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ABSTRACT

This paper presents a sequential Monte Carlo method for track-
ing an unknown varying number of time-varying frequencies. A
reversible-jump sampler is used to implement model-order deter-
mination. It is shown that for a linear-in-the-amplitudes observation
model in white Gaussian noise, the amplitudes and noise variance
can be analytically marginalised out of the posterior distribution re-
sulting in a reduced dimension state estimation problem. A sum of
linear chirps model is chosen as a local observation model and this
basis is used to determine the instantaneous frequency of the sig-
nal. We present frequency tracking results from synthetic as well
as field-recorded bat echolocation calls and compare results with
Fourier based frequency tracking.

1. INTRODUCTION

Time frequency analysis of biosonar signals can be performed using
techniques based around the short-time Fourier transform (STFT) or
wavelets, with further analysis relying on this time-frequency repre-
sentation. This work addresses the issue of instantaneous frequency
estimation by direct inference from the raw data and without any
preprocessing. A sequential Bayesian approach is adopted to solve
this problem. The use of a Bayesian approach facilitates incorpora-
tion of prior information into the estimator, allowing the estimator
to use all the information available.

Figure 1 [1] illustrates the time-varying signal structure as a bat
attempts to first locate and identify potential targets (usually insects,
as a source of food), then tracks the target until it is finally captured.
In the figure, there are certain obvious changes in the signal struc-
ture over the search-approach-terminal phases: the duration of each
call decreases, multiple harmonics may be introduced, and the pulse
repetition rate increases. There is very little quantitative analysis of
the bat calls in the literature that exists beyond such a descriptive
analysis. The aim of this work is to then provide a robust method to
determine and track the time-varying frequency of multiple compo-
nents of such a signal, thus providing a basis for quantitative analy-
sis of these signals. Such an analysis would be useful to biologists
studying echolocation in bats.

The implementation of a sequential approach offers several ad-
vantages over a batch approach. A batch approach necessitates a
model for the time-frequency structure of the bat call which varies
across species. In addition, each call can have different amplitude
envelopes, and multiple harmonics, which may not last the entire
duration of the signal. The batch approach can result in a difficult
estimation problem with many parameters.

To overcome the problem of “parameter-bloat”, we choose to
sequentially estimate the frequencies of the subcomponents present
in the signal. As a result, no specific model needs to be considered
for different species while estimating the frequency. Using these
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Figure 1: Diversity of echolocation call structure

frequency estimates, model determination and parameter estimation
can be performed subsequently.

One approach for estimating the instantaneous frequency con-
tent of a signal would be to locate peaks in the spectrogram of a sig-
nal. Such a simplistic approach is not necessarily either reliable or
robust. Approaches for time-varying frequency tracking have been
proposed previously [2, 3, 4] taking into account smooth changes in
the frequency trajectory. STFT-based time-frequency tracking [2]
is implemented by applying a particle filter [5] to track the peaks
present in the spectrogram of a signal. The method looks at the
Fourier transform over short blocks of the observation sequence and
estimates in each block the number of components present, as well
as their frequencies, amplitudes, and noise variance.

The method described here is related to the harmonic tracking
algorithm described in [4]. In their work, a jump Markov system
(JMS) is used to detect multiple harmonic components. A Rao-
Blackwellised particle filter (RBPF) [5] is used to integrate out am-
plitude parameters in their model. In contrast, we investigate an
alternative approach where the amplitude and noise variance param-
eters are analytically marginalised out due to the use of a linear-in-
the-amplitudes observation model in Gaussian noise [6, 7]. Further,
reflecting the data set of interest, viz., bat echolocation calls, we
adopt a linear chirp as opposed to a sinusoidal basis.

When dealing with biosonar signals, the number of components
present in the signal is a time-varying parameter. Reversible-jump
Markov chain Monte Carlo (RJMCMC) methods [8] have previ-
ously been used to estimate an unknown number of frequencies for
the stationary-frequency case [9]. Within a sequential Monte Carlo
(SMC) framework, we demonstrate that the idea can be extended
and applied to the problem of frequency-tracking when the num-
ber of frequency components is time-varying. While a JMS can be
applied to detect a varying number of components, the RJMCMC
sampler is incorporated into a SMC framework since it improves
filter performance by inhibiting unlikely moves [10].

