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ABSTRACT

We present in this paper a signal subspace-based approach for
enhancing a noisy signal. In our previous works we have de-
veloped an algorithm based on principal component analysis
(PCA) in which the optimal subspace selection is provided by
a variance of the reconstruction error (VRE) criterion. In this
work we will improve our previous technique by applying an
updating noise variance algorithm. The performance evalua-
tions show that our method provides a higher noise reduction
and a lower signal distortion than our previous one.

1. INTRODUCTION

In all single channel speech enhancement methods, there has
always been a challenge to define the statistical characteristics
of non-stationary additive noise. Almost in all of these tech-
niques, noise statistics are updated during the non-speech in-
tervals [1]. This fact makes the process of updating noise fea-
tures highly dependent on the accuracy of the existing Voice
Activity Detector (VAD). Besides, in some utterances there
is not any silence between the speech signals, which makes
the initial statistics obtained from the beginning of the signals
quite useless due to the non-stationarity of the additive noise.

In this paper we have exploited our previously developed
subspace-based speech enhancement technique [2], towards
an online, unsupervised algorithm that updates noise statis-
tics during the enhancement process. Especially when we are
to enhance a highly noisy corrupted speech signal, due to the
difficulty of the task of distinguishing non-speech intervals
from the speech-present ones, we can see the virtue of our
new method over all other VAD-based enhancement meth-
ods. Moreover, the simplicity of this method introduces only
a small computational complexity overhead.

In our method we apply a subspace model identification
approach for single channel speech enhancement in noisy en-
vironments based on the Karhunen-Loéve Transform (KLT),
and implement it via Principal Component Analysis (PCA)
[3]. The motivation to choose KLT is its optimality in com-
pression of information, while the DFT and the DCT are sub-
optimal. The main problem in subspace approaches is the op-
timal choice of signal dimension. In [2] we introduced there-
fore a novel approach for the optimal subspace partitioning
using the Variance of the Reconstruction Error (VRE) crite-
rion [4].

In this paper we improve our previous work by equipping
it with a noise statistical updating algorithm provided here.
In the end, we prove the new method to have a good perfor-

mance in ameliorating the quality of a noisy signal especially
in lower SNRs.

The organization of the paper is given as follows. Sec-
tion two describes the basics of our subspace approach on
which we will later base our novel noise parameter updating
algorithm in section three. Performance evaluation is made in
section four, and in section five the paper is concluded.

2. SUBSPACE-BASED SPEECH ENHANCEMENT

In this section we first present our recently developed VRE-
based speech enhancement method and then improve it in the
next section.

2.1. Principal component analysis

We define a real-valued observation vector x(¢) € RX to be the
sum of the signal vector s(¢) € RX and noise vector n(t) € R,
ie.,
x(t) = s(1) +n(1), (1)
where
x(1) = P, X, Xk 1] 2)

where K is chosen such that Wide Sense Ergodicity is sat-
isfied, and s(¢) and n(r) are defined similar to x(z). We
arrange a K-dimensional observation vector in a Hankel-
structed (i.e., constant across the anti-diagonals) observation
matrix of arbirtary dimension M x N (i.e., Xyxn(t)), where
K=M+N-—1,i.e.,

Xt+0 Xr4+1 Xt+N—1
Xt+1 Xt+2 - XN
Xpxn(t) = : . i )
Xt+M—1  Xt4+M Xt+K—1

The time-variable notation is from now on considered implicit
and will therefore be left out in the remainder of the paper.
From x we can calculate the covariance matrix R,, which we
define to be the expectation value of the outer product of the
observation vector with itself, i.e.,

Ry = E{xxT}. 4)

Due to the ergodicity assumption made in (2), we can estimate
the covariance matrix Ry, using the zero-mean-scaled version
of (3) as

A

1
Ry = mXTX e RV*N, 5)
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The covariance matrix Ry € RV*N can be examined
by its eigenvalues and corresponding eigenvectors. Let

q1,92,---,qgn be eigenvectors corresponding to the eigenval-
ues A1, A,,..., Ay of the covariance matrix R,,. We define the
matrix Q as

