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ABSTRACT

The robustness of classification of phoneme segments using gener-
ative classifiers is investigated for the PLP and acoustic waveform
speech representations in the presence of white Gaussian noise.
We combine the strengths of both representations, specifically the
excellent classification accuracy of PLP in quiet conditions with
the additional robustness of acoustic waveform classifiers. This
is achieved using a convex combination of their respective log-
likelihoods to produce a combined decision function. The resulting
combined classifier is uniformly as accurate as PLP alone and is sig-
nificantly more robust to the presence of additive noise during test-
ing. Issues of noise modelling and time-invariant classification of
acoustic waveforms are also considered with initial solutions used
to improve accuracy.

1. INTRODUCTION

One of the key problems in automatic speech recognition (ASR) is
robustness to additive noise. ASR systems can attribute much of
their performance to language and context modelling, the principle
being that classification errors made by the front-end can be reme-
died at a higher level [8]. However, this approach can only decode
messages sent via speech signals if the input sequence of elemen-
tary speech units is sufficiently accurate. In the extreme case where
that sequence is close to random guessing no useful information can
be extracted at the later stages of recognition. Developing methods
for robust classification of phonemes and isolated syllables is there-
fore essential for robust continuous speech recognition. Indeed, it
has been observed that the majority of inherent robustness of hu-
man hearing occurs early in the process [7]; even at −18dB SNR
humans can still recognise isolated speech units above the level of
chance [6]. It is crucial for an automatic speech classifier to achieve
performance close to that of the human auditory system even in such
severe noise conditions.

The current preferred speech representation is generally some
variant of Perceptual Linear Prediction (PLP) [4], Relative Spec-
tral Transform - PLP (RASTA-PLP) [5] or mel-frequency cepstral
coefficients (MFCC) [12] dependent on the particular task. These
representations are derived from the short term magnitude spectra
followed by non-linear transformations that model human auditory
perception. They have the advantage that they remove such vari-
ation from test signals that is deemed unnecessary for recognition
and have a much lower dimension than acoustic waveforms which
can allow for more accurate modelling when data is limited. It is not
known if this dimensionality reduction loses some information that
gives speech additional robustness. An alternative approach that
can be used to explore this possibility is to use higher dimensional
representations, in particular acoustic waveforms.

In this paper we investigate the robustness of phomene clas-
sification in the acoustic waveform domain when additive white
Gaussian noise is present. Regularised Gaussian mixture models
in the form of mixture of probabilistic principial component anal-
ysers [10] are used to give preliminary classification results. For
comparison and later combination, we also train and test classifiers
on the lower dimensional PLP representation. The main aim of this
work is not to find optimal classifiers but to instead illustrate that

acoustic waveforms are a viable representation for speech and can
be used to improve the overall robustness of phoneme classification.
Many noise compensation methods have been proposed to re-

duce the effect of noise on spectral representations [9]. However
those methods perform no better than the matched condition ap-
proach [2]. i.e. training and testing in the same noise conditions.
Throughout this paper we use no noise compensation of PLP fea-
ture vectors. Instead we consider the following two cases for the
testing setup: one being where only PLP models that are trained in
quiet conditions are used and the other where PLP models trained
on noise conditions that match test conditions are available. In both
cases we assume that the noise level is known or can be estimated
reliably [11]. These two cases represent the extremes of the classi-
fier performance and it is expected that the performance of a noise
compensated PLP classifier would be between the two.
It would be very difficult to improve on the accuracy of PLP

in quiet conditions, hence the focus of this work is to demostrate
that acoustic waveforms can be used to improve the robustness of a
PLP classifier in the presence of additive noise. This is achieved by
taking the decision functions to be a convex combination of the log-
likelihood functions of the respective PLP and acoustic waveform
density models. This gives a one-parameter family of combined
classifiers corresponding to PLP classification alone at one extreme
and acoustic waveform classification alone at other. When the com-
bination parameter varies as a function of SNR, the performance
of the derived classifier is at least as accurate as a PLP classifier
trained in conditions that match those in testing and is significantly
more robust to additive noise.