2. SIGNAL MODEL

The rate of change of phase of a signal provides the instantaneous
frequency of the signal. For a multicomponent signal, it is not the
overall rate of change of change of phase that we are interested in,
but the combination of frequencies which are present at that instant.
We redefine “instantaneous frequency” here so that each subcom-
ponent of the signal has its own instantaneous frequency.

In order to estimate the instantaneous frequencies, we slide a
window over the observation sequence and estimate the frequency
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components present in the windowed section of the observations.
The time varying nature of each frequency component is modelled
along the lines of the equation

fk+1 = g( fk)+wk (1)

where fk is the frequency at time k, g(·) is a function to update the

frequency from the previous time instant, and wk ∼N (0,σ2
w).

Within the sliding window, the observation segment is mod-
elled locally as the sum of Pk linear chirps with frequencies fk =

[ f
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Let L be the length of the sliding window defined such that k is
at the centre of the window. Over this window, the observation xt at
time t ∈ {k−L/2, . . . ,k+L/2}, assuming L odd, is

xt =
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]T are the ampli-
tudes of the cosine and sine amplitudes of the subcomponents, and

nt ∼ N (0,σ2
n,k) is zero-mean white Gaussian observation noise

with variance σ2
n,k . Setting c

(p)
k

to zero in equation 3 reduces the

local model to a sum of sinusoids (SoS) model. Figure 2 illustrates
the parameters used in the local model.

The selection of a suitable window length depends on the ap-
plication under consideration. Shorter windows allow us to deal
with highly non-stationary frequencies since the variation across a
short window will be less. However, the short window also leads to
greater variance in the parameter estimate. Long windows, by con-
trast, yield lower variance estimates, but may yield worse estimates
due to frequency non-stationarity within the window. This trade-off
must be considered when selecting a window of suitable length.

3. THE LIKELIHOOD FUNCTION

Since the noise term in equation 2 is zero-mean white Gaussian
noise, the likelihood function can easily be written down. The like-
lihood function is evaluated over the windowed section of the ob-
servations. Let xk = [xk−L/2, . . . ,xk+L/2]

T be the vector of observa-

tions; nk = [nk−L/2, . . . ,nk+L/2]
T be the noise.

The model in equation 2 can be written in matrix vector form
by defining the following matrices:
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Gk = [cos(Φk) sin(Φk)]

where φk,t is defined in equation 3; cos(·) and sin(·) operate
element-wise on the matrix Φk to produce an augmented L× 2Pk
Gk matrix. The signal model can be rewritten in the form of the

general linear model (GLM) [6, 7] as

xk = Gkak+nk (4)

If ψk = {Pk, fk,ck,ak,σ
2
n,k}, the likelihood function is
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3.1 Parameter Reduction using Marginalisation

From equation 5, it is possible to obtain a likelihood distribution
with the amplitude and noise variance terms marginalised out [7].
We would like to remove the dependence of equation 5 on ϒk =
{ak,σ

2
n,k}, thus reducing the parameter space. The frequency and

chirp-rate parameters can then be estimated, for example, using a
non-linear search. Since the observations are linear in the amplitude
parameters, these can be estimated separately once the frequencies
and chirp-rates are determined.

A multivariate normal distribution is defined on the 2Pk ampli-

tude parameters, ak ∼N (0,Σk),Σk = σ2
n,kδ

2
k
I2Pk , where IQ is the

Q×Q identity matrix. An extra parameter, δ 2
k

, is introduced, which
is indicative of the SNR of the signal. The noise variance is as-

sumed to follow an inverse-gamma distribution, σ2
n,k ∼ IG(αn,βn),

with scale and shape parameters (αn,βn). Thus, more explicitly,
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The marginalised likelihood function, p(xk | ψ ′k), where ψ ′k =

{Pk, fk,ck,δ
2
k
}, is then obtained from:
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where Fk = G
T
kGk+δ−2

k
I2Pk .

