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ABSTRACT

We propose a unified framework to recover articulation from au-
diovisual speech. The nonlinear audiovisual-to-articulatory map-
ping is modeled by means of a switching linear dynamical system.
Switching is governed by a state sequence determined via a Hid-
den Markov Model alignment process. Mel Frequency Cepstral
Coefficients are extracted from audio while visual analysisis per-
formed using Active Appearance Models. The articulatory state
is represented by the coordinates of points on important articula-
tors, e.g., tongue and lips. To evaluate our inversion approach, in-
stead of just using the conventional correlation coefficients and root
mean squared errors, we introduce a novel evaluation schemethat is
more specific to the inversion problem. Prediction errors inthe posi-
tions of the articulators are weighted differently depending on their
relevant importance in the production of the correspondingsound.
The applied weights are determined by an articulatory classification
analysis using Support Vector Machines with a radial basis function
kernel. Experiments are conducted in the audiovisual-articulatory
MOCHA database.

1. INTRODUCTION

Audiovisual speech inversion refers to the problem of recovering
properties of the speech production system, namely aspectsof the
vocal tract shape and dynamics, given audiovisual speech informa-
tion, i.e., the audio speech signal and visual information from the
speaker’s face. Apart from its theoretical importance, a solution
to this problem could allow devising efficient representations of the
audio and visual aspects of speech by means of the underlyingvocal
tract configuration. This can be beneficial to important applications
such as speech synthesis [1], speech recognition [2], speech coding
[3] and language tutoring [4]. In the current paper, we propose a
scheme to add dynamical constraints to audiovisual speech inver-
sion and we also introduce a novel method to evaluate inversion
results.

1.1 Previous Work

Speech inversion has been traditionally considered as the determi-
nation of the vocal tract shape from the audio speech signal only
[5, 6, 7, 8, 9]. For example, in [5] codebooks are optimized tore-
cover vocal tract shapes from formants while the inversion scheme
in [6] builds on neural network techniques to recover articulatory
coordinates from audio Mel-scale filterbank coefficients. In [7] a
Gaussian Mixture Model based mapping is proposed for inversion
from Mel Frequency Cepstral Coefficients (MFCCs).

The same speech representation, i.e. MFCCs, is used in [8],
where an adaptive extended Kalman filtering scheme is presented to
pose phonological and dynamical constraints to the inversion pro-
cess. In their work, speech is segmented into so-called coproduction
units, roughly related to diphones, via a maximum-likelihood pro-
cess. Each such unit is modeled by a dynamical system with a non-
linear observation equation, which is piecewise linearized based on
the corresponding training acoustic-articulatory vectorpairs. Clus-
tering into linear regions is performed via a Self-Organising Maps

(SOMs) analysis. Articulatory trajectories are determined by ex-
tended Kalman smoothing.

A stochastic piecewise-linear approximation of the audio-
articulatory relation is also presented in [9]. Each phoneme is mod-
eled by a context-dependent Hidden Markov Model (HMM) and a
separate linear regression mapping is trained at each HMM state
between the observed MFCCs and the corresponding articulatory
parameters. Given the observed audio parameters an optimalstate
sequence is determined and the hidden articulatory trajectories are
obtained by Maximum A Posteriori estimation.

An inherent shortcoming of audio-only inversion approaches is
that the mapping from the acoustic to articulatory domains is one-
to-many, in the sense that there is a large number of vocal tract
configurations which can produce the same speech acoustics,and
thus the inversion problem is significantly under-determined. In-
corporation of the visual modality in the speech inversion process
can significantly improve inversion accuracy. Important articulators
such as the lips, jaw, teeth, and tongue are to a certain extent vis-
ible. Therefore, visual cues can significantly narrow the solution
space and ameliorate the ill-posedness of the inversion process. In-
deed, a number of studies have shown that the speaker’s face and
the motion of important vocal tract articulators such as thetongue
are significantly correlated [10, 11, 12, 13].

