6(2N−3)

N+1 z−2−4z−3 + z−N
(
1−b1z−1 +b2z−2−b3z−3

)

N(1− z−1)4/4
.

(23)
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Figure 5: Block-diagram of the unbiased FIR filter with a
quadratic gain.
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Figure 6: Block-diagram of the unbiased FIR filter with a
cubic gain.

3.2 Quadratic Gain

After the routine transformations, the transfer function of the
quadratic unbiased FIR filter becomes (22). The relevant
block-diagram shown in Fig. 5 is performed with 9 multi-
pliers, 5 adders, and 4 time-delays.

3.3 Cubic Gain

The unbiased FIR filter with a cubic gain, l = 3, can be rep-
resented with the transfer function (23), in which the co-
efficients are give by b1 = 3(N−4)

N+1 , b2 = 3(N−3)(N−4)
(N+1)(N+2) , and

b3 = (N−2)(N−3)(N−4)
(N+1)(N+2)(N+3) . The block-diagram corresponding to

(23) is sketched in Fig. 6. It is easily indicated that this filter
requires 12 multipliers, 5 adders, and 4 time-shifters. The
magnitude and phase responses of the filter with a cubic gain
are given in Fig. 3 and Fig. 4. Observing these figures, one
can trace an evolution of the filter transfer function, by in-
creasing the filter degree.
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Figure 7: GPS-based unbiased FIR filtering of the crystal
clock TIE: (a) near linear TIE behavior, (b) near quadratic
TIE behavior, and (c) complex TIE behavior. Here “grey”
plot represents the GPS-based measurement, “white” the ref-
erence trend, and “black” the estimate.
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4. FILTERING OF CLOCK ERRORS

An experimental test of the unbiased FIR filters (Fig. 7)
has been provided for the Global Positioning System (GPS)-
based measurement of the time interval error (TIE) xn of a
precision crystal clock employing the one pulse per second
(1PPS) signals of the SynPaQ III GPS Timing Sensor and
Stanford Frequency Counter SR620 in the presence of the
sawtooth noise induced in the receiver. To obtain the refer-
ence trend, the TIE has been simultaneously measured for the
Symmetricom Frequency Cesium Standard CsIII employing
another SR620. The clock was identified to have two states
and the ramp FIR filter (Fig. 2) was therefore used.

In the first experiment, we selected a part of the process in
which the TIE of the OCXO-based clock change with almost
a constant linear slope. Following [18], the time step was set
to be 1 s and the optimum N was experimentally found to be
N = 2060. As can be inferred from the observation of Fig.
7a, the ramp FIR filter applied to the sawtooth measurement
allows for the root mean square error (RMSE) of about 1.6
ns that is substantially lower than in the sawtooth corrected
measurement [19].

For the second experiment, we selected a region where
the TIE changed almost quadratically. In contrast to the near
linear TIE trend (Fig. 7a), the optimum N has appeared here
to be about N = 920. Numerical calculation gives us the
RMSE of about 8.0 ns. Note that larger filtering errors are
caused in Fig. 7b by the GPS time temporary uncertainties
neatly seen in the GPS-based measurement and that there are
no uncertainties in the reference measurement.

We finally exploit a part of measurement with a com-
plex behavior of the TIE. The GPS-based and reference mea-
surements and the estimate are shown in Fig. 7c. For this
case, the optimum N was ascertained to be N = 1150 and the
RMSE calculated as 7.83 ns.

5. CONCLUDING REMARKS

In this paper, we discussed the discrete-time l-degree poly-
nomial unbiased FIR filter, its transfer function, and a gen-
eralized block-diagram. Fundamental properties of the filter
transfer function have also been studied. A special atten-
tion has been paid to the most widely used low-degree gains
(ramp, quadratic, and cubic), in which case the transfer func-
tion has been represented in simple closed forms and in com-
pact block-diagrams. The magnitude and phase responses of
the low-degree filters have been analyzed and compared to
those of the predictive unbiased FIR ones. As an example
of applications, we discussed filtering of the crystal clock er-
rors via the GPS-based measurement of the TIE. It has been
demonstrated graphically that the filter output has no time
delay with respect to the reference trend.
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