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ABSTRACT

We propose a technique for estimating doubly selective channels
within multicarrier communication systems. The new channel esti-
mation technique uses the methodology of compressed sensing for a
reduction of the number of pilots, and it employs a basis expansion
that is optimized with a criterion of maximum sparsity. Simulation
results demonstrate that the optimized basis yields significant per-
formance gains relative to a previously proposed technique.

1. INTRODUCTION

We consider the estimation of doubly selective channels within mul-
ticarrier (MC) communication systems. Conventional methods for
channel estimation (e.g., [1]) do not take advantage of the inherent
sparsity of the channel. A method that exploits channel sparsity for
a reduction of the number of pilots (and, thus, an increase of spec-
tral efficiency) was proposed by the authors in [2]. This method is
based on the recently introduced methodology of compressed sens-
ing (CS), which enables the efficient reconstruction of sparse sig-
nals from a very limited number of measurements (samples) [3, 4].

In this paper, we generalize the CS-based channel estimation
method of [2] by including a sparsity-improving basis expansion
of the channel’s time-frequency coefficients. The improved sparsity
is due to a reduction of leakage effects that limit the performance of
the method of [2]. We propose an iterative basis optimization proce-
dure that aims to maximize sparsity, and we demonstrate significant
performance gains obtained with the optimized basis.

The paper is organized as follows. After a description of the MC
system model in Section 2, Section 3 analyzes the sparsity of the
channel’s delay-Doppler representation and introduces the basis ex-
pansion. The generalized CS-based channel estimation method is
developed in Section 4. Section 5 proposes an iterative procedure
for optimizing the basis. Finally, simulation results in Section 6
assess the performance gains achieved with the optimized basis.

2. MULTICARRIER SYSTEM MODEL

We assume a pulse-shaping MC system for the sake of generality
and because of its advantages over conventional cyclic-prefix (CP)
OFDM [5, 6]; however, CP-OFDM is included as a special case.
The complex baseband domain is considered throughout.

2.1 Modulator, Channel, Demodulator

The (discrete-time) transmit signal generated by the MC modulator
is given by

s[n] =
L−1

∑
l=0

K−1

∑
k=0

al,k gl,k[n] , (1)

where K and L denote the numbers of subcarriers and transmitted
MC symbols, respectively; al,k (l = 0, . . . ,L−1; k = 0, . . . ,K−1)

denotes the data symbols; and gl,k[n] , g[n−lN]e j2π k
K

(n−lN) is a
time-frequency shifted version of a transmit pulse g[n] (N ≥K is
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the symbol duration). Using an interpolation filter with impulse re-
sponse f (t), s[n] is converted into the continuous-time signal s(t) =
∑∞

n=−∞ s[n] f (t−nTs), where Ts is the sampling period. At the output
of the doubly selective wireless channel, we obtain the signal

r(t) =
∫ ∞

−∞
h(t,τ)s(t−τ)dτ + z(t) .

Here, h(t,τ) is the channel’s time-varying impulse response and z(t)
is white complex Gaussian noise. At the receiver, r(t) is converted
into the discrete-time signal r[n] =

∫ ∞
−∞ r(t) f ∗(t−nTs)dt. Subse-

quently, the MC demodulator calculates

rl,k = 〈r,γl,k〉 =
∞

∑
n=−∞

r[n]γ∗l,k[n] (2)

for l = 0, . . . ,L−1 and k = 0, . . . ,K−1. Here, γl,k[n] , γ [n −
lN]e j2π k

K
(n−lN) with a receive pulse γ [n]. Finally, the rl,k are equal-

ized and quantized according to the data symbol alphabet. For CP-
OFDM [7, 8], g[n] is 1 on [0,N−1] and 0 otherwise, and γ [n] is 1 on
[N−K,N−1] and 0 otherwise (N−K ≥ 0 is the CP length).

The following relation between the discrete-time signals s[n] and
r[n] is easily established:

r[n] =
∞

∑
m=−∞

h[n,m]s[n−m] + z[n] , (3)

with the discrete-time time-varying impulse response

h[n,m] =
∫ ∞

−∞

∫ ∞

−∞
h(t +nTs,τ) f (t−τ +mTs) f ∗(t)dt dτ , (4)

and complex Gaussian discrete-time noise z[n].