Priors on the remaining parameters are specified as uniform on

the frequency and chirp rate, an inverse-gamma on δ 2
k

, p(δ 2
k
) =

IG(αδ ,βδ ), and a Poisson distribution on Pk, p(Pk) = p(Pk | λ ).

3.2 Parameter Estimation

To obtain, for example, the maximum likelihood estimate, a difficult
multidimensional search for the function maximum is necessary.
This is further complicated by the fact that the number of parameters
to be estimated is a parameter that needs to estimated as well. The
complexity can be reduced by assuming that the signal does not
change significantly between time k and k+ 1 and exploiting this
within a sequential Bayesian framework. We adopt this solution to
estimate the signal parameters by modelling the sequential update
of the parameters along the lines of equation 1.

Particle filtering methods offer a framework for the implemen-
tation of the recursive Bayesian filter, and we use this framework to
estimate and track the frequency content of the time-varying signal.

4. PARTICLE FILTERING FRAMEWORK

A sequential importance-sampling resampling (SIR) particle filter
[5] is used to perform online frequency-tracking. The particle filter
would normally be used to estimate all the state parameters. How-
ever, we will demonstrate next that for the GLM, within a sequential
framework, the amplitude and noise variance terms may be analyti-
cally marginalised out of the posterior distribution.

Since many problems can be placed within the context of the
GLM, this marginalisation has wide application. The benefit is that



while the marginalisation introduces an extra parameter, at the same
time 2Pk+1 parameters are eliminated from the likelihood function.

A particle filter approximates the posterior distribution by a set
of weighted samples using sequential importance-sampling (SIS).

Let ωk be the unknown state at time k, Ωk = {ω j}
k
j=0, and xk be

the observation, Xk = {x j}
k
j=0. Then p(Ωk |Xk), the posterior dis-

tribution, is approximated by a set of N discrete weighted samples,

or particles, {Ω
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where w
(i)
k−1

is the weight at the previous instant k− 1, the likeli-

hood p(xk | ω
(i)
k

) is obtained from equation 5, p(ω
(i)
k
| ω

(i)
k−1

), the

transition prior, is obtained according to the state update equations

(section 4.1). q(ω
(i)
k
|Ω

(i)
k−1

,Xk) is the sampling distribution depen-

dent on previous states and observations.

To marginalise the parameters ϒk = {ak,σ
2
n,k} from the poste-

rior, we must integrate over these parameters in equation 7. It is
possible to use Rao-Blackwellisation to marginalise the linear am-
plitude parameters [4], however, we adopt a different approach in
analytically marginalising the amplitude and noise variance param-
eters. Rather than assume a particular model on the ϒk parameters
(e.g. random walk, as in [4]), we assume that the parameters are
independent across windows which allows us to easily carry out the
marginalisation. The marginalised posterior is written as:

p(Ω′k |Xk) ≈
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· · ·

Z NX
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where Ω′k = Ωk−{ϒ0:k} and w′k =
R
· · ·
R
wkdϒ0:k .

From equation 10 the posterior distribution can be obtained by
the integral of the weight in equation 8 with respect to the nuisance

parameters giving rise to a ‘marginalised’ weight w′
k
(i)

. The deriva-
tion of this marginalised weight update is listed in appendix A.

We utilise the priors listed in section 3.1 and set ω ′
k

= ψ ′
k

=

{Pk, fk,ck,δ
2
k }. Under the assumption that p(ϒk | ϒk−1) = p(ϒk),

the marginalised likelihood p(xk | ω
′
k) is identical to equation 6. In

addition, the sampling distribution in the SIS step is chosen as the
transition prior resulting in the simplified weight update equation

w′k
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∝ w′k−1
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p(xk | ψ

′
k
(i)

) (11)

In the approach adopted here, the SIR filter tracks frequencies
which have already been detected but does not detect any change
in the number of components. A RJMCMC move is subsequently
introduced to detect changes in the number of signal components.