Motivated by such observations, in [14] we present a uni-
fied framework to automatically extract visual features from the
speaker’s face, integrate them with audio features and exploit
this bimodal information to recover articulation from audiovisual
speech. Visual features are efficiently extracted from the face
by means of Active Appearance Models (AAMs). In this way,
we explicitly take into consideration both facial shape andap-
pearance variations, which is the main advantage compared to
transform-based approaches as the Independent Component Anal-
ysis scheme of [13]. The nonlinear mapping between audiovi-
sual and articulatory features is approximated by a piecewise lin-
ear model, governed by a Markov switching process; switching be-
tween the segmental linear mappings is determined based on astate
sequence identified via an HMM alignment process, similarlyto [9].
Our approach is evaluated in the Qualisys-Movetrack audiovisual-
articulatory database and promising results are demonstrated.

Quantitative evaluation of audio/audiovisual speech inversion is
typically performed by estimating the error between the predicted
and the measured/true articulatory parameters. However, rather dif-
ferent articulatory parameters tend to be able to produce almost the
same audio/audiovisual parameters [6]. This is due to the fact that
for certain phonemes, some articulatory features are more impor-
tant than others and some are of little importance. For example, in
the phoneme /p/, the closure of the lips is the most importantar-
ticulatory feature, while the positions of the other articulators are
irrelevant.

The audio/audiovisual-to-articulatory estimator hence needs to
be more accurate about the positions of some articulators when ut-
tering certain phonemes, while it could be allowed to make larger
errors for estimating the positions of other articulators.The most
commonly used non-regenerative evaluation measures in thecur-
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rent literature, Pearson’s correlation coefficient and mean RMS er-
ror [10, 11, 15] do not take these accuracy constraints into account.
Hence, these measures do not necessarily demonstrate the quality
of the inversion, since they do not differentiate between crucial and
irrelevant errors.

In [16] it is suggested that an articulatory classifier couldbe
used to give a better picture of how successful an inversion method
is for each phoneme. The articulatory classifier relies on a proto-
type articulation for each phoneme to find the closest prototype in
each frame. The evaluation is less exact than a correlation score
or an error compared to estimated parameters, but it does give in-
formation about whether important articulatory features are correct,
and if not, the type of error made. This method, however, does
not give a single measurable quantity to find whether a particular
technique is better than another, especially if their performances are
comparable for certain phoneme classes, while they vary forother
phoneme classes. It is hence a qualitative analysis tool forfinding
the strengths and weaknesses of an inversion method, ratherthan
a quantitative measurement of the reliability of an inversion tech-
nique.

1.2 Proposed Method

In this context, our contribution in the current paper is essentially
twofold.
Dynamical Articulatory Constraints Firstly, to better handle ar-

ticulatory dynamics and pose continuity and smoothness con-
straints, we suggest an audiovisual speech inversion scheme
based on switching linear dynamical modeling. Inspired by
work in audio-only inversion [8, 9] and building on our previ-
ous work we introduce a combined HMM and Kalman filtering
framework to predict the hidden articulatory state given the ob-
served sequence of audiovisual cues.

Weighted Evaluation Secondly, to evaluate our approach we pro-
pose a novel technique based on a weighted root mean square
(W-RMS) error, which uses Support Vector Machines (SVM)
to estimate the importance, i.e. the weights, of different articu-
lators in different phonemic contexts. It obtains the articulatory
parameter weights for each phoneme, based on each parameter’s
importance in discriminating the phoneme from the rest of the
phonemes in the language. An articulatory classification tech-
nique is used, and more importance is given to those articulatory
features which help in the classification. In this way, it provides
a single measurable quantity, which evaluates the performance
of the inversion technique, while taking into account, the signif-
icance of the articulatory parameters for the production ofeach
phoneme in the language.

Experiments are conducted in the audiovisual-articulatory MOCHA
database and results are presented and discussed. Ours is essentially
the first study to exploit the video recordings of this database.