2.2 System Channel

Combination of (2), (3), and (1) yields the system channel subsum-
ing the MC modulator, the physical channel, and the MC demod-
ulator. Neglecting intersymbol and intercarrier interference (which
is justified if g[n] and γ [n] are properly designed), we obtain

rl,k = Hl,k al,k + zl,k , (5)

for l = 0, . . . ,L−1 and k = 0, . . . ,K−1. Here, zl,k , 〈z,γl,k〉, and the

Hl,k can easily be expressed in terms of g[n], h[n,m], and γ [n] [5].

Let us suppose that γ [n] = 0 outside [0,Lγ ]. To compute rl,k in

(2), we must know r[n] for n = 0, . . . ,Nr−1, where Nr , (L−1)N +
Lγ +1. Assuming h[n,m] to be causal with maximum delay at most
K−1, the system channel coefficients Hl,k can then be expressed as
[2]

Hl,k =
K−1

∑
m=0

Nr−1

∑
i=0

F [m, i]e− j2π( km
K
− Nli

Nr
), (6)

where

F [m, i] , Sh[m, i] A∗
γ ,g

(

m,
i

Nr

)

(7)

with the discrete-delay-Doppler spreading function [9] Sh[m, i]

, 1
Nr

∑
Nr−1
n=0 h[n,m]e− j2π in

Nr and the cross-ambiguity function [10]
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Aγ ,g(m,ξ ) , ∑∞
n=−∞ γ [n] g∗[n−m]e− j2πξ n. Using the approxima-

tion Nr ≈LN (which is exact for CP-OFDM), we can rewrite (6) as
the 2-D DFT

Hl,k =
K−1

∑
m=0

L−1

∑
i=0

F̃ [m, i]e− j2π( km
K
− li

L
) , (8)

with the “pre-aliased” version of F [m, i]

F̃ [m, i] ,
N−1

∑
q=0

F [m, i+qL] , i = 0, . . . ,L−1 . (9)

2.3 Pilot-Based Channel Estimation

We assume that the channel’s maximum (discrete) delay is smaller
than D, i.e., h[n,m] = 0 for m ≥ D, where D ≤ K is chosen such

that ∆K , K/D is an integer. This restricts the support of F̃ [m, i]
to [0,D−1]× [0,L−1]. Because of (8), Hl,k can then be subsam-
pled with respect to the frequency index k: it is uniquely specified

by its values on the subsampled grid G , {(l,k) = (l,k′∆K) : l =
0, . . . ,L−1; k′= 0, . . . ,D−1}, and (8) entails the relation

Hl,k′∆K =
D−1

∑
m=0

L−1

∑
i=0

F̃ [m, i]e− j2π( k′m
D
− li

L
), k′ = 0, . . . ,D−1 . (10)

Note that we also allow D = K, in which case ∆K =1.
Suppose that pilot symbols al,k = pl,k are transmitted at time-

frequency positions (l,k) ∈ P, with P ⊂ G . From (5), rl,k =
Hl,k pl,k + zl,k for (l,k)∈P . The receiver calculates channel co-

efficient estimates Ĥl,k at the pilot positions according to

Ĥl,k ,
rl,k

pl,k
= Hl,k +

zl,k

pl,k
, (l,k) ∈ P . (11)

Thus, these Hl,k are known up to the additive noise terms zl,k/pl,k .

For calculating channel estimates Ĥl,k on the whole subsampled

grid G from the Ĥl,k|(l,k)∈P , some interpolation technique is usu-

ally employed. However, here we will extend the approach based
on CS introduced in [2]. We first need to develop a sparse represen-
tation of the channel.

3. SPARSE CHANNEL REPRESENTATION

3.1 Delay-Doppler Sparsity

We model the doubly selective wireless channel by P propagation
paths corresponding to P specular scatterers with delays τp and
Doppler frequency shifts νp for p = 1, . . . ,P. Thus,

h(t,τ) =
P

∑
p=1

ηp δ (τ−τp)e j2πνpt , (12)

where ηp is the complex amplitude factor of the pth path. The
discrete-time impulse response (4) then becomes

h[n,m] =
P

∑
p=1

ηp e j2πνpnTs

∫ ∞

−∞
e j2πνpt f (t−τp +mTs) f ∗(t)dt

≈
P

∑
p=1

ηp e j2πνpnTs φ
(

m− τp

Ts

)

, (13)

where φ(x) , f (t)∗ f ∗(−t)|t=Ts x. The approximation (13) is good
if the νp are not too large and if f (t) decays sufficiently fast.

