
PORTABLE IMPLEMENTATION OF A TEXT-TO-SPEECH SYSTEM FOR
PORTUGUESE

Rodrigo C. Torres1, José M. de Seixas1, Sergio L. Netto1, Diamantino R. da S. Freitas2, Eduardo F. Brasil1

1Signal Processing Laboratory 2Laboratory of Signals and Systems
Federal University of Rio de Janeiro, Brazil University of Porto, Portugal

{torres,seixas,sergioln,efb}@lps.ufrj.br dfreitas@fe.up.pt

ABSTRACT
Speech synthesizers are mostly developed for general pur-
pose personal computers, which seems to be a problem for
users who require mobility, as that is the case for disabled
people. Therefore, a Portuguese speech synthesizing system
inspired on the time domain pitch synchronous overlap and
add technique was developed onto a digital signal processor
due to its portability advantages. To allow full integration
of the whole system, the original audio data, formed by 922
diphone units for the European Portuguese, was encoded us-
ing a code-excited linear prediction technique. By doing so,
the database size dropped to less than 1% of its original size,
with minimal loss in quality due to such coding process. The
final system is able to operate with a personal digital assis-
tant (PDA) or any custom device able to generate and send
written text by means of the UART serial protocol.

1. INTRODUCTION

There is an important current demographic trend in Europe
with respect of the aging of the population. The population
over the age of 60 in the EU is expected to rise to 25% of
the total population by the year 2020 [1]. The percentage of
disabled people is currently about 11% in the EU and should
rise to 17% by 2030 [2]. Nowadays, there is a clear claim for
services and equipments that are designed taking the needs
of disabled and older users.

An useful application for speech synthesizing systems is
in the support of disabled people. People with severe vi-
sual deficiencies are unable to read a newspaper. Individu-
als with speech problems are incapable of speaking over the
telephone.

Nowadays, there are several speech synthesizers imple-
mented onto general purpose personal computers. However,
disabled individuals can only take advantage of such sys-
tems while remaining near a computer. Therefore, a portable,
cheap, and easy-to-use speech synthesizer system was devel-
oped, allowing its use in a wide range of situations, enhanc-
ing the independence of this kind of user.

Current digital signal processing technology allows the
integration of very complex digital devices, like commercial
PDAs and mobile phones. This level of compactation was
achieved by exploiting specific features of the digital pro-
cessing algorithms, in order to optimize their processing. Be-
sides, developers can already count on extremely fast, small
and power-saving digital devices. So, focusing on the mo-
bility, a compact speech synthesizer system for Portuguese
was implemented using digital signal processor (DSP) tech-
nology.

The speech synthesizing algorithm used in this work was

inspired on the time domain pitch synchronous overlap and
add (TD-PSOLA) [3], due to its simplicity and quality. In
order to improve speech naturalness, a simple version of the
Fujisaki model intonation contour [4] was used to incorpo-
rate some prosody to the synthesized speech. One problem,
however, with the TD-PSOLA is that the amount of memory
needed to store diphones, pitch marks, and voicing informa-
tion tends to be very large. Hence, in order to reduce the
overall cost of the developed system, the database needed to
be compacted and resampled. For that purpose, the audio
samples were coded using the code excited linear prediction
(CELP) [5] speech coding system, so that the final system
would be able to fit entirely (program plus the database) in
only 512 Kbytes of non-volatile memory. The result was a
portable text-to-speech conversion system for European Por-
tuguese. Subjective evaluation of the synthesized speech in-
dicated that the overall system achieved a good performance.

This paper is organized as follows: Section 2 presents
the digital device used to implement the proposed system, as
well as the DSP model and evaluation board chosen for the
prototype development. Next, the overall implementation of
the synthesizing system is shown in Section 3. Then, in Sec-
tion 4, the steps performed to reduce the database to fit it in
the 512 Kbytes flash memory available for the prototype are
presented. Section 5 presents the results on system evalua-
tion. Finally, Section 6 concludes the paper emphasizing its
main contributions and future developments.

2. THE DIGITAL SIGNAL PROCESSOR

Digital signal processing requires some standard operations,
like multiplication and accumulation, modular operations
and high iterativity levels. So, a specific kind of processor
was developed to explore the inherent operations of digi-
tal signal processing algorithms. Such processors, generally
called digital signal processors (DSP) can optimally perform
the required operations in order to achieve the real-time re-
strictions [6] which apply to this target application.

