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ABSTRACT
In this paper we propose a novel stochastic algorithm

for direction of arrival (DOA) estimation of polarized
electromagnetic sources impinging on a six-component
vector-sensor array, based on the PARAFAC decompo-
sition of the fourth-order covariance tensor of the polar-
ized data. The Cramér-Rao bound is derived and the
performance of the proposed method are compared to a
prior trilinear deterministic version of the algorithm [1]
and to MUSIC for polarized sources [2].

1. INTRODUCTION

Multilinear array analysis exhibits uniqueness prop-
erties under mild conditions, transforming it into
a powerful tool in signal processing area. Several
multilinear algorithms were proposed lately, mainly in
telecommunication domain, using different diversity
schemes such as code diversity [3], multi-array diversity
[4] or time-block diversity [5]. A 3D multilinear model
for array processing, using polarization as a third
diversity, was first introduced in [6], and a PARAFAC-
based algorithm for this model, was later proposed
in [7]. In [1] we derived the identifiability conditions
for this trilinear polarized model, and we showed that
in terms of source separation, the performance of the
proposed algorithm is similar to the classical non-blind
techniques.

Nevertheless, the joint estimation of all the three
parameters of the sources (DOA, polarization, and
temporal sequence) is time-consuming, and it does not
always have a practical interest, especially in array-
processing applications. A novel stochastic algorithm
for DOA estimation of polarized sources is introduced
in this paper, allowing the estimation of only two
source parameters (DOA and polarization), and thus
presenting a smaller computational complexity than
its trilinear version [1]. It is based on the PARAFAC
decomposition of the fourth-order covariance tensor
of the polarized data, using a quadrilinear alternating
least squares (QALS) approach. Another significant
advantage of the proposed algorithm resides in the fact
that the methods based on statistical properties of the
signals proved to outperform deterministic techniques
[8], provided that the number of samples is sufficiently
high (> 600 or so).
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Figure 1: 2D-DOA on a vector-sensor array

The performance of the proposed algorithm is com-
pared in simulations to the trilinear deterministic
method introduced in [1] and to the CRB derived for
this multilinear model. We show that the proposed al-
gorithm, for low signal to noise ratio, provides better re-
sults than the deterministic one, while being more than
four times faster. The simulation results show that it
outperformes polarized MUSIC algorithm [2] for sources
having close DOAs.

2. MODEL

We introduce in this section a quadrilinear model for
electromagnetic sources covariance, recorded on a six-
component vector-sensor array.

Consider a uniform array built up with M identi-
cal sensors spaced by Δx along the x-axis, collecting
narrow-band signals emitted from N (N a priori known)
spatially distinct far-field sources. For the nth incom-
ing wave, the direction of arrival is determined by the
elevation angle θn ∈ [0, π/2] (measured from +z-axis)
and the azimuth angle φn ∈ [0, π) (measured from +x-
axis)(Fig. 1).

Under the far-field assumption, the steering vector
of the sensor array concerning the nth impinging wave
can be modeled in a Vandermonde structure as

aaan
�=

[
1, an, · · · , aM−1

n

]T
, (1)

where an = exp(jk0Δx sin θn cosφn) is the inter-sensor
phase shift and k0 is the wave number of the electro-
magnetic wave.
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Suppose the signals are completely polarized, and
the propagation takes place in an isotropic, homoge-
neous medium. A 2 × 1 complex vector

gggn =
[

cosαn − sinαn

sin αn cosαn

] [
j sin βn

cosβn

]

is used to describe the polarization state of the nth sig-
nal in terms of the orientation angle αn ∈ (−π/2, π/2]
and ellipticity angle βn ∈ [−π/4, π/4], see [9]. If the
nth incoming wave has unit power, the electric- and
magnetic-field, eeen and hhhn, measured by each vector-
sensor can be formulated by a 6 × 1 vector bbbn [10] in
Cartesian coordinates, which equals:

bbbn
�
=

[
eeen

hhhn

]
=

⎡
⎢⎢⎢⎢⎣

cos θn cosφn − sinφn

cos θn sin φn cosφn

− sin θn 0
− sinφn − cos θn cosφn

cosφn − cos θn sin φn

0 sin θn

⎤
⎥⎥⎥⎥⎦gggn.

(2)
Let p (p = 1, 2, · · · , 6) index the six field components of
the vector bbbn respectively.

Define :
A

�
= [aaa1, · · · ,aaaN ] (3)

a M ×N matrix containing the spatial responses of the
array to the N sources,

B
�
= [bbb1, · · · , bbbN ] , (4)

a 6 × N matrix containing the polarization responses
and

S(k)
�
=

⎡
⎣ s1(k) · · · 0

...
. . .