2. SWITCHING LINEAR DYNAMIC
AUDIOVISUAL-TO-ARTICULATORY MODELING

In the Bayesian framework, audiovisual-to-articulatory speech in-
version at a specific timet may be viewed as the articulatory con-
figurationxt that maximizes the posterior probability of the articu-
latory parameters given the available audiovisual information up to
time t, i.e.,Yt = {y1, . . . ,yt}:

p(xt |Yt) =
p(yt |xt)p(xt |Yt−1)

p(yt |Yt−1)
. (1)

We have assumed that the observationyt at timet is dependent only
upon the current configurationxt . We may further have:

p(xt |Yt−1) =
∫

p(xt |xt−1)p(xt−1|Yt−1)dxt−1 (2)

by marginalizing out the previous statext−1. The parameter vector
xt (n elements) provides a proper representation of the vocal tract.

This representation could be either direct, including space coordi-
nates of real articulators, or indirect, describing a suitable articula-
tory model for example. The audiovisual parameter vectoryt (m
elements), comprising acoustic and visual parametersya

t andyv
t ,

should ideally contain all the vocal-tract related information that
can be extracted from the acoustic signal on the one hand and the
speaker’s face on the other. Formant values, linear spectral pairs
or MFCCs have been applied as acoustic parameterization. For the
face, space coordinates of key-points, e.g. around the mouth, could
be used or alternatively parameters based on a more sophisticated
face model (e.g., AAM). If we assume that:

xt = Axt−1 +wt (3)

yt = Cxt +vt (4)

wherew ∼ N(0,Q) andv ∼ N(0,R) independent noise processes
and furtherx0 ∼N(µµµ0,V0), then the maximum a posteriori solution
to this problem is given by the Kalman filter [17].

Intuitively, in the case of continuous speech, we expect thelin-
ear approximation of Eq. (4) to only be valid as an observation equa-
tion for limited time intervals corresponding to a specific phoneme,
or even a part of the phoneme, i.e., transition or steady state. The
same holds for the state space equation governing the articulatory
dynamics. It is thus expected that using different, phoneme-specific
(or inter-phoneme specific as in [8]) observation and state-space
equations will be more appropriate than using a global linear dy-
namical system. The proposed switching linear dynamical system
is:

xt = A1,cxt−1+A2,cxt−2 +Bcuc +wt (5)

yt = Ccxt +vt (6)

Essentially, there is a separate linear dynamical system correspond-
ing to each classc. For each such class, motivated by physiological
considerations, the articulatory configuration is modeledas a sec-
ond order autoregressive process, as in [8]. It is further considered
thatBc = I− (A1,c +A2,c) so that the mean value of the articulatory
configuration at each state would beuc. Noise covariancesQc,Rc
are also dependent on the statec.

Inference and learning in this switching linear dynamical mod-
eling framework can be handled via variational approximations as
described in [18]. In our current work, for simplicity, we accept
that segmentation of the audiovisual-articulatory data into sepa-
rate classes can be separately determined and is roughly related
to phonemic properties. Phoneme-dependent audiovisual Hidden
Markov Models (HMMs) are used for this purpose, as in [14]. Each
HMM state corresponds to a separate linear dynamical model as
described by Eqs. (5) and (6). The HMMs are trainable in the
conventional way, by maximum likelihood, given the sequence of
phoneme-labeled training audiovisual data. After a forcedstate
alignment procedure of the audiovisual data, the occupation proba-
bilities at each state/classc are estimated and so the training data
corresponding to each linear dynamical model can be gathered.
The state-space equation of each dynamical model is identified by
maximum-likelihood given the training articulatory vectors. The
parameters of the observation equations are determined by means
of reduced-rank Canonical Correlation Analysis, as in [19].

In this setting, inversion requires finding the optimal state se-
quence given the observations (sequences of audio, visual or au-
diovisual features), effectively determining switching between the
separate models. For each state-aligned observation vector, the cor-
responding articulatory vector is estimated via the state-specific lin-
ear dynamical system by Kalman filtering.