4.1 State Update Equations

The state parameters ψ ′ need to be updated from time tk at index k
to time tk+∆t at k+1.

fk+1 = fk+ck∆t + v f ,k
ck+1 = ck + vc,k

log(δ 2
k+1) = log(δ 2

k ) + vδ ,k

(12)

where v f ,k = [v
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(p)
f ,k ∼

N (0,σ2
f ), is the process noise for update of the pth frequency,

v
(p)
c,k ∼N (0,σ2

c ), is the process noise for update of the pth chirp-

rate, vδ ,k ∼ N (0,σ2
δ ), is the process noise for update of the δk

term. Since the signal is modelled as a linear chirp, f
(p)
k

can be ex-
pected to increase by the amount ck∆t at time index k+1, and the
frequency update is formulated to mirror this.

Changes to the model order Pk are not reflected in the state
space equations. The state space equations reflect the update be-
haviour of the SIR particle filter which is unable to cope with
changes in the model order. The model order term is thus updated
according to the RJMCMC sampler (section 4.3).

4.2 Instantaneous Parameter Estimates

The particle filter produces an approximation of the multidimen-
sional distribution over the multiple signal parameters. Each parti-
cle contains an unordered set of frequency and chirp-rate parame-
ters. As a result, taking a sample mean does not yield a meaningful
estimate of the instantaneous frequency content of the signal. We
choose the MAP estimate as being representative of the instanta-
neous signal parameters. The instantaneous estimate is written as

ψ̂ ′k = argψ ′
k
max p(ψ ′k |Xk) (13)

Using the estimated ψ ′
k

parameters, it is possible to obtain an esti-
mate of the amplitude parameters using a least squares solution:

ak = (GTkGk)
−1

G
T
k xk

4.3 Model-Order Determination using Reversible-Jump
Markov Chain Monte Carlo

An alternative to using JMS for model-order selection is to utilise
a RJMCMC step in a particle filter which offers certain benefits.
The reversible-jump sampler accepts a new state according to an
acceptance probability. This accept/reject mechanism ensures that
good particles are not lost, thus reducing the variance of the weights
and limiting particle degeneracy [10]. This benefit, however, comes
at the cost of applying the sampler to each particle in the filter.

In contrast with general MCMC methods, the reversible-jump
sampler does not require a burn-in period when used in the SMC
context. The reversible-jump sampler requires the burn-in period so
as to sample from the limiting distribution. Since the samples from
the SIR filter are already distributed accordingly, a single iteration
is sufficient for model-order determination [11].

The reversible-jump move updates the number of components
tracked by each particle at time k. Moves between different di-
mension spaces are performed using birth, death, and update moves
[8, 9] with respective probabilities {bk,dk,uk}. Let {Pk,Θk} denote
the current state, and {P⋆

k ,Θ
⋆
k}, the proposed state, where Pk is the

number of components and Θk = ψ ′
k−{Pk}

. The new state will be

accepted according to an acceptance ratio r,

r =
p(P⋆
k ,Θ

⋆
k | xk,Λ)

p(Pk,Θk | xk,Λ)
| {z }

d(Pk,Θk | P
⋆
k ,Θ

⋆
k)

d(P⋆
k
,Θ⋆
k
| Pk,Θk)

| {z }

J
|{z}

posterior
ratio

proposal
ratio

Jacobian

where d(· | ·) denotes the conditional proposal distribution for the
parameters. The Jacobian term evaluates to unity for birth and
death moves. Once a particular move type is selected, a new state
is proposed which is then accepted with an acceptance probability
α = min{1,r}. Algorithm 1 lists the implementation of the filter.

5. RESULTS

We first present a comparison of the SoS and SoLC models. This
will illustrate the gains achieved from using the more complicated
model. Since the target class of signals is bat echolocation calls



Algorithm 1 Tracking a multicomponent signal

Initialisation (k = 0):
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4. Normalise weights:

w′
k
(i) = T−1ŵ′
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5. Obtain parameter estimates:
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6. Resample [ψ ′
k
(i)] = RESAMPLE[{ψ ′

k
(i),w

(i)
k
}N
i=1]

7. Reversible jump move
For i= 1 : N

• Sample u∼U[0,1]; select move type according to probabili-

ties bk,dk,uk.