The DSP chosen for this speech synthesizer application
was the SHARC ADSP-21160M [7]. Its inner structure is
presented in Fig. 1. It is an 80 MHz high performance, 32-
bit floating point processor, which executes every instruction
in just one single clock cycle. It has an internal memory of
4 MWords and an additional processing element (with an ad-
ditional multiplier, ALU, shifter and data register file) [8] for
single instruction on multiple data stream (SIMD) [9] opera-
tions.

The overall system was implemented in the EZ-Kit
21160 evaluation board [10], which can be visualized from
Fig. 2. This evaluation board contains a ADSP-21160M pro-

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



Figure 1: Inner structure of the ADSP-21160M (extracted
from [7]).

Figure 2: Schematic diagram of the evaluation board used to
implement the synthesizer (extracted from [10]).

cessor. It acts as an interface between the DSP and external
devices, reducing the complexity of prototypes development.
Besides, it already provides some commonly used resources
like:
• External memory modules (total of 512 Kbytes).
• Flash memory unit of 512 Kbytes for stand alone opera-

tions.
• CODEC for A/D and D/A conversions.
• Standard connectors attached to the DSP’s serial ports.

3. THE TEXT-TO-SPEECH SYSTEM
The system was implemented in such a way that it can inter-
face with any device capable to produce written text and send
it serially using the UART protocol, with RS-232 voltage lev-
els [11]. The block diagram of the synthesizer is presented in
Fig. 3. First, the user types the text he wants to synthesize in
a PDA, for instance. Then, the text is serially transmitted to
the DSP by the UART protocol, triggering the synthesizing
algorithm. At the end, the resulting audio samples are sent to
the D/A converter and the generated analog signal is sent to a
loudspeaker. On the DSP side, the algorithm runs as follows:

Text
Acquisition Processing

Text
Concatenation
Diphones

Prosody
Analysis TD−PSOLA D/A

DB Decoding
Diphones

DSP

Figure 3: Text-to-speech block diagram.

1. The text to be synthesized is received by the DSP through
its serial port.

2. Phonetic transcription and accentuation information are
extracted.

3. Analyzing the phonemes, a list with the needed diphones
is generated.

4. The information of each required diphone is read from
the database. The diphone is then decompressed and con-
catenated to the previous diphones already synthesized.

5. A simple prosody analysis is performed on the text, gen-
erating, as result, the F0 contour to be used in the final
synthesizing step.

6. The speech synthesis is executed and the synthesized au-
dio samples are stored in a queue, to be sent to the D/A
converter.

7. The system finally returns to step 1 and waits for the next
text.
Since the synthesizing process is much faster than the

audio reproduction (see Section 5), this algorithm would
quickly exhaust the available memory. In order to avoid this
effect, before allocating the memory needed to perform the
synthesis of one portion of the text, the system first verifies
whether it has enough memory for the task. If not, the system
waits until some memory is released, since the synthesizing
algorithm and the D/A conversion are executed in parallel.
Once the amount of memory is available, the system resumes
the synthesizing process.

4. DATABASE COMPRESSION

For the development of the database [12], a text containing
all the phonemes for the European Portuguese language was
reproduced by a professional reader. The text was recorded
with a sampling rate of 22.05 kHz with 16 bit resolution.
Then, the diphones were manually extracted and the pitch
marks, as well as the voicing information, were inserted
by automated methods. The final result was a high qual-
ity database, but requiring a high amount of memory (∼23
Mbytes) for storage and processing.

The challenge was to reduce this database memory re-
quirement, so it could fit to a memory size of 512 KBytes.
To do so, the following steps were performed, where each
step inherits the compression benefits of the previous steps:
1. The original version of the synthesizing algorithm used a

vector with the same length of the audio samples to store
the respective pitch marks and the voicing information.
The first step in compressing the database was to store
the indexes where a pitch mark was occurred, along with
two voicing flags (one for each phoneme that formed the

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



diphone). With that approach, the database size was de-
creased by a factor of almost 3.