0=lq1,92,...,qv) € RV, (6)

If we arrange the eigenvalues in decreasing order in a diagonal
matrix,
A =diag(A,22,..., Ay) € RNV, (7

where
M>HL>...>0 ®)

for positive-definite covariance matrices, we can decompose

N

Ry, into its eigenvalue decomposition (EVD), i.e.,

Ry=0n0". ©)
In all subspace signal enhancement algorithms it is assumed
that every short-time speech vector s = [s1,$2,...,Sy] can be

written as a linear combination of k < N linearly independent
basic functions m;,i = 1,2, ...,k where

s = My. (10)

In this equation, M is a (N X k) matrix containing the basis
functions in columns and y is a (k x 1) weight vector. Since
rank(Rss) = k, there are k positive and N — k zero eigenvalues
in the EVD of Ry;.

In summary, in order to enhance a noisy signal we should
first separate the signal (signal + noise) subspace from the
noise-only subspace, then remove the noise-only subspace
and finally remove the noise components in the signal sub-
space. The first operation needs a prior knowledge of the sig-
nal dimension to correctly define the signal subspace. In the
following subsection we introduce our VRE-based method to
tackle this problem.

2.2. Model identification using VRE

In [2] we have developed a VRE method to enhance the
speech signal by defining the rank of the speech signal and re-
moving the remaining noise-only subspace. The minimum of
the VRE consistently corresponds to the best reconstruction.
When reconstruction of the noisy signal is based on the PCA
model, the error is a function of the number of PCs and the
minimum found in the VRE calculation directly determines
the number of PCs. This is because the VRE is decomposed
into the principal components subspace and a residual sub-
space. The portion in the principal components subspace has
a tendency to increase with the number of PCs, and that in the
residual subspace has a tendency to decrease, resulting in a
minimum in VRE.

Imagine that our signal is corrupted with a noise along a
direction &;,

x=s+mé, (1n
where s is the clean portion, n; is the noise magnitude and
& € RY, where ||&]| = 1. The reconstruction of the signal is

given by a correction along the noise direction, that is,

§:x—ni§i, (12)
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Fig. 1. (a) Rank of the clean signal in an utterance, decided
by VRE. (b) Histogram of the inter-frame rank rising in 25
signals (mean = 0).

so that § is most consistent with the PCA model (§ is the re-
constructed signal obtained by de-noising the noisy signal).
The difference s — § is known as the reconstruction error. In
[4], Qin and Dunia define the variance of the reconstruction
error along each dimension as

wi(l) = var{&! (x - § :M
i(l) =var{§ (x—9)} 0L (13)
where
G(l)=(- Q(I)QT(Z))él (14)

In (13) and (14), [ is an assumption for the rank of clean
speech signal (k) and Q(1) is obtained from Q in (9) by keep-
ing only the first / columns as the PCs. In order to find the
number of PCs, we have to minimize u;(!) with respect to the
number of PCs. Considering different noise directions, we
propose the VRE to be minimized as

N uj; [ N Uu; l

In this equation, in order to equalize the importance of each
variable, variance-based weighting factors are applied.

2.3. Signal reconstruction

In [2] we have developed a modified time domain constraint
based technique (TDC) [5], in order to reconstruct the clean
signal from an observation matrix X. The equation generated
for reconstruction is:

$=X0(K)GuQ" (k), (16)
where G, is a diagonal matrix containing / diagonal elements
as

As(m)
= ) 17
sulm) = 7 Gm) + uoz an



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

Wm[ | '.*Inj.t. I.' ' ."'IT 'l'll-
m mlwlb% il
(2

Fig. 2. The spectrograms of (a) the clean signal of utterance:
“The speaker announced the winner”, (b) noisy signal (SNR
= -3 dB) and enhanced signal using (c) VRE-U, (d) VRE, (e)
MDL, (f) Wiener and (g) SS.