2. GENERATIVE CLASSIFICATION

Generative classification was performed using density estimates de-
rived from mixtures of probabilistic principal component analysis
(MPPCA) [10]. This method gives a Gaussian mixture model where
the covariance matrices of each component are regularised by re-
placement with a lower rank q approximation:

C = r2I+WW
T (1)

where the ith column of the d×q matrixW is given as
√

λivi cor-

responding to ith eigenvalue λi and eigenvector vi of the empirical
covariance matrix with the eigenpairs in descending order. The reg-

ularisation parameter r2 is then taken as the mean of the remaining
d−q eigenvalues:

r2 =
1

d−q

d

∑
q+1

λi (2)

This method is used to give maximum likelihood density estimates
of the class conditional distribution for each phoneme. In order to
use these density models for the classification of a data point x, a
decision function is required, here it is given by the log-likelihood
function L (x) is defined as the logarithm of the density of the c-
component mixture evaluated at x:
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Figure 1: Multiclass accuracy of PLP classifiers as a function of
test SNR. Each curve shows the accuracy of the classifier trained at
the corresponding SNR indicated by the curve marker. The curves
show the sensitivity of PLP classifiers when there is a mismatch be-
tween training and testing noise conditions. In particular the classi-
fier trained at 0dB performs much worse when the test noise level
is lower than the training level.

where Ci, µi and wi are the covariance matrix, mean and mixture
weight of the ith component respectively. Given this function, clas-
sification is then performed in the standard way, by predicting the

class with the maximum log-likelihood L (k)(x) (which implicitly
assumes uniform prior probabilities over different classes). The
classification function, H(x), that maps a test point x to one of the
corresponding K class labels is defined as:

H(x) = arg max
k=1,...,K

L
(k)(x) (4)

The same type of modelling is used both for PLP and acoustic wave-
forms. One of the advantages of the acoustic waveform represen-
tation is that the fitted density models can easily be modified to
account for the presence of additive noise during testing. Assuming
that the noise level (or more generally the noise power spectrum) is
known or can be estimated reliably, we simply need to perform a
convolution with the appropriate Gaussian noise model. For exam-
ple, the covariance matrix of white Gaussian noise is a multiple of

the identity matrix, σ 2

d I, where σ2 is the noise variance and d is the
dimension of the data. Hence the noise-adapted model in that case

is given by replacing each covariance matrixCi with C̃i(σ
2):

C̃i(σ
2) =

Ci+
σ 2

d I

1+σ2
(5)

where 1+ σ2 is the normalisation factor to ensure that the noise-
adapted covariance matrix has unit trace. For classification of noisy
acoustic waveforms this type of noise modelling is used. In contrast,
PLP is a non-linear transformation and it is not possible to model
noise directly in this manner. Noise-compensated modelling of PLP
distributions is currently an active area of research [9]. Since the
main aim of this paper is to assess the sensitivity of classification in
the PLP domain to additive Gaussian noise, we do not perform any
noise compensation but instead consider two extreme cases: train-
ing only on quiet data and training in matched noise conditions.
These two scenarios cover the expected range of performance of
PLP classifiers using optimal noise-compensation.
Another difference between the two domains is sensitivity to

time alignment. PLP is not sensitive to small variations in time
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Figure 2: Multiclass accuracy of acoustic waveform classifiers as a
function of test SNR. The curve marker indicates the adapted SNR
of the classifier given by (5).

alignment as it uses frames of short-term magnitude spectra. In the
case of waveforms however it would clearly be beneficial to align
the data in a consistent manner. This is especially true in the case of
stops such as /b/ and /t/. In general time alignment in the acoustic
waveform domain is a not a well-defined problem. Therefore, rather
than attempting to explicitly align the acoustic waveforms, a sliding
window was used to give a number of shifted versions of the test
point. These shifted versions are used during training and testing.
During testing the log-likelihood of the test point x is instead given
byLs(x), the log-mean-likelihood when the mean is taken over the
shifted versions of x:

Ls(x) = log

(

1

2n+1

n

∑
p=−n

exp(L (xp∆))

)

(6)

where ∆ is the shift increment, [−n∆,n∆] is the shift range, and

xp∆ denotes a time-shifted versions of x. In particular, xp∆ is the
segment of the same length and extracted from the same acoustic
waveform as x but starting from a position shifted by p∆ samples in
time.
These modified log-likelihoods are compared among the dif-

ferent classes to produce the classification. The shift range was se-
lected so that it would cover at least one fundamental period of a pe-
riodic waveform at the lower end of the typical frequency range of
speech. We experimented with sample shifts of below 10 samples in
the same shift range±100, giving a greater number of shifted wave-
forms. Since this gave no noticeable improvement but increases
computation time and memory requirements, all tests were carried
out using the shifts in steps of 10 samples.

