
PARTICLE FILTERING AND THE INVERSE PROBLEM OF BIOCHEMICAL
NETWORKS
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ABSTRACT

In this paper we address the inverse problem of biochem-
ical networks composed of first-order reactions. Based on
noisy measurements of the number of molecules of some of
the species that participate in the reactions of a given net-
work, we propose a method for estimating recursively the
numbers of molecules and the stochastic rate constants in
the network. The evolution of the number of molecules of
the species is modeled by Poisson random processes, and the
observations are assumed to be (non)linear functions of the
number of molecules. Our method employs particle filtering
where we propose particles of the stochastic rate constants
from their posteriors. We demonstrate the performance of
the proposed method with several examples.

1. INTRODUCTION AND BACKGROUND

Inter- and intra-cellular biochemical processes are very com-
plex in nature, and their accurate modeling is a very chal-
lenging task [1], [2], [3]. They can be studied using system
theory where, in general, the systems are represented by a
network of coupled chemical reactions. These networks can
reproduce genetic networks, signal transduction networks,
and metabolic pathways describing processes such as tran-
scription, gene repression, translation, degradation, transport
and auto-regulation. From a set of simple biological systems
one can construct much more complex systems which con-
tain feedbacks and nonlinearities and can model events on a
broader scale [1], [4].

Most of the contemporary computational approaches to
studying biological systems are deterministic in nature. They
represent biochemical reactions by differential equations
which are numerically solved. However, it is well known
that one can improve on the modeling of the dynamics of
biological systems by using the laws of probability theory.
This is especially true when the numbers of molecules of
some species in the reactions are small. In fact, in impor-
tant scenarios of signal transduction and gene expression,
the deterministic methods can produce misleading results,
and the stochastic approaches are the only ones for study-
ing them [5], [6], [7]. Examples include the lambda phage
switch [5], the observed individual differences among genet-
ically identical bacteria due to random gene expression [8],
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and the presence of multistability of an observed system due
to noise random dynamic switching between stationary states
[9]. The relationship between the deterministic and stochas-
tic approaches has been addressed in [10]. In this paper, we
work on a method that belongs to the stochastic approaches.

There are two general classes of problems related to bio-
chemical networks and they are known as the forward and in-
verse types of problems. In a forward problem the objective
is to simulate the evolution of a biochemical network given
its description, the initial number of molecules of the various
species, and all the stochastic rate constants. For simple net-
works this is a rather easy task, and to that end one can use,
for example, the method from [11]. The inverse problem
is about estimating unknowns in the system (the biochem-
ical network) from observations that are usually number of
molecules of some of the species in the network. This can be
quite a challenging task. Some methods that have been used
for this purpose are Monte Carlo-based and include Markov
chain Monte Carlo sampling [12].

In this paper we present results on the inverse problem of
biochemical networks with first-order reactions. We model
the number of individual reactions in a given interval ∆t by
Poisson processes. The parameters of these processes are
functions of the stochastic rate constants of the reactions that
are assumed unknown. We have measurements of some of
the species in the system and we want to use them to esti-
mate the time-varying numbers of molecules of the species
participating in the reactions.1 In addition, we also do not
know the values of the stochastic rate constants of the reac-
tions in the system.

We apply particle filtering (PF) for their recursive esti-
mation [13], [14]. In particular, we are interested in the joint
posterior of the unknowns, which is approximated by a ran-
dom measure composed of particles that represent the un-
knowns on the system. As priors for the vector of stochastic
constant rates, we use a product of Gamma probability distri-
butions. We point out that the nature of the problem does not
require real time processing of the data. This means that one
may employ, for instance, smoothing in order to improve the
estimates of some of the unknowns.

The paper is organized as follows. In the next section
we present the mathematical formulation of the problem. In
Section 3, we describe the proposed solution and show its
implementation on a specific example. Section 4 contains

1We note here that the technology for routinely obtaining such measure-
ments does not exist yet.
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computer simulations that show the performance of the pro-
posed method. With Section 5, we conclude the paper with
some final remarks.

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

We observe a set of noisy measurements that represent func-
tions of the number of molecules of species from a biochem-
ical network of interest. Here we only consider a network
composed of first-order reactions. We proceed by way of ex-
ample. In the following biochemical network:

X1

c1−⇀↽−
c2

X2
c3−→X3. (1)

we have three species, X1, X2, and X3. A molecule of
species X1 may become a molecule of species X2, and a
molecule of species X2 may become either a molecule of
species X1 or of species X3. The constants c1, c2, and c3 are
the stochastic rate constants of the network [12].