In (17) 6 and A(m) are the variances of the colored noise

and clean signal along the m'" dimension, respectively. Also
in (17), u is the Lagrange multiplier in [5].

After estimating $ using the modified TDC estimator, we
can simply estimate the clean signal (§) by averaging the anti-
diagonal values of S.

3. UPDATING THE NOISE STATISTICS

In (17), in order to estimate the variance of the clean signal
in each dimension (A,(m)), we assume that the clean signal
and the noise signal have Gaussian distributions and are un-
correlated. Using Maximum Likelihood (ML) estimation, we
obtain the variance of the clean signal by subtracting the vari-
ance of the noise from the variance of the noisy signal in each
dimension, i.e.,
As(m) =

Therefore, in (18), the role of the noise variance (G,%) in each
dimension of the eigenspace seems to be critical. However,
defining the statistics of noise normally depends on detecting
non-speech intervals in the signal, which seems to be a hard
task in low SNRs.

In this part we suggest updating the noise variance from
the noise subspace. The idea is that by minimizing (15) with
regard to [, we can divide the eigenspace into signal-plus-
noise and noise sub-areas. In the noise subspace, only noise
components exist and as a result we can simply find its vari-
ance in that dimension. On the other hand the value of /
changes frame by frame, meaning that, in an arbitrary frame
j, one dimension can be a component of the noise subspace,
while in frame j+ 1 that specific dimension can be in a signal-
plus-noise sub-area. Considering this idea, we can update the
noise statistics during the speech intervals by making use of
the transformed statistics (along the new eigenvector, which
could probably be only slightly changed) from the previous
frame.

A note should be made here regarding the clean speech
rank risings and fallings. Since normally the initial and fi-
nal frames of a speech signal are silent, the rank of signal
is the same in these intervals. Thus, the number of risings
and fallings should be the same for all utterances leading to
a useful update of the noise statistics (rising order), 50% of
the times, when there is a change in the estimated order of the
clean signal. In Fig. 1(a) the rank of the signal in each frame
defined by the VRE algorithm is shown. Also in Fig. 1(b) we
can see the histogram of difference between the rank of the
clean signal in the j* frame and the (j — 1) frame estimated
using 25 signals. The mean of this histogram is zero, meaning
that there is always the same number of risings and fallings.

Normally 62, which is obtained by averaging noise power
in each dimension during the initial non-speech segments, is
only updated in non-speech intervals decided by VAD. In our
method though, for the noise updating VRE estimator, first we
define the rank of signal using (15) and then update the vari-
ance of noise in each frame and in each dimension of noise
subspace (defined by VRE) by a recursive relation with a for-
getting factor «, i.e.,

A — G2 (18)

Gr%z,new - aGr%l,old + (1 - (X))meosz(ﬁ), (19)

where 3 is the angle between the m'” eigenvectors in two con-
secutive frames and A, can be obtained from (7). We also up-
date our noise statistics in non-speech intervals by applying
(19) in all dimensions.

This algorithm is especially useful when the SNR is low.
In lower SNRs removing noise even in one dimension can
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Table 1. SNRs obtained using different enhancement methods

(a) N1: Subway noise

(b) N2: Babble noise

[SNR| SS [ Wiener [ MDL | VRE | VRE-U | [ SNR [ SS | Wiener | MDL | VRE | VRE-U |
-5 0.00 0.96 -1.44 | 1.02 3.26 -5 0.80 0.95 -040 | 1.17 3.21
0 3.17 3.28 3.31 3.93 5.85 0 3.82 3.24 3.85 4.55 6.42
5 7.01 6.68 7.49 8.12 9.61 5 7.95 7.03 8.06 8.67 9.12
10 11.81 11.02 12.65 | 13.12 14.04 10 11.70 11.04 12.80 | 13.37 14.01
15 1520 | 1522 | 17.20 | 17.62 | 17.89 15 1550 | 15.66 | 17.55 | 17.99 18.00
20 17.62 19.16 | 22.05 | 22.30 | 22.41 20 17.55 19.04 | 22.24 | 22.50 22.48