Furthermore, extending the analysis performed in [2] for an ide-
alized (sinc-type) filter f (t), the discrete-delay-Doppler spreading
function is obtained as

Sh[m, i] =
P

∑
p=1

ηp e
jπ(νpTs− i

Nr
)(Nr−1) Λ

(

m− τp

Ts
, i−νpTsNr

)

, (14)

with
Λ(x,y) , φ(x)ψ(y) , (15)

where ψ(y) , 1
Nr

e
jπ y

Nr
(Nr−1)

∑
Nr−1
n=0 e

− j2π y

Nr
n =

sin(πy)
Nr sin(πy/Nr)

. The

function Λ(x,y) describes the leakage effect that is due to the finite
bandwidth (≈ 1/Ts) and the finite blocklength (Nr ≈ LN).

We will now study the sparsity of Λ(m − τp/Ts, i −νpTsNr).
To this end, we first consider the energy of those samples of
φ(m− τp/Ts) whose distance from τp/Ts is greater than ∆m ∈
{1,2, . . .}. Let M denote the set of all integers m ∈ Z with
|m− τp/Ts| > ∆m. We assume that φ(x) exhibits a polynomial de-

cay,1 i.e., |φ(x)| ≤ C (1 + |x/x0|)−s with s≥ 1, for some positive
constants C and x0. We then have the bound

∑
m∈M

∣

∣

∣
φ
(

m− τp

Ts

)∣

∣

∣

2
≤ C2 ∑

m∈M

(

1+
∣

∣

∣

m− τp/Ts

x0

∣

∣

∣

)−2s

≤ 2C2
∞

∑
m=∆m

(

1+
m

x0

)−2s
≤ 2C2

∫ ∞

∆m−1

(

1+
x

x0

)−2s
dx

=
2C2x0

2s−1

(

1+
∆m−1

x0

)−2s+1
,

which shows that the energy of φ(m−τp/Ts) outside the interval
[⌊τp/Ts −∆m⌋,⌈τp/Ts + ∆m⌉] decays polynomially of order 2s−1
with respect to ∆m. In [2], an analogous result was obtained
for the energy of ψ(i −νpTsNr) outside the interval [⌊νpTsNr −
∆i⌋,⌈νpTsNr + ∆i⌉] (modulo Nr). There, the decay with respect to
∆i is only linear (polynomial of order 1).

From these decay results, it follows that Λ(m−τp/Ts, i−νpTsNr)
can be considered as an approximately sparse function. We can
therefore model Λ(m−τp/Ts, i−νpTsNr) as NΛ-sparse, i.e., at most
NΛ values of Λ(m−τp/Ts, i−νpTsNr) are nonzero, with an appro-
priately chosen sparsity parameter NΛ. It then follows from (14) that
Sh[m, i] is PNΛ-sparse, and the same is true for F [m, i] in (7) and for

F̃ [m, i] in (9). The CS-based channel estimation method of [2] ex-
ploits this sparsity. Unfortunately, NΛ cannot be chosen extremely
small because of the strong leakage characterized by Λ(x,y), which
is typically due to the slowly decaying factor ψ(i−νpTsNr).

3.2 Basis Expansion

In order to improve the sparsity, we next introduce a 2-D basis ex-
pansion of the channel coefficients Hl,k′∆K into orthonormal basis

functions um,i[l,k
′]:

Hl,k′∆K =
D−1

∑
m=0

L−1

∑
i=0

αm,i um,i[l,k
′] . (16)

Clearly, (16) generalizes (10), which is a special case given by the
orthonormal 2-D discrete Fourier basis

um,i[l,k
′] =

1√
DL

e− j2π( k′m
D
− li

L
) . (17)