We represent the state of the system at time instant t by
the state vector xt = [x1,t x2,t x3,t]>, where each element of
the vector denotes the number of molecules of the respec-
tive species. With time, the state vector evolves in a random
way. In particular, if the actual time interval between the
time instants t and t + 1 is ∆t,2 then we define the proba-
bilities that a molecule of species X1 will be a molecule of
species X1 or X2 after ∆t by p11 and p12.3 Similarly, we
define the probabilities that a molecule of species X2 will be
a molecule of species X1 or X2 or X3 after ∆t by p21, p22,
and p23. Clearly, we also have p33 = 1. Each of these prob-
abilities are modeled as functions of the relevant stochastic
rate constants.

In the above biochemical network, we assume that the
unknowns are the stochastic rate constants c = [c12 c21 c23]>

and the state vectors x0:T , where T +1 is the total number
of available measurements. We may know the initial value
of the state vector x0 or we have some measurements about
it from which we can construct a prior given by π(x0). For
the stochastic rate constants we also have a prior denoted by
π(c).

The noisy measurements are modeled by

yt = g(xt)+vt (2)

where g(·) is some known function and vt is observation
noise with a known probability distribution. The objective
is to use the measurements y0:T and the model of the system
described by the probability distributions p(xt|xt−1,ct−1)
and p(yt|xt) and estimate all the unknowns in the system.

A good model for approximating the transitions of xt is
the Poisson model. According to this model, in our example
the number of molecules of the species X1 that in ∆t become
molecules of species X2 is given by

p(∆x12,t) =
λ

∆x12,t
1,t

∆x12,t!
e−λ1,t (3)

2Note that t in our notation represents an integer.
3We assume that the probability p13 is negligible.

where
λ1,t = c1x1,t−1∆t.

Similarly, we have

p(∆x21,t) =
λ

∆x21,t
2,t

∆x21,t!
e−λ2,t (4)

p(∆x23,t) =
λ

∆x23,t
3,t

∆x23,t!
e−λ3,t (5)

where
λi,t = cix2,t−1∆t, i = 2,3.

In our work, we use the Poisson model.
In general, we have N species in the network, xt =

[x1,t x2,t · · ·xN,t]> and L stochastic rate constants c =
[c1 c2 · · ·cL]>. Based on measurements of some of the
species yt, we want to estimate the evolution of the system
in time and to estimate the unknown vector of constants c.

3. PROPOSED SOLUTION

From the previous section, it is clear that we have a stan-
dard problem of tracking a state vector xt in time, given a set
of observations yt. The probability distributions that corre-
spond to the state and observations equations of the system
are given by p(xt|xt−1,c) and p(yt|xt). As stated in the in-
troduction, we propose to solve this problem by using the PF
methodology.

In mathematical terms, we are interested in the joint pos-
terior distribution given by p(x0:t,c0:t|y0:t). We note here
that the vector c is composed of constants. In PF, it is well
known that we have to take special care when the problem in-
volves estimation of constants (see for example, [15], [16]).
Here we treat ct as a random vector whose distribution is
represented by its posterior.

We express the joint posterior as

p(x0:t,c0:t|y0:t)∝ p(yt|xt)p(xt|xt−1,ct−1)

× p(ct|x0:t)p(x0:t−1,c0:t−1|y0:t−1) (6)

where∝ symbolizes proportionality. When we apply the im-
portance sampling principle and we use an importance func-
tion that satisfies

π(x0:t,c0:t|y0:t) = π(x0,c0)

×
t∏

k=1

π(xk,ck|x0:k−1,c0:k−1,y0:k)

(7)

we obtain the recursions that are used in PF.
A critical issue in our implementation would be the abil-

ity to propose particles for ct. We assume that the stochastic
rate constants are independent and the initial particles c

(m)
0

of the streams are obtained from Gamma distributions, de-
noted by Ga(α,β), where α and β are its parameters. At
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time instant t = 0, these distributions have parameters αl,0

and βl,0, and therefore,

c
(m)
0 ∼

L∏

l=1

β
αl,0

l,0

Γ(αl,0)
c
αl,0−1

l e−βl,0cl . (8)

When we apply this prior, we obtain a posterior distribu-
tion p(c1|x0:1) which is also a product of one-dimensional
Gamma distributions but with different parameters, αl,1 and
βl,1, l = 1,2, · · · ,L. The update of the parameters αl,1 and
βl,1 from αl,0 and βl,0 can readily be obtained (see also the
example below). More importantly, as we proceed, the pos-
terior of p(ct|x0:t) remains of the same form (a product of
Gamma distributions) with time-varying parameters. This
implies that we can propose particles of ct from the poste-
rior. It is also important to observe that given the vectors
of constants ct−1, we can generate the particles of xt from
p(xt|xt−1,ct−1).