...
0 · · · sN (k)

⎤
⎦ (5)

a N ×N diagonal containing the kth temporal samples
of the N sources.

With these notations, the kth temporal samples col-
lected at the output of the array can be organized as a
M × 6 matrix:

X(k) = AS(k)BT + N(k) (6)

with N a M×6 matrix expressing the noise contribution
on the antenna.

The following assumptions are made:
(A1) Sources are zero-mean, mutually uncorrelated;
(A2) The noise is i.i.d. centered, complex Gaus-

sian process of variance σ2, non-polarized and spatially
white;

(A3) The sources have distinct DOAs.
Supposing that K temporal samples were recorded,

we define a covariance estimate of the sources as the
hyper-diagonal N × N × N × N tensor:

ĈSS =
1
K

K∑
k=1

S(k) ◦ S∗(k) (7)

where ◦ is the tensor outer product1 and ∗ stands for the
conjugate of a matrix.

We also compute the covariance of the received data
as the M × 6 × M × 6 tensor:

ĈXX =
1
K

K∑
k=1

X(k) ◦ X∗(k) (8)

From (6), (7), (8) and assumptions (A1) and (A2)
the covariance tensor of the received data takes the fol-
lowing form:

ĈXX = ĈSS •1 A •2 B •3 A∗ •4 B∗ + N (9)

where N is a M × 6 × M × 6 tensor containing the
noise power on the sensors. The operator •n stands for
the n-mode product2 of a tensor by a matrix.

3. MODEL IDENTIFIABILITY AND
PARAMETER ESTIMATION

As the tensor ĈSS is hyper-diagonal, (9) yields the
PARAFAC decompositions of ĈXX . We state next the
conditions under which this multilinear decomposition
is unique (up to a scaling factor and a permutation in-
determinacy), meaning that the model is identifiable.

3.1 Identifiability

In order to derive the identifiability conditions, we sup-
pose the absence of noise in the recorded signals, mean-
ing that N in (9) has only zero entries. The unique-
ness of the PARAFAC decomposition of ĈXX is ensured
(up to permutation and scaling of columns) if (Kruskal’s
Condition) [11]:

kA + kB + kA∗ + kB∗ ≥ 2N + 3 (10)

which equals:
kA + kB ≥ N + 1.5 (11)

In equations (10) and (11), kA and kB represent the
Kruskal-rank3 of matrices A and B.

Eq.(1) along with the assumption (A3) guarantee
that matrix A is full column rank, i.e. kA = N . This
means that the PARAFAC decomposition is unique if
the following constraint is fulfilled:

kB ≥ 1.5 (12)

We have proved in [1] that if (A3) is verified then
kB ≥ 2, which ensures identifiability of (9). This means
that as long as the N sources have distinct DOAs, the
PARAFAC decomposition of ĈXX is unique, polariza-
tion plays an auxiliary role (see [1]).

1The outer product of two matrices A(I1 × I2) and B(J1 ×J2)

is a fourth-order tensor C(I1 ×I2×J1×J2) defined by ci1i2j1j2
�
=

ai1i2bj1j2 .
2The n-mode product of a (I1 × . . .× IN ) tensor C and a (Jn ×

In) matrix A, is a (I1 × . . . × Jn × . . . × IN ) tensor given by:

(C •n A)i1...jn...iN

�
=

P
in

ci1...in...iN
ajnin

3Given a matrix A ∈ CI×J , if every linear combination of l
columns has full column rank, but this condition does not hold
for l + 1, then the Kruskal-rank of A is l, written as kA = l.
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3.2 Parameter estimation

We show next that the parameter matrices A and B
can be estimated via the Quadrilinear Alternative Least
Squares (QALS) algorithm [12].

Denote by Ĉpq = ĈXX(:, p, :, q) the (p, q)th ma-
trix slice (M × M) of the covariance tensor ĈXX .
Also note Dp(·) the operator that builds a diago-
nal matrix from the pth row of another and Δ =
diag

(
E‖s1‖2, . . . , E‖sN‖2

)
, the diagonal matrix con-

taining the powers of the sources. The matrices A and B
can then be identified by minimizing the Least Squares
(LS) criterion:

φ(σ, Δ,A,B) =
6∑

p,q=1

∥∥∥Ĉpq − AΔDp(B)Dq(B∗)AH − σ2δpqIM

∥∥∥2

F
(13)

that equals:

φ(σ, Δ,A,B) =
∑
p,q

∥∥∥Ĉpq − AΔDp(B)Dq(B∗)AH
∥∥∥2

F

−2σ2
∑

p

�
{
tr

(
Ĉpp − AΔDp(B)Dp(B∗)AH

)}

+6Mσ4 (14)

where tr(·) computes the trace of a matrix and �(·)
denotes the real part of a quantity.

