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ABSTRACT

The robustness of phoneme classification to additive white Gaussian
noise is investigated in acoustic waveform and PLP domains using
support vector machines (SVMs). Classification in the PLP space
gives excellent results at low noise level under matched training and
testing conditions, but it is very sensitive to their mismatch. On the
other hand, classification in the acoustic waveform domain is infe-
rior at low noise levels, but exhibits a much more robust behaviour,
and at high noise levels even with training on clean data signifi-
cantly outperforms the classification in the PLP space with training
under matched conditions. The two classifiers are then combined in
a manner which attains the accuracy of PLP at low noise levels and
significantly improves its robustness to additive noise.

1. INTRODUCTION

Language and context modelling have resulted in major break-
throughs that have made automatic speech recognition (ASR) pos-
sible. ASR systems, however, still lack the level of robustness in-
herent to human speech recognition [1, 2]. While language and
context modelling are essential for reducing many errors in speech
recognition, human speech recognition attains a major portion of
its robustness early on in the process, before and independently of
context information [3, 4]. In the extreme case, when phonemes
or syllables are recognized at the level of chance (random guess-
ing), no context and language modelling can retrieve any informa-
tion from speech. In the other extreme, when all phonemes and
syllables are recognized accurately, context and/or language mod-
elling are not needed. Both ASR and human speech recognition
operate between these two extreme conditions, therefore both so-
phisticated language-context modelling and accurate recognition of
isolated phonetic units are needed to achieve a robust recognition
of continuous speech. In recognizing syllables or isolated words,
the human auditory systems performs above chance level already at
-18dB SNR and significantly above it at -9dB SNR [4]. No ASR
system is able to achieve performance close to that of human au-
ditory systems in recognizing isolated words or phonemes under
severe noisy conditions, as has been confirmed recently in an exten-
sive study by Sroka and Braida [2]. Robust recognition of isolated
phonemes and syllables is therefore a very important open problem
of ASR.

Most of the state-of-the-art ASR front-ends are generally some
variant of PLP[5], RASTA[6] or MFCC[7]. These representations
are derived from the short term magnitude spectra followed by non-
linear transformations to model the processing of the human audi-
tory system. They remove variations from speech signals that are
considered unnecessary for recognition while preserving the im-
portant speech information and have a much lower dimension than
acoustic waveforms. Hence, they facilitate the estimation of prob-
ability distributions and significantly enhance the discrimination of
different phonetic units. However it is not certain that in this process
of peeling off speech components that are unnecessary for recogni-
tion one is not discarding part of the information that makes speech
such a robust message representation.

In the representation domains which involve compression, dif-
ferent phonetic units although well separated may not be sufficiently
apart and may start overlapping considerably at lower noise levels

than they do in the original uncompressed domain of acoustic wave-
forms, consequently ending up with ASR systems which are very
sensitive to noise and other forms of degradation. Several meth-
ods have been proposed to reduce explicitly the effect of noise on
spectral representations [8] in order to approach the optimal perfor-
mance which is achieved when the training and testing conditions
are matched [9]. Our recent study indicates that classifiers in the
high-dimensional acoustic waveform domain when trained in quiet
conditions may outperform classifiers in the PLP domain trained
under matched conditions in severe noise [10]. However, the clas-
sifiers in the PLP domain trained under matched conditions demon-
strate superior performance when tested on phonemes corrupted by
low levels of noise. In this paper, we consider combining SVM
classifiers in the PLP and acoustic waveform domains to achieve the
performance equivalent to the best of both domains across a wide
range of SNRs. The method considered is convex combination of
the decision functions of classifiers in the two domains. Preliminary
experiments demonstrate the effectiveness of this method for ro-
bust phoneme recognition under adverse conditions. Furthermore,
the combined classifier is desensitized to noise mismatch between
training and testing conditions. It should be emphasized that this
preliminary study is focused on the comparison of phoneme classi-
fication in acoustic waveform and PLP representation domains and
their combination, rather than the design of a complete phoneme
recognition system. Useful conclusions can be drawn by compar-
ing this paper with [11], a similar approach using Gaussian mixture
models (GMMs). SVM approach to classification of phonemes in
the PLP and acoustic waveform domains is presented in Section 2.
In Section 3, the results of classification in the individual feature
spaces are reported. The method for combining classifiers of PLP
and acoustic waveform domains is described in Section 4 where
we also present results of the combined classifier and draw com-
parisons to classifiers in the individual domains. Finally, Section 5
draws some conclusions.