3. WEIGHTED EVALUATION

One part of estimating the importance of different articulators for
a particular phoneme, is finding out which of the articulators help
in distinguishing the phoneme from the rest of the phonemes in
the language. Keeping this in mind, it is possible to construct a
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Figure 1: Non-linear separation boundary for sampled patterns
from phoneme ‘/α/’ against sampled patterns from the remaining
phoneme classes. In this case, Channel 1 is the x-coordinates of the
lower lip and Channel 2 is the x-coordinates of the tongue tip

problem, to find the weights to be given to the articulators, in or-
der to provide the best classification of the phonemes. It canbe
looked at as a parameter selection problem, where you selectthe
best parameters that help the classification. There are several meth-
ods for dimension/parameter reduction in the literature, but param-
eter weighting using SVM is elegant and simple, and additionally,
provides individual weights for every parameter. There areseveral
methods of feature selection using SVM, as discussed in [20]. For
the current work we are using the SVM-Projection Recurrent Fea-
ture Elimination (SVM-Projection RFE) algorithm.

The SVM finds a hyperplane which separates the articulatory
space into two classes, separating a phoneme from all others, while
allowing for maximum possible error. The hyperplane can be in a
higher dimension than the data, as used in Radial Basis Functions
(RBF) or polynomial kernels. This means that the separationmay
not be linear in the dimension of the data. Thus, if the best sep-
arating hyperplane is obtained between a phoneme and the rest of
the phonemes in the language, it will orient itself so as to make the
maximum angle with the most discriminating dimension. By sort-
ing the angles made by the hyperplane with each of the articulatory
dimensions, we know which articulator is the most importantfor
the particular phone.

The algorithm is described in detail in [20].
SVM-Projection RFE algorithm: For every phone classc

versus the rest of the phoneme classes,

1. Train the SVM to get the separating hyperplaneg(Y ). Here,Y
are the data points from the two classes.

2. Compute the gradient▽g(Y )∀Y ∈ SV (support vectors)

▽g(Y ) = ∑
i∈SV

αiyi ▽Y K(Yi,Y ) (7)

Here,K is the Kernel function andα are the coefficients of the
Lagrange multipliers from which the hyperplane is constructed.

3. Computeρi

ρi =
|▽g(Yi)|

‖ ▽g(Yi) ‖2 ,∀i ∈ SV (8)

4. Compute the weights for the phoneme classw

w = ∑
i∈SV

ρi (9)

Figure 2: On the left, a sample image of the MOCHA fsew0
speaker’s face. The black dots are landmarks that have been auto-
matically localized by Active Appearance Modeling. On the right,
a figure showing the placement of the EMA coils that have been
tracked for MOCHA, i.e., on the lips, upper and lower incisors, on
the tongue tip, dorsum, and blade and on the velum. The coils on
the upper incisor and on the nose bridge are used to compensate for
head movement.

One problem is that the number of instances (frames) for a sin-
gle phoneme is much smaller than that of the remaining phonemes
and the SVM is always biased towards the class with higher num-
ber of patterns. Another problem is the presence of outliers, which
could cause the orientation of the hyperplane to change quite con-
siderably. To avoid these two problems, the data in both classes
(one phoneme versus the rest) are clustered using K-means cluster-
ing. The SVM is applied on the K cluster-centroids from each class.
Thus, outliers are filtered out and the number of patterns from each
class remains constant. The MATLAB package LS-SVM [21] was
used with an RBF kernel for this work. A typical separating hyper-
plane in a dimension higher than the data is shown in figure 1.

In this way, we get a phoneme-weight matrix,W , with elements
W n

k for 1≤ k≤C, whereC is the number of channels, and 1≤ n≤P,
whereP is the number of phoneme classes in the language.

For the true articulatory parametersY and estimated parameters
Ŷ , we can obtain the W-RMS error,Ewrms, for N testing samples as
follows

Ewrms =

P

∑
k=1

√
∑
i∈k

(Yi −Ŷi)T Dk(Yi −Ŷi)

N
(10)

where
Dk = diag(W 1≤n≤C

k ) (11)

Matrix D can be called the weighting matrix. The most infor-
mative features can probably correspond to a nonlinear combina-
tion, with contributions of more than one articulatory feature. This
could be linearly approximated by a non-diagonal weightingmatrix
D. However, in this study we ignore the correlation among features
and use a diagonal weighting matrixD.