Original Data Shifted Data
/b/ -3.178 ± 0.029 -3.396 ± 0.010
/f/ -0.655 ± 0.016 -2.091 ± 0.007
/m/ -3.212 ± 0.009 -3.298 ± 0.009
/r/ -3.305 ± 0.004 -3.363 ± 0.007
/t/ -2.066 ± 0.044 -2.524 ± 0.021
/z/ -1.732 ± 0.048 -2.378 ± 0.021

Table 1: Standardised log-loss of the test data for acoustic wave-
form models in quiet conditions. The lower values in the right hand
column indicates that the inclusion of shifted data results in more
accurate density models.



The inclusion of these shifted versions of the acoustic wave-
forms has the additional benefit of increasing the size of the training
dataset. Provided the shifted versions are sufficiently independent,
this larger dataset should improve the model fit and hence classi-
fication accuracy. In particular the accuracy of the acoustic wave-
form classifier was improved from 89.2% to 95.1% when shifted
versions are used during training and testing. In order to explain
this improvement we consider the log-loss of the test data when
shifted versions of the data is included and compare the values to
when it is not present. The log-loss is a measure of how well a par-
ticular probability density fits the data with a lower value indicates
a better model. The values given in Table 1 show that the inclusion
of shifted versions of the data lead to a density estimates that more
accurately model the phomene class distributions.

2.1 RESULTS OF CLASSIFICATION IN

PLP AND ACOUSTIC WAVEFORM DOMAINS

In this preliminary study we consider only realisations of six
phonemes (/b/, /f/, /m/, /r/, /t/, /z/) that were extracted from the
TIMIT database [3]. This set includes examples from fricatives,
nasals, semivowels and voiced and unvoiced stops. In addition,
those classes provide pairwise discrimination tasks of a varying
level of difficulty. A single 64ms rectangular window was then ap-
plied to the centre of each phoneme, except for /b/ and /t/ where
the window was positioned to include the closure and release. The
natural space in which to perform classification for the waveforms

is the hypersphere S
1023 as each sample has 1024 entries and unit

norm. In addition the mean value of each class was zero within sam-
pling error, the class-conditional densities for the acoustic wave-
form models were constrained to have zero mean.

Each phoneme class consists of approximately 1000 represen-
tatives, of which 80% were used for training and 20% for testing;
error bars were derived by considering five different such splits and
give an indication of the significance any differences in the accuracy
of two classifiers. A range of SNRs was chosen to show classifica-
tion accuracies that approached chance level, i.e. 16.7% in the case
of six classes. In total this gave six testing and training conditions;
−18dB, −12dB, −6dB, 0dB, 6dB and quiet.

For comparison the default 12th order PLP cepstra were com-
puted for the 64ms segments. A sliding 25ms Hamming window
was used with a overlap of 15ms leading to 4 frames of 13 coeffi-
cients [1]. These 4 frames were concatenated to give a PLP repre-

sentation in R
52. The data was then standardised prior to training

so that each of features had zero mean and unit variance when the
entire training set was considered.