• Propose new state {P⋆
k

(i),Θ⋆
k
(i)} and evaluate acceptance

probability α .

• Sample u∼U[0,1]; if u≤ α , accept new state {P⋆
k

(i),Θ⋆
k
(i)},

otherwise retain old state {P
(i)
k

,Θ
(i)
k
}.

which possess significant variety, the added flexibility of the SoLC
model is useful. We will then show that the algorithm is able to de-
tect changes in the number of subcomponents when using frequency
modulated signals. We will finally present some results from tests
on field-recorded bat echolocation calls.

5.1 SoS Model vs SoLC Model

As a test signal, we use a quadratic chirp having a constant-
frequency (CF) tail (figure 3), at an SNR of approximately 12dB.
Using a normalised sampling frequency of 1 Hz, a spectrogram of
the signal (without noise) highlights the presence of multiple peaks
(multiple dark tracks), which can lead to over-modelling of the sig-
nal. The number of components in the simulation is consequently
constrained to 1, and 100 particles are used for all the simulations.
The window length is set to 129 samples. 500 Monte Carlo runs
were performed for each model and the average MSE was plotted.

A comparison of the average MSE shows that the SoLC model
outperforms the SoS model for the FM section of the signal, and
is only slightly worse in the CF tail. Also compared with these
models, is the MSE from tracking peaks in the spectrogram. The
method is similar, but not identical to the method of Dubois et al [2],
relying implicitly on a SoS model, and is found to perform about as
well as the SoS model used here. The use of a hamming window
instead of a rectangular window, which is used in all the simulations
here, can provide a slight improvement for the STFT tracker since
this lowers the sidelobes in the Fourier transform.

The added complexity from the SoLC model allows us to obtain
significantly better estimates from chirp signals. The presence of
multiple peaks in the Fourier transform will result in over-modelling
in the case of the SoS model, however, the SoLC model is flexible
enough to deal with this non-stationarity.

5.2 Frequency Tracking Results

The purpose of these results is to illustrate filter performance at
points where signals start and end. The algorithm is able to track
multiple components, although there is some uncertainty in the es-
timate at the start and end of signals. At crossing points, the al-
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Figure 3: Comparison of SoS and SoLC models
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Figure 4: Test using multiple (and crossing) signals

gorithm tracks the separate components and does not approximate
them as a single component.

The signal used is similar to that used in [3]. Figure 4 shows
the spectrogram of the signal with the true frequency trajectories
overoverlaid. The signal incorporates FM signals, multiple fre-
quency crossings as well as a changing number of components, al-
though none of the components is amplitude-modulated. The SNR
of the signal is approximately 20 dB.

In the simulation, the number of particles used is 1000; a
window-length of 65 samples is chosen, and the hyperparameters
are set as αn = βn = 0, αδ = 1000, βδ = 2, λ = 1. The hyperpa-
rameters are deliberately chosen so as to specify vague priors on the
parameters. Using (αδ = 1000,βδ = 2) specifies a prior distribution
on the “SNR” term with mean 30dB.

The presence of discontinuities within the sliding window
causes problems for the filter, which tends to over-model the sig-
nal in an attempt to fit the discontinuity. To overcome this problem,
we assume that two frequency components will be no closer than a
predefined limit. This is achieved in practice by inserting nulls into
the sampling distribution for the frequency parameter. The disad-
vantage of this, however, is that frequencies which are very close
together will not be detected using the reversible jump sampler.An
alternate way of limiting this problem is to use a very short window.

5.3 Frequency Tracking Applied to Bat Calls

Results are shown here from testing the algorithm with two bat
echolocation calls recorded in the field. 1000 particles were used
and a window-length of 65 samples was specified. A truncated
uniform prior is used for the distribution of the frequency compo-
nent. Since these recordings contain a significant amount of low-
frequency noise, the truncated prior is used to disregard the low-
frequency noise band. The sampling distribution for adding new
frequency components is chosen as a modified truncated prior con-
taining nulls around already existing frequencies.