In that case, the expansion coefficients are αm,i =
√

DL F̃ [m, i]. The

advantage of (16) is the possibility of using a basis um,i[l,k
′] for

which the coefficient function αm,i is sparser than F̃ [m, i] (which

uses the Fourier basis).
We will use a basis that is adapted to the channel model (12). We

can conclude from (12) that the coefficient function αm,i should be
sparse for the single-scatterer channel

h(τp,νp)(t,τ) , δ (τ−τp)e j2πνpt , (18)

for all possible choices of τp ∈ [0,τmax] and νp ∈ [−νmax,νmax].
Inserting (18) into (7) and using (9) and (10), we obtain

Hl,k′∆K =
D−1

∑
m=0

φ
(

m− τp

Ts

)

B(νp)[m, l]e− j2π k′m
D (19)

1This includes (i) the ideal lowpass filter f (t) =
√

1/Ts sinc(t/Ts) with

sinc(x) ,
sin(πx)

πx
; here φ(x) = sinc(x) and s = 1; and (ii) a root-raised-cosine

filter with roll-off factor ρ; here φ(x) = sinc(x) cos(ρπx)/[1−(2ρx)2 ] and
s = 3.
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with

B(νp)[m, l] ,
L−1

∑
i=0

N−1

∑
q=0

ψ(νp)(i+qL) A∗
γ ,g

(

m,
i+qL

Nr

)

e j2π li
L , (20)

where ψ(νp)(i) , e
jπ(νpTs− i

Nr
)(Nr−1)ψ

(

i−νpTsNr

)

. We now con-

sider a 1-D basis expansion of B(νp)[m, l] with respect to l, i.e.,

B(νp)[m, l] =
L−1

∑
i=0

α̃
(νp)
m,i bm,i[l] , (21)

with an m-dependent basis {bm,i[l]}i=0,...,L−1 that is orthonormal

(i.e., ∑
L−1
l=0 bm,i1 [l]b

∗
m,i2

[l] = δ [i1− i2] for all m) and does not depend

on the value of νp in B(νp)[m, l]. The idea is to choose this 1-D basis

such that the coefficient vector
[

α̃
(νp)
m,0 · · · α̃

(νp)
m,L−1

]T
is sparse for all

m and all νp ∈ [−νmax,νmax].
Substituting (21) back into (19), we obtain

Hl,k′∆K =
D−1

∑
m=0

L−1

∑
i=0

φ
(

m− τp

Ts

)

α̃
(νp)
m,i bm,i[l]e

− j2π k′m
D .

This can now be identified with the 2-D basis expansion (16), i.e.,

Hl,k′∆K = ∑
D−1
m=0 ∑

L−1
i=0 α

(τp,νp)
m,i um,i[l,k

′], with the orthonormal 2-D

basis

um,i[l,k
′] ,

1√
D

bm,i[l]e
− j2π k′m

D

and the 2-D coefficient function α
(τp,νp)
m,i ,

√
D φ

(

m − τp

Ts

)

α̃
(νp)
m,i .

The basis {um,i[l,k
′]} agrees with the 2-D Fourier basis (17) with

respect to k′, but is different with respect to l because e j2π li
L is re-

placed by bm,i[l]. This potentially improves the poor decay of ψ(y)

observed in Section 3.1. Thus, the coefficient functions α
(τp,νp)
m,i are

potentially sparser than if the 2-D Fourier basis is used (this as-
pect will be pursued in Sections 5 and 6). When the channel com-
prises P scatterers as in (12), the coefficient function is αm,i =

∑P
p=1 ηpα

(τp,νp)
m,i . If each α

(τp,νp)
m,i is S-sparse, αm,i is PS-sparse.

4. CS-BASED CHANNEL ESTIMATION

We now combine pilot-based channel estimation and the basis ex-
pansion discussed above with CS.

4.1 The Measurement Equation

Consider the functions Hl,k′∆K and um,i[l,k
′] (l = 0, . . . ,L−1; k′=

0, . . . ,D−1) as L × D matrices and let h , vec
{

Hl,k′∆K

}

and

um,i , vec
{

um,i[l,k
′]
}

denote the vectors of length DL obtained by

stacking all columns of these matrices (e.g., h = [h1 · · · hDL]T with
hk′L+l+1 = Hl,k′∆K). We can then rewrite (16) as

h =
D−1

∑
m=0

L−1

∑
i=0

αm,ium,i = Uαα , (22)

where αα , vec
{

αm,i
}

and U is the DL×DL matrix whose (iD +
m +1) th column is given by the vector um,i. Because the vectors
um,i are orthonormal, the matrix U is unitary.