The PLP phoneme distributions were modelled using a single
component mixture with a principal dimension of 40, i.e. c = 1
and q= 40. We experimented with other parameters but only show
the best results here. Figure 1 shows the test results for classifiers
trained on data corrupted at the corresponding noise levels. Each
of the curves represents a different training SNR. It is clear that
PLP classifiers are highly sensitive to mismatch between training
and testing noise conditions. For example, when training and test-
ing conditions are matched at 6dB SNR accuracy is very high at
97.2% however if the same classifier is tested in quiet conditions
this value falls to 46.3%. The analogous plot for waveform classi-
fiers is shown in Figure 2, where the phoneme classes were mod-
elled with c = 4 and q = 500. Acoustic waveform classifiers are
less sensitive to differences between training and testing conditions.
Taking the 6dB classifier as an example again we see that if training
and testing conditions are matched the accuracy is 94.9% and when
tested in quiet it remains high at 91.6%. Although the performance
for matched conditions is lower than that of PLP at this noise level,
the decrease due to mismatch between training and testing condi-
tions is much less. It should be stressed that the waveform models
are only trained in quiet conditions and then adapted appropriately
according to (5).

The other scenario considered in this study was the case when
training and testing conditions were matched which is equivalent to
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Figure 3: Multiclass accuracy of PLP and waveform classifiers as a
function of test SNR. Here PLP performance is greater than acoustic
waveforms where the SNR is above 0dB. Below that value however
waveforms are significantly more accurate. These results suggest
that a combined classifier could be more accurate.

taking the upper envelopes of Figures 1 and 2, these are shown in
Figure 3. In this case PLP gives greater accuracy than waveforms
down to 0dB SNR where the situation reverses. Given these results
we seek to combine the classification strengths of each representa-
tion, specifically the high accuracy of PLP classifiers at high SNRs
and the robustness of acoustic waveform classifiers at all noise lev-
els. Ideally this will result in a single combined classifier that only
needs to be trained in quiet conditions and can be easily adapted to
a range of noise conditions.

3. COMBINATION OF CLASSIFIERS

The results shown in Figure 3 suggest that it could be possible to
construct a combined classifier that is at least as accurate as the bet-
ter of those two across all SNRs. To investigate this concept we con-
sider the following convex combination of the two log-likelihoods
with each term being standardised by the relevant representation

dimension. Let L
(k)
plp (x) and L

(k)
wave(x) be the log-likelihoods of a

point x for the kth class, then the combined log-likelihood L
(k)
α (x)

parameterised by α is given as

L
(k)
α (x) =

(1−α)

dplp
L

(k)
plp (x)+

α

dwave
L

(k)
wave(x) (7)

where dplp = 52 and dwave = 1024 are the dimensions of the PLP
and acoustic waveform representations respectively. We would ex-
pect α to be almost zero for high SNRs and close to one for low
SNRs in order to give the desired improvement in accuracy. The
combined classifier function Hα (x) has the same form as (4) and is
defined as:

Hα (x) = arg max
k=1,...,K

Lα
(k)(x) (8)

We then investigated the effect of varying the combination pa-
rameter α on the classification accuracy. The ranges of α that give
good performance when using the combined log-likelihood,Lα (x),
are show in Figures 4(b) and 5(b), where the errors bars indicate
the values of α that give classification accuracy within 1.0% of the
maximum. Figure 4 shows the results of combining the PLP model
trained in quiet conditions with noise-adapted acoustic waveform
models. When this classifier is tested in quiet conditions the range
of suitable α is large, however if noise is present the accuracy is
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Figure 4: (a) shows the result of combining a PLP classifier trained
in quiet conditions with the appropriate noise-adapted acoustic
waveform classifier. The six test SNRs have been plotted, indicated
by the curve labels. The highest accuracy is obtained for noisy test
conditions when α = 1. (b) gives the range of α that gives a clas-
sification accuracy within 1.0% of the maximum value. The dashed
curve shows a function of the form (9) to fit the ranges indicated by
the error bars. Here the parameter of the combination function are

σ20 = 11dB and β = 0.7.

more sensitive to the choice of α , hence the fit of the combination
function at low SNRs is important. Figure 5 is an analogous plot for
the PLP models trained and tested on matched conditions showing
a large range for higher SNRs but again very narrow for low SNRs.

We use this information to fit a combination function, α(σ2).
As the range of suitable α is large the particular form of this combi-
nation function is not critical, so we choose the following sigmoid

function with two parameters σ20 and β .

