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ABSTRACT
This article presents a synthetic image set for validation of cell image
analysis algorithms. To address the problem of validation, we have
previously developed a simulation framework for cell population im-
ages. Here, we apply the simulation for generating a benchmark
set of cell images with varying characteristics. The value of sim-
ulation is in the ground truth information known for the generated
images. Traditionally, the ground-truth has been obtained through
tedious and error-prone manual segmentation of the images. While
such approach cannot be fully replaced, we propose to use the simu-
lated images for benchmarking along with manually labeled images,
and present case studies of tuning and testing a cell image analysis
algorithm based on simulated images.

1. INTRODUCTION

Cell image segmentation can be considered as a binary classifica-
tion, where the pixels are classified as background and region of in-
terest, i.e., cells. Inherently, such method (classifier) for performing
the segmentation that would be globally optimal in different analysis
tasks does not exist [1]. This fact leads to the current situation, where
plenty of novel algorithms and variations of old ones are tuned for
emerging applications. Algorithm development and tuning is needed
especially in the field of biological or biomedical studies, where var-
ious kinds of cell populations are studied under different conditions,
using different dye labels. While such tuning can in some cases be
considered as normal engineering work, the validation of proposed
algorithms still remains problematic, especially in the case of high-
throughput measurements [2].

Manual analysis performed by an expert in the field of study is
a commonplace as the basis of validation. The usual validation pro-
cedure includes a set of representative images that have been labeled
by one or more experts. The labeled set is then used as a reference to
which the results given by the developed analysis methods are com-
pared. Given that the expert labeling has been performed rigorously,
the procedure is valid but sometimes exhaustively laborious. In such
cases where the decision requires special knowledge, expert analysis
is the only way of validating the results.

Manual analysis, however, always includes uncertainty. Dif-
ferent people may have different criteria for making the decisions.
For example in the case of cell images, one expert may label a
bright spot as highly fluorescent cell, whereas another may consider
it as noise or stain residue. Such discrepancies introduce between-
analyst-variation to the results. In addition, bias between the analysts
is possible, for example if different experts have different criteria for
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the minimum size of objects to be considered as cells. Another type
of uncertainty is the within-analyst variation. Especially in routine
tasks performed for a large number of samples, such as counting
cells in images, the result given by a single analyst may vary. This
kind of variation is even more obvious in laborious and non-trivial
tasks, such as segmentation of cells, where the pixelwise result will
almost certainly be different between trials made by the same person.

Automated image analysis has been presented as a solution for
getting rid of the tedious task and the variation caused by analysts,
see e.g., [3, 4, 5]. The automated image analysis algorithms are usu-
ally reproducible in the sense that they always produce the same
output for the same input. They also treat all images in the same
manner, without subjective bias or random errors. This does not
mean that the result would be unbiased, but the possible bias will
also be consistent. Importantly, the same facts concern also synthe-
sis of ground-truth. When using simulated ground-truth images as
reference, we exclude the possibility that the expert analyst would
create bias or variance to the reference results. This helps in avoid-
ing the kind of situation, where the analysis algorithm is tuned to
follow the possible errors made by expert analyst into the reference
results.

In our previous studies, we have introduced methods for sim-
ulating fluorescence microscopy images of cell populations [6, 7].
With the simulation platform [7], it is possible to generate arbitrar-
ily large image sets with realistic characteristics. These images may
be used for validation of image analysis algorithms, cell enumera-
tion and segmentation in particular. Since the user has full control
over the parameters, it is possible to generate images with varying
properties, resembling for example population properties or growth.
The benefit of parameter tuning is that it allows also incorporation
of expert knowledge into the simulation [8].

In this article, we present a benchmark image set for validating
cell image analysis algorithms. The purpose is to create a set that
would be useful in developing and testing of novel cell image anal-
ysis algorithms. By providing a readily made set we provide possi-
bility to compare their results with a common set, in other words to
use the set as a benchmark. Moreover, since the image sets do not
depend on a certain platform or require the use of SIMCEP simula-
tor [7], the current study extends the group of potential users of the
simulated images.