4. EXPERIMENTS AND DISCUSSION

Audiovisual speech inversion experiments were performed in the
audiovisual-articulatory MOCHA database.

4.1 Database Description

The MOCHA database [22] is a data-rich and widely used pub-
licly available articulatory dataset, featuring audio, EMA (Electro-
magnetic Articulography) and EPG (Electropalatography) measure-
ments of speakers uttering 460 British TIMIT utterances. Ithas
been collected mainly for research in speech recognition exploiting
speech production knowledge. EMA recordings are at 500 Hz and
have been downsampled to 60 Hz. For the purpose of our experi-
ments we have also obtained the video footage of the speaker’s face
that was recorded during the original data acquisition process and
had been so far unused. Ours is thus the first study to exploit the
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Table 1: Weights obtained for some typical vowels
Phoneme /α/ /I/ /U/
Lower incisor (x) 0.02 0.07 0.05
Upper lip (x) 0.09 0.08 0.07
Lower lip (x) 0.07 0.00 0.13
Tongue tip (x) 0.04 0.02 0.02
Tongue blade (x) 0.01 0.08 0.13
Tongue dorsum (x) 0.00 0.10 0.13
Velum (x) 0.01 0.11 0.04
Lower incisor (y) 0.16 0.01 0.04
Upper lip (y) 0.00 0.04 0.06
Lower lip (y) 0.22 0.13 0.10
Tongue tip (y) 0.14 0.02 0.03
Tongue blade (y) 0.11 0.17 0.07
Tongue dorsum (y) 0.05 0.05 0.07
Velum (y) 0.04 0.08 0.04

visual aspect of the MOCHA data. Currently, we have access only
to the video recordings of the female subject ‘fsew0’, Fig. 2.

A practical issue we faced with the MOCHA corpus was the
lack of labeling for the video data. We successfully resolved this
problem by exploiting the already existing transcriptionsfor the au-
dio data and automatically matching the segmented audio data with
audio tracks extracted from the unprocessed raw video files.The ex-
tracted visual features were upsampled to 60 Hz to match the EMA
frame rate.

4.2 Audio and Visual Front-Ends

To represent the speech signal we use 16 Mel Frequency Cepstral
Coefficients (A). They are extracted from 35-ms pre-emphasized
(coefficient: 0.97) and Hamming windowed frames of the signal, at
60 Hz, to match the frame rate at which the visual and EMA data are
recorded. The 0-th MFCC coefficient is excluded. For the face, after
active apperance modeling as described in [14], we have utilized 15
features representing shape and 26 representing appearance, i.e. 41
AAM parameters in total, corresponding to 95% of the training set
variance.

4.3 Weighted Evaluation Scheme

By applying the scheme described in Section 3, we have estimated
the weights of the articulatory parameters in the MOCHA database.
Each data point in the SVM weight estimation algorithm is located
in the 14-dimensional articulatory space, corresponding to the x and
y coordinates of the 7 points on the articulators that are tracked by
EMA in MOCHA. The x direction corresponds to the horizontal
position, while the y direction corresponds to the verticalposition.

The weights obtained from the SVM-Projection RFE algorithm
give a number of interesting insights. As can be seen from Tables
1 and 2, the critical articulatory channels are the ones withmax-
imum weights. Most often, this critical channel is in accordance
with our intuition. For example, for the phonemes /α/, the vertical
position of the lower lip is most critical, while for phoneme/t/, it is
the tongue tip that is most crucial. However, a few obtained weights
don’t seem intuitive. For example, the horizontal positionof the
tongue blade seems to be the critical channel for the phoneme/U/
along with the horizontal positions of the lower lip and tongue dor-
sum. Similarly, the horizontal position of the velum and thevertical
position of the lower lip seem quite important for the phoneme /t/
from the obtained weights.