2. CLASSIFICATION METHOD

An SVM estimates decision surfaces separating two classes of data.
In the simplest case these are linear but for speech recognition, one
typically requires nonlinear decision boundaries. These are con-
structed using kernels instead of dot products, implicitly mapping
data points to high-dimensional feature vectors [12]. A kernel-
based decision function has the form

h(x) = ∑
i

αiyiK(x,xi)+b (1)

where xi are all training inputs, yi = ±1 are class labels, while the
bias term, b, and the αi are parameters determined by SVM. Two
commonly used kernels are polynomial and radial basis function
(RBF) kernels given by (2) and (3), respectively,

K(xi,x j) = (1+ 〈xi,x j〉)Θ , (2)

K(xi,x j) = e−Γ‖xi−x j‖2

. (3)

SVMs are binary classifiers that distinguish two classes or
two groups of classes. To obtain a multiclass classifier, binary
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Figure 1: Multiclass error rate for SVM classifiers in the PLP and
acoustic waveform domains. SVMs for acoustic waveforms are
trained on clean data while, for PLP, training is done on noisy
data sets with SNR indicated in the legend. Polynomial and shift-
invariant even-polynomial kernels are used for PLP and acoustic
waveform representations respectively. The bold lines represent the
classification performance in the acoustic waveform domain and
PLP domain (under matched conditions).

SVM classifiers are combined via error-correcting code methods
[13]. In particular, L binary classifiers are trained to distinguish
between K classes using the coding matrix MK×L, with elements
Mkl ∈ {0,1,−1}. Classifier l is trained on data of classes k for
which Mkl 6= 0 where sgn(Mkl) is the class label; it has no knowl-
edge about classes k for which Mkl = 0. For example, in the
case of one-vs-all classifiers (L = K), Mkl = 1, if k = l, otherwise
Mkl = −1. For the one-vs-one classification strategy, on the other
hand, L = K(K − 1)/2, each classifier is trained on data from only
two phoneme classes. Here all the elements of a column of the cod-
ing matrix M are set to 0 except for one +1 and one −1.

In order to form a multiclass classifier by combining the binary
ones, given a test point x, the decision values, hl(x), l = 1, · · · ,L,

of the L binary classifiers are computed to form a vector h̄(x) =
[h1(x), · · · ,hL(x)]. The class of x is the predicted to be the in-
dex of the row, M̄k = [Mk1, · · · ,MkL],k = 1, · · · ,K of the matrix

M which is at the minimum distance from the vector h̄(x) accord-

ing to some distance measure, H(x) = argmink d(M̄k, h̄(x)). The

distance measure is given as d(M̄k, h̄(x)) = ∑L
l=1 ξ (zkl) where ξ

is some loss function and zkl = Mklhl(x). Commonly used loss
functions include hinge – ξ (z) = (1− z)+ = max(1− z,0), Ham-
ming – ξ (z) = [1− sgn(z)]/2, exponential – ξ (z) = e−z and linear
– ξ (z) = −z loss functions.

The issues of primary importance in any multiclass classifica-
tion task with SVMs are: (a) the use/design of appropriate kernel
and (b) the choice of the coding matrix. A kernel function with
prior knowledge about the physical properties of the data sets can
significantly improve the performance of the individual binary clas-
sifiers. To this end, for classification using acoustic waveforms, we
use even kernels [14] to take into account the fact that a speech
waveform and its inverted version are perceived as being the same.
An even version of a kernel K can be obtained as

Ke(xi,x j) = K(xi,x j)+K(xi,−x j)+K(−xi,x j)+K(−xi,−x j) ,
(4)

which is the approach used in this work. Furthermore, invariance
of acoustic waveforms to time alignment can be incorporated into
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Figure 2: Multiclass error rates for SVM classifier in the acous-
tic waveform domain with mismatch between actual and estimated
SNRs. Waveforms corrupted by noise with SNR as shown on the

x-axis are normalized to
√

1+ σ̃2 where σ̃2 is the noise variance
corresponding to the estimated SNR as indicated in the legend.

even kernel by defining a shift-invariant even kernel of the form

Ks(xi,x j) =
1

(2n+1)2

n

∑
p=−n

n

∑
q=−n

Ke(x
p∆
i ,x

q∆
j ) , (5)

where ∆ is the shift increment, [−n∆,n∆] is the shift range, and

xp∆ denotes a time-shifted version of x. In particular, xp∆ is the
segment of the same length and extracted from the same acoustic
waveform as x but starting from a position shifted by p∆ samples in
time. Since PLP, MFCC and other state-of-the-art representations
are based on the short-time magnitude spectra, using even kernel
or shift-invariant kernel for classification in the PLP domain will
not have any significant advantage over the standard (polynomial or
RBF) kernels and that was confirmed in our experiments.