According to Section 2.3, |P | of the DL entries of the channel
vector h are given by the channel coefficients Hl,k at the pilot po-

sitions (l,k)∈P . Let h(p) denote the corresponding length-|P |
subvector of h, and let U(p) denote the |P |×DL submatrix of U
constituted by the corresponding |P | rows of U. Furthermore, let

Φc , U(p)D and xc , D−1αα , where the diagonal matrix D is cho-
sen such that all columns of Φc have unit l2-norm. We then have

h(p) = U(p)αα = Φcxc , (23)

which is (22) reduced to the pilot positions.

Because h(p) is unknown, we use its estimate ĥ(p) instead, i.e.,
the length-|P | vector containing the estimates Ĥl,k|(l,k)∈P . Ac-

cording to (11), ĥ(p) = h(p)+ zc, where zc is the vector of noise

terms zl,k/pl,k|(l,k)∈P . Inserting (23) yields ĥ(p) = Φcxc +zc. This

can be reformulated as the real “measurement equation”

y = Φx + z , (24)

where x ,
[

ℜ{xT
c } ℑ{xT

c }
]T

, y ,
[

ℜ{ĥ(p)T } ℑ{ĥ(p)T }
]T

, z ,

[

ℜ{zT
c } ℑ{zT

c }
]T

, and Φ ,

[

ℜ{Φc} −ℑ{Φc}
ℑ{Φc} ℜ{Φc}

]

are real represen-

tations of xc, ĥ
(p),zc, and Φc, respectively.

4.2 Sparse Linear Reconstruction via CS

Our task now is to recover the real vector x from the known real
vector y, based on the measurement equation (24) with known
2|P | × 2DL “measurement matrix” Φ. Once we have found x or,
equivalently, xc, we calculate channel coefficient estimates on G by
using αα = Dxc and (22). Estimates of all channel coefficients Hl,k
are then obtained by inversion of (10) and use of (8).

Unfortunately, this reconstruction problem is ill-posed because
2|P | ≪ 2DL, i.e., the number of scalar equations in (24) is much
smaller than the number of unknowns. However, assuming an ap-
propriate choice of the basis {um,i[l,k

′]} (which determines Φ), we
can assume that αα is (approximately) sparse, as discussed in Section
3.2. Then x is sparse as well—it has at most twice as many nonzero
entries as αα . Our channel estimation problem is thus recognized to
be a sparse reconstruction problem: we aim to recover x based on
the underdetermined linear model (24), subject to the constraint that
x is S-sparse, with a suitably chosen sparsity parameter S. Note that
the positions of the nonzero entries of x are unknown.

This sparse reconstruction problem can be tackled by the CS
methodology. A key condition of CS is that Φ satisfies a “re-
stricted isometry” property [11]. Let ΦI , I⊂{1, . . . ,2DL} be the
2|P |×|I | submatrix comprising the columns of Φ indexed by the
elements of I. Then the S-restricted isometry constant δS of Φ is
defined as the smallest quantity δS such that

(1−δS)‖a‖2
2 ≤ ‖ΦI a‖2

2 ≤ (1+δS)‖a‖2
2

for all index sets I with |I | ≤ S and all vectors a∈ R|I |.
For estimating x, we consider an extension of the basis pursuit

defined by the convex program [11]

x̂ , arg min
x∈Xε

‖x‖1 , (25)

where Xε is the set of all x∈R2DL satisfying ‖Φx−y‖2 ≤ ε for
a given ε > 0. This program can be solved efficiently by interior-
point methods [12]. It is able to recover S-sparse parameter vectors
according to the following result [11].

For a given S, assume that the 3S- and 4S-restricted isometry con-
stants of Φ satisfy

δ3S +3δ4S < 2 . (26)

Let y = Φx+ z with ‖z‖2 ≤ ε , and let xS ∈R2DL contain the S
components of x with largest absolute values, the remaining 2DL−S
components being zero. Then the estimate x̂ in (25) satisfies

‖x̂−x‖2 ≤ C1ε + C2
‖x−xS‖1√

S
,

where the constants C1 and C2 depend only on δ3S and δ4S.