2. MANUAL APPROACH

The traditional approach for validating an image analysis algorithm
is to use manual analysis. By analyzing manually a set of images,
a ground truth is obtained. However, it is a well known fact that
manual analysis produces variation to the results [9, 10, 2]. Thus,
instead of a single ground truth, the results are actually a set of opin-
ions. Here we present a case study, where three individual analysts
outline cells from fluorescence microscopy images.

The images were acquired from human embryonic stem cell
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derived neural precursor cell cultures. The fixed and immunohis-
tochemically stained cells were mounted with Vectashield mount-
ing medium containing DAPI (nuclear stain, Vector Laboratories)
and imaged using fluorescence microscope (Olympus IX51S8F-2)
equipped with a fluorescence unit and camera (Olympus DP71).
Only the nuclear images of two separate sets, named here as image
set 1 and 2, were taken further into the case study.

Three analysts performed manual segmentation for each of the
images. In more detail, the perimeter of each nuclei was outlined
by using the Adobe Photoshop software (Adobe Systems Inc, CA,
USA). The result corresponds to the typical output of image seg-
mentation, from which cell-level parameters related to the size and
morphology can be calculated. Here, we calculated the compactness
and solidity values for each object. Both compactness and solidity
measure the circularity of the objects in slightly different manner.
Compactness is defined as follows [11]:

Compactness =

√
4
π Area

MaximumDiameter
,

where the maximum diameter is obtained from an ellipse fitted into
the object area. Solidity is defined as [11]

Solidity =
Area

ConvexArea
,

where the convex area is given as the area of convex hull, that is, the
smallest convex set containing the object pixels.
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Fig. 1: Histograms of compactness measures calculated from image
set 1 segmented manually by M1, M2 and M3, and quantile-quantile
plots of the compactness values between the three analysts show dif-
ferences between the results. A few clear outliers are left outside the
plots.

The results for compactness measure for image set 1 given by
three analysts M1, M2 and M3 are shown as histograms in Figure
1. In addition, the quantile-quantile plots between the three results
are illustrated in Figure 1. Due to limited space, we exclude similar
plots for the solidity measure and for image set 2. The graphs show
that the results do not fully coincide; histograms between analyzers
look different, and the quantile-quantile plots deviate from a straight
line indicating that the distributions are dissimilar. Thus, we used
Kolmogorov-Smirnov test [12] to find out if the result differ signifi-
cantly. The results of the test are given in Table 1. For image set 1,
both compactness and solidity results differ significantly in two out
of three comparisons between analysts. For image set 2, the results

between analysts M2 and M3 did not show significant difference for
either measures, whereas the rest of the comparisons showed differ-
ence. Moreover, the estimates of the total number of cells in the six
images vary between the analysts, but a rough compromise is around
800 cells. Here, only individual cells not touching to another are
taken into the analysis. Thus, one source for the differences is that
cells located close to each other can be marked as touching or com-
pletely separated. Obviously different people had different criteria
for segmentation. These results show how significant the variation
between the results given by different persons may be, and under-
lines the unreliability present in manually obtained reference.

Table 1: Results (p-values) of Kolmogorov-Smirnov test between
the manual analysis results. The result pairs showing significant
(0.01) difference are marked with boldface.

Image set 1 Image set 2
Sets Compact. Solid. Compact. Solid.

M1 M2 3.8×10−4 2.2×10−6 0.004 ∼ 0
M1 M3 0.246 1.2×10−7 0.003 ∼ 0
M2 M3 2.4×10−6 0.081 0.994 0.071

Finally, a point worth mentioning is the time needed for generat-
ing the manual segmentation results. It took hours of time to get the
results by three persons, even though the number of images per per-
son was only six, having altogether around 800 cells. Based on this
case study on manual segmentation, we conclude that since man-
ual analysis does not necessarily produce an unquestionable ground
truth, we may as well use simulation to produce images with varying
properties.