α(σ2) =
1

1+ eβ (σ 20−σ 2)
(9)

Suitable curves fitted to the results are shown in Figure 4(b) where

σ20 = 11dB,β = 0.7 for classifiers trained in quiet conditions. The
equivalent results for PLP models trained in matched noise condi-
tions that match the test conditions combined with noise-adapted
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Figure 5: (a) Accuracy of the classifier conbining the PLP classi-
fiers that are trained in noise conditions that match test conditions
with noise-adapted waveform classifiers. The six test SNRs have
been plotted, indicated by the labels. For high SNRs, a value of α
close to zero gives the best results. When SNR is low, α close to
one is preferable. (b) shows the range of α that gives a combined
classifier accuracy within 1.0% of the maximum. In particular the
range of suitable α for high SNRs is large. The dashed curves show
a possible function of the form (9) to fit that range, with σ0 = 2dB
and β = 0.3.

acoustic waveform models are shown in Figure 5(b), with σ20 =
2dB,β = 0.3 giving good results.

3.1 RESULTS OF COMBINED CLASSIFICATION

The accuracy of the combined classifier using models trained in
quiet conditions is shown as the bold curve in Figure 6, with re-
sults of the individual PLP and acoustic waveform classifiers also
plotted for comparison. In quiet conditions the combined classifier
is as accurate as PLP alone, corresponding to α = 0. When noise
is present the combined classifier at least as accurate as the acous-
tic waveform classifier alone and significantly around −6dB SNR.
The improvement observed in that range of SNRs justifies using the
smooth combination function given by (9) rather than a function
that simply switches from PLP classification to acoustic waveform
classification when the SNR is below a given threshold.
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Figure 6: Performance of combined classifier for the case where
only PLP models trained in quiet conditions are used. Here the
accuracy in quiet test conditions is equivalent to using PLP. When
noise is present the accuracy is similar to that for the noise adapted
waveform models alone, with an improvement at 6dB SNR.

The other scenario considered is when PLP models training on
noise conditions that match those during testing are used for com-
bination, as shown in Figure 7. Again the combined classifier is as
least as accurate as the better of the two individual classifiers with
a significant improvement at −6dB SNR. The combined classifier
achieves 90.5% at−6dB SNR compared with 88.5% for waveforms
and 86.6% for PLP alone at the same SNR. Even greater improve-
ment over PLP alone can be seen at −12dB and −18dB with in-
creases from 54.7% and 24.2% to 69.0% and 35.4% respectively.
The results have shown that the combination with acoustic

waveforms has improved the classification accuracy of PLP clas-
sifiers alone significantly for SNRs below 0dB. We would expect
the improvement to be even more significant if noise-compensated
models are used for combination as typically they will be less accu-
rate than for model trained on noise conditions that match those in
testing. The inset of Figure 7 shows the expected range of accuracy
for combination with noise-compensated PLP models.

4. CONCLUSIONS

In this work we have proposed a method to combine speech rep-
resentations leading to a classifier that is more robust to mismatch
between level of additive noise in training and testing, whilst retain-
ing the excellent performance of PLP at high SNR. By considering
the two contrasting scenarios of training only on quiet with the re-
sults obtained when using matched PLP models, we have been able
to measure this improvement conditional on the combination with
acoustic waveform classifiers.
To further validate the findings shown here, the experiments

will be extended to a larger set of phonemes and larger databases
containing more realisations of each phoneme class. We would
expect improvement for both representations but especially so for
acoustic waveforms due to their high dimensional representation
where additional training data would improve density estimation.
In addition the noise modelling described in (5) can be generalised
to other noise types, we have carried out similar experiments using
pink noise and speech-weighted noise with encouraging results.
The convex combination of the log-likelihoods demonstrated

here may not be the optimal classifier. It is possible that more
general combination functions could lead to an even greater im-
provement of accuracy. The results have however shown a practical
method of combining existing phoneme classifiers in order to ex-
ploit their differing accuracy characteristics.
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Figure 7: Performance of combined classifier when PLP models
trained under matched conditions are used. The combined classifier
is uniformly as accurate as those it is derived from and gives sig-
nificant improvement at −6dB SNR. Inset is a comparison of the
combined classifer trained only in quiet conditions from Figure 6.
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