Regarding the choice of the matrix M, since the error-
correcting capability of a code is commensurate to the minimum
Hamming distance, β , between pairs of code words, the classifi-
cation task benefits from using matrices M with larger Hamming
distances between their rows. However, depending on the data sets,
one must balance the use of a matrix M having larger Hamming
distance between its code words with a choice of accurate binary
classifiers. For instance, our experiments showed that in the case of
K = 6 classes, the multiclass classifier obtained from 3-vs-3 binary
classifiers (β = 6 for the corresponding matrix) performed worse
than the classifiers obtained from either one-vs-all (β = 2) or one-
vs-one (β = 1) classifiers, because the individual binary 3-vs-3 clas-
sifiers were on average much less accurate than one-vs-one or one-
vs-all classifiers. One possible choice for a coding matrix can be a

complete dense code i.e. for K classes, L = 2K−1−1 and β = 2K−2.
However, this code suffers from the problem of scalability of the
number of classifiers, L with the number of classes, K. Since the
goal is to extend this work to a complete set of phonemes, the com-
plete dense code may not be an appropriate choice as our coding
matrix. In this study, we report results using matrix M that com-
bines both one-vs-all and one-vs-one classifiers as this combination
performed better than either set of binary classifiers separately on
its own. Moreover, the number of classifiers in this coding matrix

scales well (O(K2)) with the number of classes(K) compared to a
complete dense code.
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Figure 3: Multiclass classification error of combined classifier
with training performed under quiet conditions. SNR of the test

phonemes is indicated in the legend. λ (σ2) = 0 represents the clas-

sification error in the PLP domain and λ (σ2) = 1 corresponds to
classification in the acoustic waveform domain.

3. CLASSIFICATION IN INDIVDUAL FEATURE SPACES

Experiments were performed on the realizations of six phonemes
(/b/, /f/, /m/, /r/, /t/, /z/) extracted from the TIMIT database [15].
This set includes examples from fricatives, nasals, semivowels and
voiced and unvoiced stops. In addition, this set of phonemes pro-
vides pairwise discrimination tasks of a varying level of difficulty.
Each class consists of approximately 1000 representative acous-
tic waveforms, of which 80% were used for training and 20% for
testing; error bars were derived by considering five different such
splits. Phonetic segments used in this work were obtained by ap-
plying a 64ms rectangular window to each phoneme waveform (of
variable length) at its center, which at 16kHz sampling frequency

gives fixed-length vectors in R
1024, followed by normalization to

unit norm. For comparison, 12th order PLP representations of each
64ms phoneme segment were taken, leading to 4 frames of 13 coef-
ficients [16]. These frames were then concatenated to give a repre-

sentation in R
52.

In the evaluation of shift-invariant kernel defined in (5), we use
shift increment ∆ = 25 (≈ 1.5 ms) over a range of ±100 samples
(≈ ±6 ms) to reduce computational effort. As pointed out before,
PLP uses frames of magnitude spectra, it is less sensitive to time
alignment. In this preliminary study, we investigated robustness to

white Gaussian noise only. Since the noise variance, σ2 can be esti-
mated during pause intervals (non-speech activity) between speech
signals, we assume for all classification approaches that the noise
variance is known. Noise is added to the clean acoustic waveforms
at phoneme level rather than sentence level in order to conduct the
experiments in a more controlled environment. For data corrupted
by noise, the acoustic waveforms representations of phonemes are

normalized to
√

1+σ2. This is done to keep the norm of the speech
signal component roughly independent of noise. In the case of PLP,
we experimented with both this normalization and normalization to
unity independently of SNR, choosing the latter as it gave better
performance. PLP features are standardized, i.e. scaled and shifted
to have zero mean and unit variance on the training set.

Regarding the binary SVM classifiers, comparable performance
is obtained with polynomial and RBF kernels for PLP representa-
tion so we show results for the former. For the waveform represen-
tation, the polynomial kernel performed better than the RBF kernel
and the shift-invariant even-polynomial kernel outperformed both.
Classification results using SVMs in the PLP and acoustic wave-
form domains are shown in Figure 1. The best results for both do-
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Figure 4: For the combined classifier trained in quiet condition,

the optimal values of λ (σ2) for a range of test SNRs are shown as

’o’. The error bars give a range of values of λ (σ2) for which the
classification error is less than the minimum error (%)+ 2%. The

dashed line is an approximation of the optimal λ (σ2) as given by
(7).