3. BENCHMARK DATA

Benchmark datasets are commonly used in pattern recognition, and
increasingly also in image analysis, see [8] for a list of examples.
The benefit of benchmark data is that one is able to compare results
with those of other approaches. Another benefit, which we consider
as the primary reason for generating a benchmark of synthetic cell
population images is the ease of getting a labeled ground truth set
that can be used for algorithm development and validation. It may be
that the benchmark data does not exactly fit to the addressed research
problem, but it may still provide beneficial information about the
performance of the algorithm. We believe this is the case also with
our cell images. In this Section we will describe essential parameters
of the simulation process, and properties of the benchmark datasets.

3.1. Simulation

The proposed benchmark data set is generated using the previously
introduced simulator for fluorescent cell populations [7], which is
strongly based on parameterized random models for cell shapes.
Other approaches for cell image synthesis can be found from, e.g.,
[8, 13, 14]. Although the detailed description of the simulation is
published previously, we here describe the simulation parameters
and methods mostly used for characterizing the benchmark images.
However, for more comprehensive understanding of the simulation
methodology, we recommend to see [7].

Similarly as the real cells, the simulated cells consist of differ-
ent components, such as nuclei, cytoplasm, and intracellular objects.
The features mainly characterizing these components are the shape
and size. The shape is simulated using a random model, which is
controlled with parameters defining the level of distortion and size
of the generated shapes. First, a random polygon with k vertices and
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scale r is generated as

xi(θi) = r[U(−α,α)+ cos(θi +U(−β ,β ))]
yi(θi) = r[U(−α,α)+ sin(θi +U(−β ,β ))], (1)

for i = 1, ...,k, where θi ∈ [0,2π] is the polar angle, and U(a,b) a
uniform distribution on the interval [a,b]. Finally, the vertices are
connected with spline interpolation. Now the parameters α and β
control the randomness of the shape. With varying parameter values,
a large scale of objects with very different shape characteristics can
be generated.

When considering microscope images on a level of cell popu-
lations, the disposition of cells is a very fundamental feature. For
example, the cells can be spatially situated very sparsely, or they can
be overlapping with each other and form clusters, which is a more
typical case. In simulation, each generated cell is either placed on
the image uniformly or assigned into a specific cluster with proba-
bility pc. The clustered cells are located around the cluster centers
according to a normal distribution. Since especially the overlapping
cells pose challenges for automated image analysis algorithms, the
simulator provides a parameter for controlling this property in the
simulated images. When considering the set of pixels Ri defined by
a simulated cell, the relative amount of overlap Li j caused by the
region of pixels R j of another cell can be measured by

Li j =
|Ri∩R j|
|Ri| , i 6= j,

where the operator |.| is the cardinality of a set, and Li j ∈ [0,1].
Thereby, the maximum amount of allowed overlap can be controlled
with parameter L (e.g., L = 1 overlapping is not limited, L = 0, no
overlap is allowed).

Typically, microscope images suffer from errors and artifacts
originating from the imaging system. For example, nonuniform illu-
mination can significantly degrade the resulting image by generating
a varying intensity to the image background. The effect of nonuni-
form illumination is simulated by adding a second degree polyno-
mial on the image. The characteristics of the illumination are con-
trolled with parameters defining the horizontal and vertical illumi-
nation centers, and the illumination energy Em. Information about
other measurement errors is available in the original publication [7].

3.2. Benchmark sets

The three benchmark sets of synthetic cell population images de-
scribed in the following can be downloaded from:
http://www.cs.tut.fi/sgn/csb/simcep/benchmark.
All sets contain simulated images and corresponding ground truth
images where objects are represented as binary masks. It is planned
that in the future the variety of benchmark sets will be increased to
cover also other interesting parameters. The reader is also encour-
aged to use the SIMCEP simulator; by tuning the parameters it is
possible to generate data for specific research problems.