For a zero-mean Gaussian noise vector z, the condition ‖z‖2≤ ε
is satisfied with high probability for ε suitably chosen. Regarding
the restricted isometry condition (26), the following result has been

shown in [13]. If Φc∈CN1×N2 with N1 ≤N2 is constructed by select-
ing uniformly at random [3] N1 rows from a unitary N2×N2 matrix
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U and normalizing the columns, a sufficient condition for (26) to

be true with overwhelming probability2 is

N1 ≥ C3 µ2 (ln N2)
4 S . (27)

Here, µ ,
√

N2 maxi, j |Ui, j| (known as the coherence of U) and C3

is a constant. It has been pointed out in [2] that under condition
(27), the corresponding real measurement matrix Φ∈R2N1×2N2 also
satisfies (26) with overwhelming probability.

According to Section 4.1, the pilot positions (l,k)∈P corre-
spond to |P | entries of the channel vector h. For consistency with
the CS framework, these positions are selected uniformly at random
[3]. The number of pilots is chosen to satisfy condition (27), which
becomes (note that N1 = |P | and N2 =DL)

|P | ≥ C3 µ2
(

ln(DL)
)4

S .

For the Fourier basis, S = 2PNΛ and µ = 1. In practice, the pilot
positions will be randomly chosen only once before the beginning
of data transmission. With high probability, they will lead to good
performance for arbitrary channels with at most P paths.

5. SPARSITY-OPTIMIZED BASIS EXPANSION

In this section, we propose a procedure for optimizing the “sparsity-
improving” 1-D basis {bm,i[l]} in (21).

5.1 The Optimization Problem

Ideally, the m-dependent orthonormal basis {bm,i[l]}i=0,...,L−1

should be such that the coefficient vector
[

α̃
(νp)
m,0 · · · α̃

(νp)
m,L−1

]T
in (21)

is sparse for all m and all νp ∈ [−νmax,νmax] (the maximum Doppler
νmax is assumed known). For our optimization, we slightly relax
this requirement in that we only require a sparse coefficient vector
for a finite number of uniformly spaced Doppler frequencies νp ∈D

where D ,
{

ν∆d, d = −⌈νmax/ν∆⌉, . . . ,⌈νmax/ν∆⌉
}

.
Regarding the choice of the Doppler frequency spacing ν∆, it is

interesting to note that for the “canonical spacing” ν∆ = 1/(TsNr),
B(νp)[m, l] in (20) collapses into

B(ν∆d)[m, l] =
L−1

∑
i=0

e
jπ d−i

Nr
(Nr−1) δ [i−d] A∗

γ ,g

(

m,
i

Nr

)

e j2π li
L .

This is an expansion of B(ν∆d)[m, l] into the 1-D Fourier basis

bm,i[l] ∝ e j2π li
L with an ideally sparse coefficient function α̃

(ν∆d)
m,i ∝

δ [i−d] (no leakage effect). Hence, the resulting optimal basis would
trivially be the Fourier basis. We therefore choose a Doppler spac-
ing that is twice as dense, i.e., ν∆ = 1/(2TsNr). In this case, D

includes also the Doppler frequencies located midway between the
canonical sampling points, for which the Fourier basis results in
maximum leakage (these frequencies are obtained for odd d).

The expansion coefficients defined by (21) can be calculated as

α̃
(νp)
m,i = ∑

L−1
l=0 B(νp)[m, l]b∗m,i[l], i = 0, . . . ,L−1. Equivalently,

α̃α
(νp)
m = Bm ββ

(νp)
m ,

with the length-L vectors α̃α
(νp)
m ,

[

α̃
(νp)
m,0 · · · α̃

(νp)
m,L−1

]T
and ββ

(νp)
m ,

[

B(νp)[m,0] · · · B(νp)[m,L−1]
]T

and the unitary L × L matrix Bm

with elements (Bm)i,l = b∗m,i[l]. We can now state the basis opti-

mization problem as follows: for given vectors ββ
(νp)
m , m = 0, . . . ,D−

1, find L×L unitary matrices Bm not dependent on νp such that the

vectors α̃α
(νp)
m = Bm ββ

(νp)
m are maximally sparse for all νp ∈ D . As

is usual in the CS framework, we measure the sparsity of α̃α
(νp)
m by

the l1 norm (more precisely, the l1-norm averaged over all νp ∈D),

2“Overwhelming probability” means that the probability of (26) not be-

ing true decreases exponentially with a growing number N1 of selected rows.