4.4 Introducing Articulatory Dynamical Constraints

For our experiments, we have set aside 10% of our data for testing
and used the rest for training. Our goal has been to evaluate the pro-
posed approach in comparison with audiovisual inversion using a
global linear dynamical system or using the HMM framework pro-
posed in [14]. For reference, we also present the inversion results
using the audio or visual only observations. The HMMs currently

Table 2: Weights obtained for some typical consonants
Phoneme /p/ /t/ /k/
Lower incisor (x) 0.05 0.09 0.05
Upper lip (x) 0.02 0.03 0.00
Lower lip (x) 0.04 0.07 0.03
Tongue tip (x) 0.03 0.04 0.01
Tongue blade (x) 0.04 0.02 0.02
Tongue dorsum (x) 0.02 0.10 0.06
Velum (x) 0.11 0.10 0.10
Lower incisor (y) 0.00 0.10 0.02
Upper lip (y) 0.34 0.06 0.07
Lower lip (y) 0.07 0.02 0.07
Tongue tip (y) 0.04 0.17 0.02
Tongue blade (y) 0.09 0.02 0.13
Tongue dorsum (y) 0.05 0.04 0.34
Velum (y) 0.08 0.09 0.07
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Figure 3: Audio, visual and audiovisual inversion evaluation using
the mean correlation coefficient between the measured and the pre-
dicted articulatory trajectories. Three cases are given for compari-
son, i.e., using a global linear dynamical system, using only HMMs
or the proposed switching linear dynamical model

used for the experiments are phoneme-based 1-state HMMs. Mod-
els with more states could not be sufficiently trained in our cur-
rent setup and so their performance slightly deteriorated.In total,
46 HMMs are trained, one for each phoneme that appears in the
MOCHA database and two more for breath and silence. Two non-
emitting states are also incorporated in each model, at the beginning
and at the end respectively, so that the transitions betweenmodels
can also be taken into consideration [23]. For the testing utterances,
their phonetic content is considered to be known and forced state
alignment is performed by applying the Viterbi algorithm. Mean
correlation coefficient and RMS difference are estimated between
the predicted and measured trajectories of articulatory coordinates.
As is shown in Fig. 3, accounting for articulatory dynamics in the
proposed switching scheme is beneficial to inversion. This is also
demonstrated in Table 3 where the corresponding mean RMS errors
are given. This time, the RMS error in the case when a global linear
dynamical system (LDS) is given for comparison. The weighted
versions of the RMS errors, especially for the audiovisual case,
give further evidence for the good quality of the inversion achieved.
Predicted versus reference trajectories of the y-coordinates of the
tongue tip and the lower incisor are given in Fig. 4 for a single
MOCHA utterance.

5. CONCLUSIONS AND FUTURE WORK

We have presented a framework to introduce dynamical constraints
to audiovisual speech inversion. The effectiveness of a switching
linear dynamical modeling scheme is investigated and promising re-
sults are acquired. Switching is achieved via an audiovisual HMM
state alignment process. Simplified learning and inferenceare dis-
cussed. We further describe a novel evaluation technique toprop-
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Figure 4: Predicted trajectories of the lower incisor and tongue tip
y-coordinates as found using the proposed audiovisual inversion
scheme. The corresponding measured trajectories are also given
in light colour for reference.

Table 3: Weighted and unweighted root mean square errors in (mm)
for three different inversion techniques, i.e., using a global lin-
ear dynamical system (LDS), using HMMs or using the proposed
switching linear dynamical modeling (SLDS) approach. The audio,
visual and audiovisual cases are given.

Root Mean Square Error
Unweighted Weighted

LDS HMM SLDS LDS HMM SLDS
Audio 2.15 1.76 1.78 2.17 1.66 1.66
Visual 2.29 1.56 1.62 2.32 1.49 1.54

Audiovisual 1.89 1.53 1.43 1.88 1.47 1.36

erly weigh inversion errors depending on their importance in the
production of a specific phoneme. For the introduction of thedy-
namical constraints we are currently looking into ways to better
train the models using limited datasets, which is the case when data
is segmented into multiple phoneme or state-of-phoneme classes,
for each of which a linear dynamical system has to be trained.In
parallel, a detailed analysis of the proposed evaluation scheme is in
progress to better assess its importance for speech inversion.
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