In PF, the posterior is approximated by the random mea-
sure

χt = {x(m)
t ,c

(m)
t ,w

(m)
t }M

m=1

where m is an index for particles, M is the total number
of particles, and w

(m)
t is the weight of the m−th particle

(x(m)
t ,c

(m)
t ). The weights of the particles are updated by

w
(m)
t ∝ w

(m)
t−1

p(yt|xt)p(xt|xt−1,ct−1)p(ct|x0:t)
π(xt|xt−1,ct−1)π(ct|x0:t)

. (9)

Thus, if

π(xt|xt−1,ct−1) = p(xt|xt−1,ct−1)
π(ct|x0:t) = p(ct|x0:t)

for the update we get

w
(m)
t ∝ w

(m)
t−1p(yt|x(m)

t ). (10)

In summary, if we can sample the particles x
(m)
t from

p(xt|xt−1,ct−1) and c
(m)
t from p(ct|x0:t), the update of the

weights simplifies considerably. In the next subsection, we
provide an example where we show the details of the imple-
mentation of the method.

3.1 Example
Consider the reaction

X1
c1−→X2

c2−→X3.

We assume that we know the number of molecules of the
species X1, X2, and X3 at time instant t = 0, that is, x0 and
that the priors of the stochastic rate constants are modeled by
the Gamma probability distribution Ga(α,β).

We implement the PF scheme as follows:

Initialization. We initialize the particle streams by gener-
ating at time instant t = 0, c

(m)
1,0 ∼ Ga(α1,β1) and c

(m)
2,0 ∼

Ga(α2,β2), and by setting x
(m)
0 = x0, for m = 1,2, · · · ,M .

In addition we set the parameters of the Poisson distributions
by

λ
(m)
1,0 = x1,0c

(m)
1,t ∆t (11)

λ
(m)
2,0 = x2,0c

(m)
2,0 ∆t. (12)

Finally, to each particle stream, we assign the same weights,
w

(m)
0 = 1/M .

Given the random measure χt−1 = {x(m)
t−1,c

(m)
t−1,w

(m)
t−1}M

m=1,
we update it to χt = {x(m)

t ,c
(m)
t ,w

(m)
t }M

m=1 by implement-
ing the following steps:

Update of the random measure. We implement the follow-
ing steps:
1. Generate the particles that contribute to the changes in

the state vector xt according to

∆x
(m)
12,t ∼ Pn(λ(m)

1,t−1) (13)

∆x
(m)
23,t ∼ Pn(λ(m)

2,t−1) (14)

where Pn(·) stands for the Poisson distribution. Update
the state vector by

x
(m)
t =




x
(m)
1,t

x
(m)
2,t

x
(m)
3,t


 =




x
(m)
1,t−1−∆x

(m)
12,t

x
(m)
2,t−1 +∆x

(m)
12,t−∆x

(m)
23,t

x
(m)
3,t−1 +∆x

(m)
23,t


 . (15)

2. Generate c
(m)
t by

c
(m)
1,t ∼ Ga(α(m)

1,t ,β
(m)
1,t ) (16)

c
(m)
2,t ∼ Ga(α(m)

2,t ,β
(m)
2,t ) (17)

where

α
(m)
1,t = α

(m)
1,t−1 +∆x

(m)
12,t (18)

β
(m)
1,t = β

(m)
1,t−1 +x

(m)
1,t ∆t (19)

α
(m)
2,t = α

(m)
2,t−1 +∆x

(m)
23,t (20)

β
(m)
2,t = β

(m)
2,t−1 +x

(m)
2,t ∆t. (21)

3. Update the parameters of the Poisson distributions by

λ
(m)
1,t = x

(m)
1,t c

(m)
1,t ∆t (22)

λ
(m)
2,t = x

(m)
2,t c

(m)
2,t ∆t. (23)

4. Compute the weights of the particles x
(m)
t ,c

(m)
t by

w
(m)
t ∝ w

(m)
t−1p(yt|x(m)

t ). (24)

5. Resample if necessary.
It is important to point out that at every time instant t we
have the complete marginal posterior of ct from every parti-
cle stream. If we are interested in point estimates of ct, we
can use the mean of the weighted particles c

(m)
t or we can

compute the average of the maximum a posteriori estimates
obtained from each particle stream.
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Figure 1: X1
c1−→ X2. Left: Tracking the evolution of the species in the system. Middle: Estimation of the stochastic rate

constant c1. Right: Histogram of the estimated c1 at time instant t = 250 sec obtained from 1000 runs.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

time (sec)

nu
m

be
r 

of
 m

ol
ec

ul
es

X
1

X
2

X
3

est X
1

est X
2

est X
3

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

time (sec)

st
oc

ha
st

ic
 r

at
e 

co
ns

ta
nt

est c
1

c
1

0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024
0

20

40

60

80

100

120

140

est c
1
 at t=250 sec 

Figure 2: X1
c1−→X2

c2−→X3, known c2. Left: Tracking the evolution of the species in the system. Middle: Estimation of the
stochastic rate constant c1. Right: Histogram of the estimated c1 at time instant t = 250 sec obtained from 1000 runs.