With the columns of A and B (aaan and bbbn) given by
(1) and (2), the criterion (14) becomes :

φ(σ, Δ,A,B) =
∑
p,q

∥∥∥Ĉpq − AΔDp(B)Dq(B∗)AH
∥∥∥2

F

(15a)

− 2σ2
∑

p

�
{
tr

(
Ĉpp − 2MΔ

)}
(15b)

+ 6Mσ4 (15c)

Thus, finding A and B is equivalent to the minimiza-
tion of (15a) with respect to A and B, i.e.:

{Â, B̂} = min
A,B

ω(Δ,A,B) (16)

subject to ‖aaan‖2 = M and ‖bbbn‖2 = 2, where:

ω(Δ,A,B) =
∑
p,q

∥∥∥Ĉpq − AΔDp(B)Dq(B∗)AH
∥∥∥2

F

(17)
The optimization process in (16) can be implemented

using the quadrilinear alternative least squares (QALS)
algorithm.

Once the Â, B̂ are estimated, the DOAs of the N
sources are found via the minimization of the following
LS criterion :

{θn, φn} = min
θ,φ

(‖aaa(θ, φ) − âaan‖ + ‖ppp(θ, φ) − p̂ppn‖) (18)

with n = 1 . . .N . In (18) âaan is the nth column of Â. p̂ppn
is the Poynting vector for the nth source [13] obtained
from the nth column of B̂ (see eq. (2)) as:

p̂ppn = êeen × ĥhh
∗
n (19)

The steering vector aaa(θ, φ) for a source of DOA {θ, φ}
is given by eq.(1) and ppp(θ, φ) is defined as:

ppp
�
= eee × hhh∗ =

[ sin θ cosφ
sin θ sinφ

cos θ

]
(20)

Thus, a set of two DOA parameters is obtained for
each of the N sources. The polarization parameters
can be obtained in a similar way from B̂, but for space
reasons we will not address the polarization estimation
problem in the present paper.

4. PERFORMANCE ISSUES

4.1 Cramér-Rao bound

In this section the Cramér-Rao bound on the covari-
ance tensor of the data is derived, based on the results
of Stoica and Nehorai presented in [14]. Define x(k) as
the vector obtained by column-wise unfolding of X(k),

k = 1, . . . , K. Also, define S
�
= [s1 · · · sN ] as the (K×N)

matrix containing column-wise the K temporal samples
of the N sources. Under the assumption (A2), the ob-
servation x(k) satisfies

x(k) ∼ N (
μμμ(k), σ2I6M

)
, k = 1, . . . , K

where μμμ(k) = (B�A)S(k, :)T . If we define the parame-
ter vector θθθ by rearranging all the unknown parameters
in a long vector :

θθθ = [θ1, . . . , θN , φ1, . . . , φN , α1, . . . , αN , β1, . . . , βN ]T ,

the likelihood function of X
�
= [x(1) · · ·x(K)] can be

written as:

L(X | θθθ) =
1

(πσ2)6MK
exp

{
− 1

σ2

∥∥X− (B � A)ST
∥∥2

F

}
.

(21)
Then the log-likelihood function of the data equals

f(θθθ) = −6MK ln(πσ2)− 1
σ2

∑
k

∥∥x(k) − (B � A)S(k, :)T
∥∥2

F

(22)

If we note D
�= B�A, by extension of the work in [14]

to the vector-sensor case, the CRB for θθθ is obtained as :

CRB(θθθ) =
σ2

2

(
KX

k=1

�
n
GH

k WH
h
I −D(DHD)−1DH

i
WGk

o)−1

(23)
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where

W =

»
∂d1

∂θ1
· · · ∂dN

∂θN

∂d1

∂φ1
· · · ∂dN

∂φN

∂d1

∂α1
· · · ∂dN

∂αN

∂d1

∂β1
· · · ∂dN

∂βN

–

with dn denoting the nth column of D, and Gk =
I4⊗diag(S(k, :)) (the operator ⊗ denotes the Kronecker
product). In section 5, the CRB is illustrated for the
DOA parameters θ and φ.

4.2 Complexity of the algorithm
In this subsection we compare the complexity of the pro-
posed algorithm, based on a fourth-order tensor decom-
position, with the complexity of the 3-way PARAFAC
algorithm introduced in [1].