3.2.1. Clustering with increasing probability

The first image set consists of nuclei images with five different val-
ues of clustering probabilities. For each value of clustering proba-
bility we simulate 20 images, each of which contains 300 objects.
See Table 2 for relevant parameter values of the first image set. The
first parameter settings produce images with no overlap (L = 0) or
clustering of cells (pc = 0), see the leftmost image in Figure 2. The
four other settings do not limit overlapping (L = 1), and introduce
overlapping with increasing probability, which is clearly visible in
Figure 2. The set provides test material for object segmentation and
separation with varying level of difficulty.

Table 2: Set 1: clustering with increasing probability.
Parameter Value

Images / parameter settings 20
Objects / image 300

Probability of clustering 0, 0.15, 0.30, 0.45, 0.6
Background energy 0.25

Autofluorescence energy 0.25
Overlap limit L 0, 1, 1, 1, 1

3.2.2. Cells with nuclei, cytoplasm and subcellular objects

The second benchmark set consists of multichannel images, where
nuclei, cytoplasm, and subcellular components have each been la-
beled into their own channels. Nuclei usually appear as rather com-
pact, roundish objects, whereas the cytoplasm shape is more irregu-
lar. However, both nuclei and cytoplasm, as well as the small sub-
cellular objects can be simulated with the same shape model given
in Equation 1 by tuning the parameters such that size and random-
ness of the shape increase when cytoplasm is generated. The most
important parameters are given in Table 3.

The set has three-channel images of two conditions, one with
good quality and one with lower quality, meaning that overlapping
and noisy background are introduced. Figure 3 illustrates one im-
age from both conditions. The images can be used either as three-
channel images by using all channels, or channel by channel for sep-
arate analysis of nuclei, cytoplasm, and subcellular objects. Nuclei,
cytoplasm, and subcellular components all have their own binary
mask for ground truth.

(a) (b)

Fig. 3: Multichannel images with nuclei, cytoplasm, and subcellular
components each stained for different channels without disturbing
background (a) and with background illumination and slight over-
lapping introduced (b).

3.2.3. Cells from two populations

The purpose of this set is to serve as a test case for class discrimi-
nation. The two populations have slightly different characteristics,
one having rather regular and round shapes and the other having
more irregular shapes with more variation. Altogether 20 images of
each population are available, which could, e.g., be used in training.
Besides class determination, these images are potentially useful for
testing feature selection and accuracy of segmentation based on de-
sired features. Example images from both populations are shown in
Figure 4. This time the most crucial parameters are related to shape
and size, as listed in Table 4.
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Fig. 2: Example images from sets with five different overlapping probabilities. The probability of clustering increases from left to right such
that in the first image the probability is zero and in the last image the probability is 0.60.

Table 3: Set 2: Cells with nuclei, cytoplasm, and subcellular ob-
jects with (a) no overlap, and (b) slight overlap and disturbing back-
ground.

Parameter Value
Images / parameter settings 20

Cells / image 40
Subcellular objects / cell 3
Probability of clustering (a) 0 (b) 0.1

Background energy (a) 0.15 (b) 1.0
Autofluorescence energy (a) 0.05 (b) 0.25

Overlap limit L (a) 0 (b) 1

(a) (b)

Fig. 4: Two populations with slightly different characteristics. (a)
Objects are fairly round and symmetric. (b) Objects are slightly
smaller, and the boundary is more irregular.

4. EXPERIMENTAL RESULTS

The comparison of the segmentation result and generated ground
truth can be done in pixel-level, for example by using methods
for quantifying discrepancy between segmentation result and binary
ground truth mask presented in [15]. Here we show how the database
images can be used for tuning the performance of CellC enumeration
software [4]. CellC is a software tool designed for segmentation and
object counting from fluorescence images of microbial populations.
The current version CellC 1.2 enables also extraction of a few shape
features. The first database set from Section 3.2.1 with 20× 5 nu-
clei images, each having 300 objects, was used for the experiment.
First, the parameters of CellC were slightly changed from the de-
fault settings in order to obtain a satisfactory result for the images
with clustering probability set to zero. This situation resembles a
case where algorithm development is done with images having well
separable objects. As a result (black line in Figure 5 (a)), practi-

Table 4: Set 3: Cells from two populations; (a) compact, roundish
cells, and (b) more irregularly shaped cells.