Figure 5 is a good quality recording of a Pipistrelle bat call (16
bits per sample (bps) with 750 kHz sampling rate). The signal has a
single dominant component with another component approximately
30-dB below that. The algorithm is able to track the non-linear chirp
as well as a higher harmonic. Figure 6 shows a recording from a
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Figure 5: Analysis of echolocation call of a Pipistrelle bat
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Figure 6: Analysis of echolocation call of a Natterer’s bat

Natterer’s bat with an SNR of 16 dB (8 bps with 450 kHz sampling
rate). The two frequency components are detected in the signal.

The application of the algorithm to bat chirps allows us to ex-
tract a set of instantaneous frequencies from the signals. It is possi-
ble to transform these frequencies into individual signal tracks (for
example, by applying target tracking algorithms). These tracks can
then be studied to better describe the nature of bat calls in terms of
linear/hyperbolic chirps with relevant parameters.

6. SUMMARY AND CONCLUSIONS

The method described here provides a means for detecting a time-
varying number of dynamic frequencies by locally modelling the
signal as a sum of linear chirps. The algorithm is based around
direct inference from the observations without any form of prepro-
cessing. The use of a sum of linear chirps basis is shown to offer
advantages over a sum of sinusoids basis. A particle filtering frame-
work allows frequency tracking in a sequential framework, while
the RJMCMC sampler permits detection of the start/end of compo-
nents. A marginalisation operation is used to reduce the dimension
of the parameter state space. This marginalisation of amplitudes
and noise variance is shown to be valid for the GLM framework.

A. MARGINALISATION FOR SEQUENTIAL UPDATE

The particle filter weight update equation is written as

wk = wk−1
p(xk | ψk)p(ψk | ψk−1)

q(ψk |Ψk−1,Xk)

where wk−1 is the weight of a particle at the previous time instant
k− 1. If ψ ′

k
denotes the state parameters we wish to estimate, and

ϒk is the parameters we wish to marginalise out of the estimation,
then the transition prior p(ψk | ψk−1) can be rewritten as

p(ψk | ψk−1) = p(ψ ′k,ϒk | ψ
′
k−1,ϒk−1)

= p(ψ ′k | ψ
′
k−1,ϒk,ϒk−1)p(ϒk | ϒk−1,ψ

′
k−1)

= p(ψ ′k | ψ
′
k−1)p(ϒk | ϒk−1)

We make a further approximation that the ϒ parameters are com-
pletely independent across blocks, such that p(ϒk | ϒk−1) = p(ϒk),
where p(ϒk) represents some prior distribution. This allows us to
carry out the marginalisation with relative ease by removing any
dependence on previous states.

The sampling distribution reflects the parameters being drawn
and is specified as q(ψk |Ψk−1,Xk) = q(ψ ′

k
|ψ ′
k−1,xk), i.e., depen-

dent on parameters of interest and the most recent observation.
Evaluation of the weight w′

k
is key to computation of the

marginalised posterior distribution.

w′k =

Z

· · ·

Z
p(xk | ψk)p(ψk | ψk−1)p(Ψk−1 |Xk−1)

q(ψk |Ψk−1,Xk)q(Ψk−1 |Xk−1)
dϒ0:k

The marginalised weight evaluates to:

w′k ∝

p(ψ ′k | ψ
′
k−1)

q(ψ ′
k
| ψ ′
k−1

,xk)

Z

p(xk | ψk)p(ϒk)dϒk

×

Z

· · ·

Z

p(Ψk−1 |Xk−1)dϒ0:k−1

(14)

∝ w′k−1×
p(ψ ′k | ψ

′
k−1)

q(ψ ′
k
| ψ ′
k−1

,xk)

∫
p(xk | ψk)p(ϒk)dϒk(15)

∝ w′k−1×
p(xk | ψ

′
k)p(ψ

′
k | ψ

′
k−1)

q(ψ ′
k
| ψ ′
k−1

,xk)
(16)

The integral over dϒk in equation 15 is easily performed for the
GLM when the likelihood function resembles equation 5 [7].
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