mains are compared here, i.e. shift-invariant even-polynomial ker-
nel for waveforms and polynomial kernel for PLP. For both repre-
sentations, a coding matrix that combines the one-vs-all and one-
vs-one classifiers was used. Hinge loss function, which performed
comparably or better than the Hamming, linear and exponential loss
functions, is used to calculate the distance measure, d. One can ob-
serve that a PLP classifier trained on clean data gives excellent per-
formance (less than 2% error) when tested on clean data, however at
noise level as low as 6dB SNR, we get an error of 45%, while clas-
sification is at the level of chance for SNR smaller than 0dB. This
observation is quite general: the PLP classifiers are highly sensitive
to mismatch between the training and test conditions. For exam-
ple, the PLP classifier trained at 6dB SNR does well when tested at
the same SNR (3% error) but performs rather badly if the test noise
level deviates in either direction (13% error for clean test data, 33%
for 0dB SNR). The classifiers trained on very low SNRs (−12 and
−18dB) give the best results for similarly noisy test conditions but
perform very poorly in testing at low noise levels.

This can now be contrasted with the results for a classifier based
on acoustic waveform data. One observes that although the perfor-
mance of this classifier on clean data (7.5% error) is worse than that
obtained by PLP classifier trained on clean data, it is significantly
more robust to larger test noise levels as compared to the PLP clas-
sifier. For instance, there is no significant change in classification
error (8%) up to a test noise level as high as 0dB SNR, whereas
at the same SNR the corresponding PLP classifier trained on clean
data has an error rate of 78%. It should be emphasized that best
performance using acoustic waveform classifiers is obtained when
training is performed on clean data; training on noisy data (results
not shown) leads to poorer performance. This is a significant ad-
vantage: the acoustic waveform classifier can be trained once and
for all on clean data and used with a broad range of test noise con-
ditions; for the PLP classification, on the other hand, separate clas-
sifiers trained at various noise levels need to be constructed to give
good performance.

In order to compare the best classification performance in both
domains i.e. classification in the waveform domain with test points

normalized to
√

1+σ2 and in the PLP domain under matched train-
ing and testing conditions, we assumed to have the knowledge about

the noise variance, σ2. However, in practice, σ2 may not be esti-
mated accurately. This may result in a certain amount of mismatch
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Figure 5: Comparison of classification performance in feature space
of PLP, acoustic waveforms and their combined classifier under
quiet training conditions. For the combined classifier, results for

both optimal λ and λ̃ are shown as indicated in the legend.

between the actual and estimated SNRs for waveform classification
and correspondingly, a mismatch between training and testing con-
ditions in the PLP domain. In Figure 2, waveform classification re-
sults are presented for different values of actual and estimated SNRs
with possible mismatch between them. In order to analyze the sensi-
tivity of both PLP and waveform classifiers to noise mismatch, we
compare Figure 2 with plots from Figure 1 corresponding to PLP
classifiers trained and tested under different conditions (dash-dotted
curves). It is clear that waveform classification, although not as ac-
curate as PLP classification under matched conditions, shows more
robustness towards mismatch between estimated and actual SNRs
at low noise levels (SNR ≥ 0dB). In severe noisy conditions (SNR
≤−6dB), the waveform classifiers outperform PLP classifiers both
under matched and mismatched conditions.

In Figure 1, we finally compare classification in acoustic wave-
form domain with training done on clean data and classification in
the PLP domain with training under matched conditions (the bold
curves). We observe that classifiers in the waveform domain give
better results for high noise (SNR ≤ −6dB) whereas classification
in the PLP domain under matched conditions performs excellently
on clean data and at low noise levels (SNR ≥ 0dB). In the next sec-
tion, we propose a method for combined classification in the PLP
and acoustic waveform domains resulting in a classifier that is anal-
ogous to the best of both domains across all SNRs.

4. COMBINED PLP–ACOUSTIC WAVEFORM

CLASSIFIER

Consider two sets of L binary classifiers – one in acoustic wave-
form domain and other in the PLP domain. Let h̄P(xP) =
[hP1(xP), · · · ,hPL(xP)] and h̄W (xW ) = [hW1(xW ), · · · ,hWL(xW )] be
the vectors of decision values of classifiers in the PLP and acous-
tic waveform domain respectively where xP and xW are the PLP
and acoustic waveform representations of phoneme x. We con-
sider a convex combination of the decision values of the classi-
fiers in the individual feature spaces, h̄P(xP) and h̄W (xW ), to ob-

tain the decision values of the combined binary classifiers, h̄C(x) =
[hC1(x), · · · ,hCL(x)] i.e.

h̄C(x) = λ (σ2)h̄W (xW )+
[

1−λ (σ2)
]

h̄P(xP) , (6)

where λ (σ2) is parameter which needs to be selected, depending on
the noise variance, to achieve optimal performance. These binary
classifiers are combined via ECOC methods described previously
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Figure 6: Multiclass classification error of the combined classifier:
waveform classifiers trained on clean data combined with PLP clas-
sifiers trained under matched conditions.

for multiclass classification. Two different scenarios for training
are considered for this kind of combined classifier:

• Both acoustic waveforms and PLP classifiers trained on clean
data,

• Acoustic waveform classifiers trained on clean data, PLP clas-
sifiers trained under matched conditions.