4. COMPUTER SIMULATIONS

In this section, we provide some examples related to the stud-
ied problem.

4.1 Example 1: X1
c1−→X2

We carried out a simple simulation experiment to illustrate
the performance of a particle filter that jointly tracks the evo-
lution of the species and estimates the stochastic rate constant
c1. In the experiment, the number of molecules of X1 were
observed with error. The transition of the state was mod-
eled by x1,t ∼ p(x1,t|x1,t−1c1,t−1) where p(·) was a Poisson
distribution.4 The measurement of the number of molecules
x1,t was modeled by

yt = g(x1,t)+vt

where g(·) was a function of the number of molecules (non-
linear measurements from fluorescence spectroscopy experi-
ments [17]) and vt was noise (or error) which was modeled
as a Gaussian with zero mean and variance σ2

v = 100.
We considered a system whose initial number of

molecules of X1 and X2 were set to 100 and 0, respec-
tively, and where the stochastic rate constant was c1 = 0.01.
The experiment was run for T = 500 sec and a time step of
∆t = 0.5 sec. The priors for the state and the stochastic rate
constant were set to x

(m)
0 = x1,0 and c

(m)
1,0 ∼ Ga(1,80) for

4Note that the number of molecules of X2 can be calculated in a straight-
forward manner once x1,t is obtained.

m = 1,2, · · · ,200, respectively. Fig. 1 (left) shows the evo-
lution of the species in the system in a single simulation run
obtained by the the particle filter. It is apparent that the PF
algorithm tracks the evolution of the species very accurately
and remains locked to the true value (the curve representing
the true values and the curve depicting the estimates are al-
most indistinguishable). Fig. 1 (middle) depicts the estimate
of the stochastic constant rate by the particle filter. In Fig.
1 (right) we show the histogram of the estimated c1 in 1000
runs.

4.2 Example 2: X1
c1−→X2

c2−→X3, known c2

For this scenario, the state of the system was xt =
[x1,t x2,t x3,t]>. Assuming that we only observe a noisy
function of X1 molecules, it is evident that estimating c2 is
not possible since it is non-observable. We considered the
joint estimation of xt and c1 for an analogous experiment
as in the previous example with initial number of molecules
of X3 = 0, and constants c1 = 0.02 and c2 = 0.01. For this
case the prior of c1 was slightly modified to Ga(1,50). Fig.
2 shows the obtained results. Similar conclusions as in the
previous case can be drawn.

4.3 Example 3: X1
c1−→X2

c2−→X3, unknown c1 and c2

We considered the case when noisy measurements of X1 and
X3 are available, and therefore we can also estimate c2. We
modeled the observation yt = [y1,t y2,t]> following equa-
tion (2) where vt ∼ N (0,100I2) with I2 denoting the iden-
tity matrix of size 2× 2. We considered c

(m)
1,0 ∼ Ga(1,50)
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Figure 3: X1
c1−→X2

c2−→X3, unknown c1 and c2. Left: Tracking the evolution of the species in the system. Middle: Estimation
of the stochastic rate constants c1 and c2. Right: Histograms of the estimated c1 and c2 at time instant t = 250 sec obtained
from 1000 runs.

and c
(m)
2,0 ∼ Ga(1,80). The results shown in Fig. 3 are as

expected and in accordance with the previous ones.

5. CONCLUSIONS

The inverse problem of biochemical networks involves es-
timation of unknowns in the networks based on measure-
ments that represent time series of functions of the numbers
of molecules of some of the species. In this paper, we pro-
posed to solve an inverse problem of a network with first-
order reactions by particle filtering. The method tracks the
changing numbers of molecules of the species in the system
and estimates the posterior distributions of the stochastic rate
constants of the reactions. We were able to sample particles
of the stochastic rate constants from their posteriors directly,
which significantly simplified the implementation. Thereby,
we did not have to apply methods that treat the constants in a
special way in order to avoid the quick degeneracy of the ran-
dom measures produced by the particle filter. We provided
simulation results that show the performance of the method.
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