Parameter Value
Images / parameter settings 20

Cells / image 100
Radius (a) 12 (b) 11

Shape parameters α and β (a) 0.1, 0.1 (b) 0.2, 0.2

cally perfect results were obtained for the set with no clustering and
overlapping. By running the analysis with similar settings for the
rest of the set with increasing probability for clustering and overlap-
ping allowed, severely degraded results were obtained. This is due
to too conservative settings for cutting cells with suspicious shape,
leaving substantial amount of ambiguous objects covering more than
one ground truth object in the result.

In images where overlap is allowed (pc > 0), part of the cells
are so heavily overlapping that automated separation is almost im-
possible. Moreover, tuning the parameters of CellC such that almost
all suspicious cells would be split will lead to oversegmentation of
normal cell shapes also. This would lead to intolerably large amount
of false objects, when cells are split into parts. Thus, instead of opti-
mizing the number of detected objects, we aimed at finding a suitable
trade-off between under and oversegmentation. The result of tuning
the performance of CellC for the sets with clustered and overlapping
cells can be seen as the gray line in Figure 5 (a). The cell enumer-
ation results presented here raise the question about true detection
accuracy. Here we assume that the number of cells is the quantity of
interest. However, the cases of under and oversegmentation should
be taken into account such that, for example, a falsely split object
would not compensate for a missed object. This would require a
quantitative measure taking into account different error cases, which
we will leave as the topic of another study.

Another case study demonstrates how the images in the third
database set from Section 3.2.3 can be used for testing feature ex-
traction. The images of two populations with slightly different char-
acteristics were analyzed with CellC software. The area, length, and
solidity features were chosen as the output, and the extracted fea-
tures are visualized as boxplots in Figure 5 (b). The outlier values
are not shown in the boxplot visualization. The results show that
the segmentation has been accurate enough for revealing differences
between populations. For example, the changes in the simulation
parameter values (radius, shape) between the two synthetic popu-
lations have lead to differences in the measured size, length, and
solidity. Furthermore, the boxplots for solidity feature suggest that
other features would probably be needed, if the aim would be to dis-
criminate objects based on shape descriptors. The database images
could be used for testing and validation, for example, when develop-
ing new features for discriminating the differences between smooth
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Fig. 5: (a) Tuning the performance of the CellC cell enumeration software with the database images. Each image has 300 objects. Black
line shows the result when performance is tuned for well separable cells (L = 0), and gray line shows the result for sets with clustered and
overlapping objects when parameter has been tuned with images having overlapping cells (L = 1, clustering probability pc varies from 0.15 to
0.60). (b) Features for two populations extracted by CellC illustrated as boxplots. There were 20 images for each population. Outlier values
are not shown in boxplots.

and slightly more irregular objects.

5. CONCLUSIONS

In this article, we presented a benchmark image set of simulated flu-
orescence microscopy images. By providing the image sets we of-
fer a platform independent, easily accessible way for obtaining and
using simulated cell population images. The benchmark data can
be used for validation of, e.g., cell counting and feature extraction
algorithms. The use of synthetic images was motivated by show-
ing how manual segmentation may produce potentially inaccurate
ground-truth data. The presented case studies demonstrated the use-
fulness of benchmark data in testing cell counting and feature ex-
traction. The provided benchmark sets serve as a starting point for
validation of analysis algorithms, but as the simulation framework is
developed further, more sets can be added. In addition, the simula-
tor is freely available and can be used for generating data sets that
support other research topics.

Simulation of complex objects, such as cells, is a very challeng-
ing task. Since natural variation can not be fully included in a model,
there will always be a limit in how natural the result will be. We have
shown that in some cases simulation may provide valuable infor-
mation that would be very hard to obtain with traditional approach.
However, we are not suggesting that manual validation should be
totally replaced by simulated images, but quite the opposite: there
should also be more publicly available databases for manually seg-
mented cell images. In the future, the benchmark data could be used
for, e.g., comparing the accuracy of manual segmentation and auto-
mated analysis against the simulated ground truth.
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