2. The audio samples were resampled to 8 kHz, reducing
the number of audio samples by a factor of approximately
3.

3. The audio information of each diphone was coded using
a CELP system, compressing the database by a factor of
approximately 15.
The CELP coding system used [13] was operating with

speech segments of 20 ms, corresponding to 160 speech sam-
ples per segment at the 8 kHz rate for telephone systems.
For each segment, 10 linear prediction coefficients were de-
termined and then transformed onto 10 line-spectrum co-
efficients [14] for a 32-bit quantization procedure. To de-
termine the excitation information, each 20-ms block was
sub-divided into four sub-blocks of 5 ms or 40 samples
each. The excitation was constructed based on an exten-
sive search over two codebooks: a fixed one, mainly com-
posed by clipped white noise, and an adaptive one, with
4096 lines each. In that manner, both codebooks required
altogether 96 bits for indexing the entire speech block. The
codebook gains were uniformly quantized using 8 bits each,
yielding a total of 64 bits to represent the gain coefficients
for a given block. Hence, a 20-ms speech segment requires
only (32 + 96 + 64) = 192 bits, after encoding, to represent
all 160 original samples, while if the samples were stored in
32-bit words (the DSP default) it would require 5120 bits.

The results obtained in each compression step can be ob-
served in Table 1. As it can be seen, the final database ver-
sion dropped to less than 1% of the original database, with a
final size of just 190 Kbytes. The main disadvantage of this
compression level is the additional processing required for
decoding the audio samples and recalculating the pitch and
voicing marks for each sample. Such overhead, however, is
easily overcome due to the high processing speed of the cho-
sen DSP.

Table 1: Absolute and percentual sizes obtained from each
database compression version.

Version Size (Kbytes) % from the Original
Original 23,330 100.00
Optimized 7,820 33.52
Resampled 2,870 12.30
Coded 190 0.81

5. SYSTEM EVALUATION
5.1 Time Analysis
The percentage of the required time for each step of the
whole text-to-speech process was measured, and results can
be observed in Fig. 4. As one can see, most of the time is
spent in the decoding phase, but this overhead is perfectly
acceptable in this DSP implementation. For instance, the to-
tal time elapsed from the moment the text is acquired to the
time when the synthesized audio samples are stored in the
queue is ∼34 ms for a small sentence, which fulfills most
real-time requirements. Such delay can be considered negli-
gible for the human hearing system for all practical purposes.
Also, this time delay occurs only for the first sentence, since,
by the time the algorithm sends all the audio samples to the
D/A, more sentences will be already available in the output

Figure 4: Fraction of time spent in each step of the synthesiz-
ing system.

queue, thus, reducing this delay to virtually zero for further
sentences.

5.2 Objective Test
The objective test was performed to verify the overall syn-
thesizing quality. For that, the Itakura Distance (ID) method
[15] was used. In such test, the higher the ID, the more af-
fected the speech tends to be by the compression step. The
distances were calculated between the same text, synthesized
using the original 22 kHz sampling rate database, the 8 kHz
version with no coding and the coded 8 kHz database used
in the prototype implemented. A total of 35 randomly cho-
sen sentences from a newspaper, with different lengths, was
used for this test, and the results are presented in Table 2. It
can be observed that the distance from the 22 kHz version to
the others is large, when compared to the distance between
the two 8 kHz versions. As the distance between the coded
database and the 8 kHz database is small, the loss of qual-
ity was generated mainly by data resampling, and not by the
coding process.

Table 2: Itakura distance between the text synthesized us-
ing the original (22 kHz), the 8 kHz and the 8 kHz coded
databases.

22 kHz 8 kHz 8 kHz Coded
22 kHz 0,00±0,00 3,75±0,69 3,78±0,67
8 kHz 3,75±0,69 0,00±0,00 0,69±0,62

8 kHz Coded 3,78±0,67 0,69±0,62 0,00±0,00

5.3 Subjective Test
Although the objective analysis provides a quality evaluation
of the system, it is not capable to evaluate perceptual features
of the proposed system. Hence, a subjective test was per-
formed. In that test, 10 sentences (presented in Tab 3, with
the corresponding english translation) were synthesized us-
ing both the 8 kHz and the 8 kHz coded databases. Each pair
of sentence was reproduced, without repetition, to a group
of 14 people, and after each pair of sentence, each tester had
to decide which sentence achieved better quality. For better

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



Table 3: The Portuguese sentences used for the subjective
test.