(¢) N3: Car noise (d) N4: Exhibition hall noise

[SNR] SS [ Wiener [ MDL | VRE | VRE-U | [ SNR [ SS [ Wiener | MDL | VRE | VRE-U |
-5 0.73 0.53 2.32 3.04 591 -5 0.05 -0.06 -0.13 1.69 3.98
0 2.74 1.89 5.92 6.89 8.56 0 2.07 1.57 4.39 5.21 7.29
5 6.61 5.24 9.66 9.92 11.05 5 6.35 5.27 8.57 8.98 10.11
10 1124 | 12.12 | 14.04 | 14.21 15.30 10 11.25 | 10.10 | 13.04 | 13.34 | 14.87
15 14.90 14.42 18.67 | 18.73 19.21 15 14.83 14.61 17.98 | 18.33 19.05
20 17.11 18.29 | 23.24 | 23.31 23.57 20 17.38 | 1854 | 22.61 | 22.82 | 22.59

help us considerably in improving the quality of speech. Ad-
ditionally, distinguishing between speech and non-speech in-
tervals is difficult in low SNR signals.

4. EXPERIMENTS

In order to perform the evaluation, we compare five different
enhancement methods, gathered from different categories of
single channel enhancement algorithms. The methods to be
compared are as follows:

e VRE-U: The method presented in this paper which bene-
fits from a noise variance updating algorithm.

e VRE [2]: A subspace-based approach using VRE model
selection criteria.

e Minimum description length (MDL) [6]: A subspace-
based approach using the KLT transform and MDL model
selection criteria.

e Wiener [7]: A well-known minimum mean-square error
(MMSE) algorithm using mean-square error criterion to
enhance a noisy signal in the discrete fourier transform
(DFT) domain.

e Spectral subtraction (SS) [1], [8]: A Maximum likelihood
(ML) approach using spectral subtraction to remove noise
from the speech signal.

We should mention here that in order to make a fair compari-
son between these methods, we have used the same noise esti-
mation algorithm for all of them which comprises an energy-
based voice activity detector (VAD).

As a subjective test, spectrograms of signals are illustrated
in Fig. 2. In these figures the spectrograms of the original
clean and noisy signals as well as the output of different meth-
ods are illustrated. This illustration is carried out on the sen-
tence “The speaker announced the winner” uttered by a male
speaker and corrupted by white Gaussian noise at an input
SNR =-3 dB.

As an objective validation of our algorithm we have also
analyzed the performance in terms of global signal-to-noise
ratio (SNR). To evaluate and to compare the performance

of these techniques, we carried out the simulations with the
TESTA database of Aurora [9]. These speech signals were
corrupted with four types of noise at different global SNR
levels. These types of noises are as follows:

e N1: Subway noise.

e N2: Babble noise.

e N3: Car noise.

e N4: Exhibition hall noise.

In the segmentation process, a frame length of 30 millisec-
onds, 40% overlap and a hamming window are applied (40%
shows the best result when changing the overlap from 0% to
70%). Moreover, we have chosen N =21 and p = 2. In (19)
we have heuristically chosen & = 0.9 and since there exists an
overlap of 40% between two adjacent frames, 3 approaches
zero and as a result cos?(f3) tends to one and can be omitted.

In Table 1, SNRs achieved by each method in different
noisy conditions as well as the SNRs of the original noisy
signals are shown. As we can see, both in Fig. 2 and Table
1, the noise updating VRE estimator (VRE-U) outperforms
other estimators.

5. CONCLUSIONS

We have improved our previously generated PCA-based en-
hancement technique by applying a novel idea which involves
updating the statistics of noise even during speech present in-
tervals of a noisy signal. This approach is based on PCA,
an associated VRE subspace selection and a newly developed
technique based on a recursive noise variance updating algo-
rithm. The performance evaluations based on spectrogram
and SNR show clearly that our improved algorithm seems to
be very promising in enhancing signals corrupted by station-
ary or nonstationary noises.
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