Since training the acoustic waveform classifiers on noisy data does
not give good results, that scenario is therefore not considered. For
classification in the PLP domain in presence of noise, various noise
compensation techniques have been developed. The two training
approaches investigated here are extreme cases of noise compensa-
tion: training on clean data amounts to having no noise compensa-
tion at all whereas training under matched conditions is analogous
to optimal noise compensation [9]. If some practical noise com-
pensation method is used, the classification performance can be ex-
pected to fall between these two cases.

Figure 3 shows the performance of the combined classifier with
training done in quiet conditions. Results are shown for differ-

ent values of λ (σ2). When testing is done on clean data, the op-

timal performance is achieved with 0 ≤ λ (σ2) ≤ 0.7. However,

λ (σ2) = 1 gives the best results for test phonemes with SNR≤ 6dB.
This is due to the fact that the PLP classifiers are very sensitive to
noise mismatch while waveform classifiers can tolerate a significant
mismatch between training and testing conditions.

In Figure 4, the “optimal” λ (σ2) i.e. the values of λ (σ2) which
give the minimum classification error for a given SNR of the test
phoneme, are shown marked by ’o’. The error bars give a range of

values of λ (σ2) for which the classification error is less than the
minimum error (%)+ 2%. The dashed line is an approximation of

the optimal λ (σ2) and is given by

λ̃ (σ2) = c+
1− c

1+ e10log10(σ 2
o /σ 2)

, (7)

with c = 0.5 and σ2
o = 1/8.

In Figure 5, we compare the classification performance in the
feature space of PLP and acoustic waveforms with the combined
classifier under quiet training conditions. Two combinations are

presented: for optimal λ (σ2) (the values of λ (σ2) which minimizes

the test error) and for λ̃ (σ2) selected according to (7). One can
observe that for both choices of λ , the combined classifier performs
as the better of the individual classifiers and the difference between
optimal λ and λ̃ is not significant.
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Figure 7: Comparison of classification performance in feature space
of acoustic waveforms (trained in quiet conditions), PLP (trained
under matched conditions) and their combined classifier. Inset:
Comparison of combined classifiers under quiet and matched train-
ing conditions.

Now, we consider the scenario when acoustic waveform classi-
fiers trained on clean data are combined with PLP classifiers trained
under matched conditions. Figure 6 shows the performance of the

combined classifier for different values of λ (σ2). It is evident that

λ (σ2) = 0.5 gives close to optimal performance for all test condi-
tions. The comparison between individual and combined classifiers
is shown in Figure 7. For clean data and low noise levels (SNR
≥ 0dB), the combined classifier exhibit similar performance to that
of PLP classifier under matched conditions. However, under se-
vere noisy conditions, the performance of the combined classifier
is similar to that of the acoustic waveform classifier. Furthermore,
no significant difference is observed between the optimal values of

λ (σ2) and λ (σ2) = 0.5. The inset of Figure 7 compares the per-
formance of the combined classifiers under quiet and matched con-
ditions. This clearly demonstrates that the combined classifiers are
significantly desensitized to mismatch between training and testing
conditions. It should be noted that the combined classifier consis-
tently achieves superior performance than classifiers in either of the
individual feature spaces for all SNRs.

5. CONCLUSIONS

The robustness of phoneme classification to additive white Gaussian
noise in the PLP and acoustic waveform domains was investigated
using SVMs. While PLP representation facilitates very accurate
recognition of phonemes under matched conditions (especially for
clean data), its performance suffers severe degradation with noise
mismatch between training and testing conditions. On the other
hand, the high-dimensional acoustic waveform representation, al-
though not as accurate as PLP classification on clean data, is more
robust to additive noise. Our results demonstrate that a convex com-
bination of classifiers has a performance equivalent to the best of
both domains. Moreover, the combined classifier can tolerate a sig-
nificant mismatch between training and testing conditions. In fu-
ture work, we plan to investigate the classification performance for
a larger phoneme set and different types of noise. It will also be in-
teresting to study different kernel functions which are finely tuned
to the physical properties of speech data as that will play a crucial
role in reducing the error significantly.
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