Portuguese English
Ela saı́a discretamente She went out discretely
Queremos discutir o orçamento We want to discuss the budget
Hoje dormirei bem Today I’ll sleep well
Procurei Maria na copa I looked for Maria in the kitchen
O inspetor fez vistoria completa The inspector did a complete inspection
Desculpe se magoei o velho Sorry if I hurt the old man
Ela tem muita fome She is very hungry
Depois do almoço te encontro I’ll meet you after lunch
A pesca é proibida neste lago Fishing in forbidden in this lake
Temos muito orgulho da nossa gente We are very proud of our people

Figure 5: Comparison between the 8kHz and the 8kHz coded
databases.

evaluation, the testers did not know which synthesizer ver-
sion was used to produce each sentence. Results of such test
can be observed in Fig. 5. One can note that, in 54% of
the cases, the coded system was considered equal or better in
quality to the 8 kHz version without coding, showing, once
more, that the quality loss due to the coding process could
be considered as small. However, this result was affected by
the fact that the group of testers was composed mainly by
Brazilians (only 2 Portuguese people), who were not fully
used to the European Portuguese accent, which tends to in-
fluence negatively the obtained results.

6. CONCLUSIONS

This paper presented the prototype design of a portable
speech synthesizer system for Portuguese language which
was implemented using DSP technology. In order to achieve
small memory requirements, the database was optimized, re-
sampled and then coded using a CELP coder. Processing
speed measurements have shown that the real-time require-
ments are sustained, and the quality test have shown that the
coding process causes minimal impact in the synthesis qual-
ity.

The main design focus was on cost reduction of the fi-
nal product. Better quality can be achieved by the expense
of increasing the amount of memory used. Further studies
are expected to be performed in order to improve the qual-
ity of the synthesis without increasing the memory require-
ments. Future studies will also be made in order to associate

this system to a real-time, speech recognition system being
developed [16], in order to produce a final system able to
support synthesis and recognition tasks.

Acknowledgments
The authors would like to thank Maria J. Barros (FEUP) and
João P. Teixeira (FEUP), for their support during this work,
and also CNPq, CAPES, FAPERJ (Brazil) and GRICES
(Portugal), for their financial support.

REFERENCES

[1] Eurostat, “Europa in zahlen,” 1995.
[2] P. Roe, “Bridging the gap? access

to telecommunciations for all people,”
www.tiresias.org/phoneability/bridging the gap,
November 2001.

[3] T. Dutoit, An Introduction to Text-to-Speech Synthesis.
Kluwer Academic, 1999, vol. 3.

[4] H. Mixdorff, “Intonation patterns of German - quanti-
tative analysis and synthesis of F0 countours,” Ph.D.
dissertation, Technische Universität Dresden, 1998.

[5] P. Kroon and K. Swaminathan, “A high-quality mul-
tirate real-time celp coder,” IEEE Journal on Selected
Areas in Communications, vol. 10, no. 5, pp. 850–857,
June 1992.

[6] J. G. Ackenhusen, Real-Time Signal Processing. Pren-
tice Hall, 1999.

[7] ADSP-21160: SHARC DSP Hardware Reference,
2nd ed., Analog Devices, May 2002.

[8] Visual DSP++ 3.0 Manual: C/C++ Compiler and Li-
brary Manual For SHARC DSPs, 4th ed., Analog De-
vices, January 2003.

[9] K. Hwang and F. A. Briggs, Computer Architecture and
Parallel Processing, 5th ed. McGraw-Hill, 1989.

[10] ADSP-21160 EZ-KIT Lite: Evaluation System Manual,
3rd ed., Analog Devices, January 2003.

[11] G. Peacock, “Interfacing the serial / RS-232 port,”
www.beyondlogic.org/serial/serial.htm, August 2001.

[12] J. P. Teixeira, D. Freitas, D. Braga, M. J. Barros,
and V. Latsch, “Phonetic events from the labeling the
european portuguese database for speech synthesis,
FEUP/IPB-DB,” Eurospeech, pp. 1707–1710, Septem-
ber 2001.

[13] F. C. C. B. o. Diniz, “Implementation of a real-time
CELP voice coding system (in Portuguese),” Federal
University of Rio de Janeiro, Tech. Rep., May 2003.

[14] R. S. Maia, “CELP coding and spectral analysis of
speech signals (in Portuguese),” M.Sc. thesis, Federal
University of Rio de Janeiro, 2000.

[15] L. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition. Prentice Hall, 1993.

[16] M. R. Vassali, J. M. Seixas, and C. Espain, “Real-time
speech recognition system for Portuguese language
based on DSP technology,” IEEE South-American
Workshop on Circuits and Systems, 2000.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