i.e., by 1
|D | ∑νp∈D

∥

∥α̃α
(νp)
m

∥

∥

1
= 1

|D | ∑νp∈D

∥

∥Bm ββ
(νp)
m

∥

∥

1
. Thus, the

optimization problem reads

B̂m = arg min
Bm∈U

∑
νp∈D

∥

∥Bm ββ
(νp)
m

∥

∥

1
, m = 0, . . . ,D−1 , (28)

where U denotes the set of all unitary L×L matrices.

5.2 Iterative Optimization Algorithm

Because the minimization problem (28) is nonconvex (since U is
not a convex set), we propose an approximate iterative algorithm
that relies on the following facts [14]: (i) every unitary L×L matrix
B can be represented in terms of a Hermitian L× L matrix A as

B = e jA; (ii) the matrix exponential B = e jA can be approximated
by its first-order Taylor expansion, i.e.,

B ≈ IL + jA , (29)

where IL is the L×L identity matrix. Even though IL + jA is not
a unitary matrix, the approximation (29) will be good if A is small.
Because of this condition, we construct Bm iteratively: starting with
the Fourier basis, we perform a small update at each iteration, us-
ing the approximation (29) in the optimization criterion but not for
actually updating Bm (thus, the iterated Bm is always unitary).

More specifically, at the ith iteration, the idea is to update the

unitary matrix B
(i)
m obtained at the (i−1) th iteration as B

(i+1)
m =

e jAm B
(i)
m —which is again unitary because Am is Hermitian—and

optimize Am according to the criterion (28), i.e., by minimizing

∑νp∈D

∥

∥e jAm B
(i)
m ββ

(νp)
m

∥

∥

1
. Since this problem is still nonconvex,

we use the approximation (29), and thus the final minimization
problem at the ith iteration is

Âm = arg min
A∈Ai

∑
νp∈D

∥

∥(IL + jA)B
(i)
m ββ

(νp)
m

∥

∥

1
. (30)

Here, Ai is the set of all Hermitian L×L matrices A that are small in
the sense that ‖A‖∞ ≤ λi, where ‖A‖∞ denotes the largest modulus
of all elements of A and λi is a positive constraint level (a small λi

ensures a good approximation accuracy in (29) and that the unitary

matrix e jÂm is close to IL). The problem (30) is convex and thus
can be solved by standard convex optimization techniques [12].

Next, we test whether the cost function is smaller for the new

unitary matrix e jÂm B
(i)
m , i.e., if

∑
νp∈D

∥

∥e jÂm B
(i)
m ββ

(νp)
m

∥

∥

1
< ∑

νp∈D

∥

∥B
(i)
m ββ

(νp)
m

∥

∥

1
.

In the positive case, we actually perform the update, i.e., set

B
(i+1)
m = e jÂm B

(i)
m , and we propagate the constraint level, i.e.,

λi+1 = λi. Otherwise, we reject the update, i.e., set B
(i+1)
m = B

(i)
m ,

and we reduce the constraint level as λi+1 = λi/2. This iteration
process is terminated either if λi < ε for a prescribed accuracy pa-
rameter ε or if the number of iterations exceeds a certain value. The

iteration process is initialized by the L×L DFT matrix B
(0)
m = FL.

As mentioned in Section 3, the Fourier basis already yields a rel-
atively sparse coefficient vector, and thus it provides a reasonable
initial choice. We note that efficient algorithms for computing the

matrix exponentials e jÂm exist [14].
For classical CP-OFDM with CP length N−K ≥ D−1, we have

Aγ ,g(m,ξ ) = Aγ ,g(0,ξ ) for all m = 1, . . . ,D−1, so B(νp)[m, l] =

B(νp)[0, l] (see (20)) and thus ββ
(νp)
m = ββ

(νp)
0 . Because ββ

(νp)
m no longer

depends on m, only one basis B (instead of D different bases Bm,
m = 0, . . . ,D−1) has to be optimized.