Generally, for an N -way array of size I1 × I2 × · · · ×
IN , the complexity of its PARAFAC decomposition in
a sum of F rank-1 tensors, using ALS algorithm is
O(F

∏N
n=1 In) [15], for each iteration. Hence, as nor-

mally K 
 6M , the number of computations involved
in the M×6×M×6 covariance array decomposition is of
order O(62FM2), quite smaller compared to O(6FMK)
involved in the direct decomposition of the M × 6 × K
array as it is the case in [1]. The number of iterations re-
quired before the decomposition reaches its convergence,
is not determined only by the data size, which makes an
exact theoretical analysis of the algorithms complexity
rather difficult. Table 1 below lists respectively the av-
erage running time for 500 Monte Carlo trials (M = 7
sensors, K = 1000 temporal samples, SNR = 10dB) for
QALS and the COMFAC4 algorithm [3], used for the
PARAFAC decomposition of the three-way array in [1].

COMFAC QALS
Average running time (sec) 1.3749 0.3080

Table 1: Comparison of computational times
One can see that, in our case, QALS is approxi-

mately four times faster than COMFAC. The explana-
tion is that for the fourth-order covariance tensor, only
two matrices (A and B) are in fact estimated while the
three-way algorithm estimates the three matrices (A, B
and S). Thus, the convergence is much faster in the first
case.

5. SIMULATIONS AND RESULTS

In this section, we compare in numerical simulations the
performance of the proposed algorithm, with the three-
way deterministic COMFAC-based approach [1] and the
polarized MUSIC algorithm [2]. The simulation results
are compared to the CRB derived in subsection 4.1.

First, a performance analysis is performed with re-
spect to the SNR. A number of M = 7 identical sensors
are used to build the uniform array, on which two adja-
cent sensors are set half a wavelength apart. A mixture
of N = 2 uncorrelated sources is recorded at the re-
ceiver; both sources are realizations of zero-mean Gaus-
sian processes of equal variance. The observations are
taken from K = 1000 independent snapshots and the
source DOAs and polarization parameters as listed in
Table 2. The DOA parameters for the two sources were

4COMFAC is a fast implementation of trilinear ALS working
with a compressed version of the data.
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Figure 2: RMSE of Elevation Angle θ Estimation vs.
SNR
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Figure 3: RMSE of Azimuth Angle φ Estimation vs.
SNR

set very close, to test the algorithms performance in ad-
verse situations.

The algorithm performances are compared in
terms of the root mean square error (RMSE)
of the estimates, as given by: RMSE(ξ̂) =√

1
LN

∑L
l=1

∑N
n=1

∥∥∥ξ̂l
n − ξn

∥∥∥2

, ξ = θ or φ, where ξ̂l
n

is the estimate of ξ obtained for the nth source at the
lth trial. L = 500 independent trials contribute to each
data point on the figures.

Figures 2 and 3 illustrate the average RMS error
of the elevation angle and the azimuth angle estima-
tion, respectively, for different SNRs. The QALS algo-
rithm presents better performance than COMFAC for
low SNR (SNR ≤ 0dB), and a similar behavior for high
SNR. Both multilinear approaches present comparable
performance to the polarized MUSIC estimator at low
SNR, but largely outperform the latter as SNR > 5dB.

Next, we compare the performance of the algorithms
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Angular parameters Elevation (θ) Azimuth (φ) Auxiliary (α) Ellipticity (β)
Source 1 87.73◦ 88.62◦ −14.36◦ −44.40◦
Source 2 83.54◦ 89.89◦ −62.80◦ −39.62◦

Table 2: DOA and Polarization Parameters of the Sources
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Figure 4: RMSE of Azimuth Angle φ Estimation vs. the
Number of Sensors

as the number of sensors increases. Figure 4 illustrates
the RMS error of the azimuth angle estimation for the
proposed approach, comparing to that of MUSIC and
COMFAC, as the number of sensors M gradually grows.
The results are similar for the elevation angle θ. The
SNR = 0dB, K = 1000 and the same source parameters
from Table 2 are used. Consistent with the results given
on Fig. 3, the proposed method yields more accurate
estimations comparing to the other algorithms. This
advantage compared to COMFAC fades for M > 8, but
both multilinear approaches outperform MUSIC for the
given source configuration.

6. CONCLUSIONS

In this paper we introduced a stochastic algorithm for
DOA estimation of the polarized sources, based on a
QALS decomposition of the covariance tensor of the
data. The algorithm presents an inferior complexity
compared to its deterministic trilinear version, and it
proved to be four time faster, in simulations. Also, it
showed better performance for low SNR (< 5dB), and
outperformed polarized MUSIC for close DOA estima-
tion.
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