6. SIMULATION RESULTS

We compare the performance of the proposed CS-based channel es-
timation method using an optimized basis, of the CS-based channel
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Figure 1: Modulus of the basis expansion coefficients αm,i for the
Fourier basis (left) and for the optimized basis (right).

estimation method of [2] (using the implicit Fourier basis), and of
classical least-squares (LS) channel estimation. In accordance with
the DVB-T standard [8], we simulated a CP-OFDM system with
K=2048 subcarriers and CP length N−K = 512, whence N=2560.
The system employed 4-QAM symbols with Gray labeling, a rate-
1/2 convolutional code (generator polynomials (138,158)), and
32×16 row-column interleaving. The interpolation filter f (t) was
chosen as a root-raised-cosine filter with roll-off factor ρ = 1/4.

During blocks of L = 16 transmitted OFDM symbols, we sim-
ulated a noisy doubly selective channel whose discrete-delay-
Doppler spreading function Sh[m, i] was computed from (14) and
(15). We assumed P=20 propagation paths with (τp/Ts,νpTs) ran-
domly chosen within [0,511]× [−0.03/K,0.03/K] for each block
of 16 OFDM symbols (hence, the maximum Doppler normalized
by the subcarrier spacing is ±3%). The complex scatterer ampli-
tudes ηp were randomly chosen from zero-mean, complex Gaus-
sian distributions with three different variances (3 strong scatterers
of equal power, 7 medium scatterers with 10 dB less power, and 10
weak scatterers with 20 dB less power).

Fig. 1 compares the expansion coefficients αm,i (see (22)) ob-
tained with the Fourier basis and the optimized basis for one chan-
nel realization. The minimization of (30) was carried out using the
convex optimization package CVX [15]. It is seen that the basis op-
timization yields a significant improvement of sparsity.

For LS channel estimation, we used two different rectangular pi-
lot constellations: (i) a pilot on every fourth subcarrier for each
OFDM symbol, corresponding to 8192 pilots or 25% of all transmit
symbols, and (ii) a pilot on every fourth subcarrier and every sec-
ond OFDM symbol, corresponding to 4096 pilots or 12.5% of all
symbols. For CS-based channel estimation, we placed uniformly
at random 2048 pilots on a subsampled grid G with ∆K = 4, cor-
responding to 6.25% of all symbols—one quarter of the number
of pilots used in constellation (i) and half that used in constella-
tion (ii). The same pilot constellation was used for both CS-based
methods. CS-based estimation was implemented using the classical
basis pursuit, i.e., (25) with ε =0; this allows a faster implementa-
tion than extended basis pursuit with ε >0. The MATLAB function
l1eq pd() from the toolbox ℓ1-MAGIC [16] was used.

Fig. 2 depicts the mean square error (MSE) of the channel esti-
mates and the bit error rate (BER) versus the channel signal-to-noise
ratio (SNR). It is seen that both CS-based methods (with 6.25% pi-
lots) significantly outperform the LS method with 12.5% pilots. The
extremely poor performance of the LS method with 12.5% pilots is
due to the fact that the Shannon sampling theorem is violated by the
pilot grid. In contrast, the CS-based methods are able to produce re-
liable channel estimates even far below the Shannon sampling rate.
Compared with the LS method with 25% pilots, we observe only a
relatively small performance degradation of both CS-based methods
with 6.25% pilots, especially in the low-to-medium SNR regime.
The CS-based method using the optimized basis is seen to clearly
outperform the CS-based method using the Fourier basis. This per-
formance gain is due to the improved sparsity, and it is obtained in
spite of the greater coherence of the optimized basis (µ = 2.237)
compared to that of the Fourier basis (µ =1).
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Figure 2: Performance of CS-based and least-squares channel esti-
mation. Left: MSE versus SNR, right: BER versus SNR.

7. CONCLUSION

CS-based channel estimation makes it possible to exploit the spar-
sity of wireless channels for a reduction of the number of pilots. We
demonstrated that the inclusion of an optimized sparsity-improving
basis expansion in the CS-based channel estimation method of [2]
yields significant performance gains. The additional numerical
complexity is moderate; in particular, the basis optimization has to
be performed only once before the start of data transmission.
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